Matrice et vocabulaire associé

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Matrice et vocabulaire associé"

Transcription

1 I Matrice et vocabulaire associé I1 Définitions Définition 1 Deux entiers naturels m et n étant donnés non nuls, on appelle matrice de format m, n tout tableau rectangulaire ayant m n éléments, disposés sur m lignes et n colonnes Les éléments étant des nombres réels La matrice A = a 11 a 12 a 1n a i1 a i2 a in a m1 a m2 a mn peut aussi être notée A = a ij, la notation a ij désigne le coefficient situé à l intersection de la ligne i et la colonne j C est le coefficient générique de la matrice A Remarque 1 : Dans tout ce qui suit, on notera M mn R l ensemble des matrices à m lignes et n colonnes dont les coefficients sont des réels Lorsque m = n, on dit que la matrice est carrée d ordre n ou qu elle appartient à M n R Les coefficients a 11, a 22,, a nn sont les coefficients de la diagonale principale de la matrice La matrice identité d ordre n est la matrice carrée d ordre n dont tous les coefficients sont nuls à l exception de ceux situés sur la diagonale principale de la matrice qui sont égaux à 1 Elle est notée I n I n = Deux matrices A et B sont égales si et seulement si pour tout indice de ligne i et tout indice de colonne j, a ij = b ij L égalité entre deux matrices ne peut intervenir que si elles sont de même taille Une matrice est dite matrice nulle que si tous ces coefficients sont égaux à zéro Deux matrices nulles qui n ont pas la même taille ne sont pas égales Si A M m1 R alors A est une Si A M 1n R alors A est une I2 Opérations sur les matrices 1 Addition Définition 2 Soit les matrices A, B et C appartenant à M mn R elles sont de même taille En ajoutant les coefficients de A et de B en même «position» on obtient la matrice C On écrit C = A + B, ce qui signifie que i, j entiers tels que 1 i m et 1 j n, c ij = a ij + b ij Exemple 1 2 Multiplication d une matrice par un scalaire Définition 3 Soit A M mn R et λ un réel En multipliant chaque coefficient de A par λ, on obtient la matrice λa On note λa = λa ij Exemple 2 My Maths Space 1 sur 5

2 Remarque 2 On peut désormais définir la différence de deux matrices de même taille : A B = A + 1B 3 Produit de matrices Très Important : Le produit AB de deux matrices A et B n existe que si le nombre de colonnes de A est égal au nombre de lignes de B A B C = AB, C M 23 R M 23 R M 23 R M 32 R M 3 R M 3 R M 3 R M 2 R M 1n R M n1 R M n1 R M 1n R M mn R M np R M n R M n R a Multiplication d une matrice ligne par une matrice colonne Définition 4 Soit A M 1n R et B M n1 R on appelle produit AB le nombre obtenu de la façon suivante : b 11 a11 a 12 a 1n b 21 = a 11 b 11 + a 12 b a 1n b n1 b n1 Remarque 3 Le produit BA existe-t-il? b Multiplication d une matrice de M mn R par une matrice colonne de M n1 R Définition 5 Soit A M mn R et B M n1 R On appelle produit AB la matrice colonne M n1 R obtenue en multipliant chaque ligne de A par la matrice colonne B Écrire le produit : Exemple 3 Une association de consommateurs compare les prix de cinq produits p 1, p 2, p 3, p 4 et p 5 distincts dans trois magasins différents Les observations fournissent les données suivantes : Prix des produits à l unité en euros Produit P 1 Produit P 2 Produit P 3 Produit P 4 Produit P 5 Magasin Magasin 2 1,1 4,7 1,8 3,1 3,8 Magasin 3 0,9 5,1 1,9 3,2 4 Pour comparer la dépense d une personne selon les magasins, on considère un panier indiquant pour chaque produit la quantité achetée En utilisant le produit matriciel, donner le prix du panier 2,1,3,3,2 dans les trois magasins My Maths Space 2 sur 5

3 c Cas général Définition 6 Soit A M mn R et B M np R On appelle produit AB la matrice de M mp R obtenue en multipliant chaque ligne de A par chaque colonne de B Plus précisément, si l on note C le produit AB le coefficient c ij est obtenu en multipliant la i ème ligne de A par la j ème colonne de B Pour information, le coefficient c ij s écrit précisément de la manière suivante : n c ij = a ik b kj Exemple 4 Multiplier A = et B = k= Disposition pratique : II Matrices carrées d ordre n : ensemble M n R II1 Inverse d une matrice 1 Généralités sur les matrices carrées Il est important de rappeler que le produit de deux matrices carrées n est pas commutatif Il existe des couples de matrices telles que AB BA = et = Les produits de deux matrices distinctes par une même matrice peuvent donner deux matrices identiques = et = Dans M n R, la multiplication est associative : Pour toutes matrices A, B et C de M n R, ABC = ABC La multiplication est distributive à gauche et à droite par raport à l addition : Pour toutes matrices A, B et C de M n R, AB + C = AB + AC et B + CA = BA + CA La double-distributivité est possible en respectant l ordre d écriture des matrices : A + BC + D = AC + AD + BC + BD D après ce qui précède, s il existe des matrices distinctes A, B et C dans M n R telles que : AB = AC AB AC = 0 n AB C = 0 n La dernière relation signifie qu il existe des matrices non nulles dont le produit donne 0 On les appelle diviseurs de 0 Pour toute matrice A carrée d ordre n, AI n = I n A = A Pour tout n N, A n = A A A et A }{{} 0 = I n n fois Attention A + B 2 n est pas égal à A 2 + 2AB + B 2 My Maths Space 3 sur 5

4 2 Définition de l inverse d une matrice Définition 7 Soit A M n R S il existe une matrice B de M n R telle que AB = BA = I n, alors on dit que A est inversible et on note la matrice B de la façon suivante B = A 1 On a donc AA 1 = A 1 A = I n Remarque 4 Une matrice A de M n R, vérifiant AB = AC avec B C n est pas inversible En effet, si elle l était, la multiplication à gauche par A 1 donnerait B = C EXERCICE 1 Montrer que les matrices A et B sont inverses l une de l autre : A = et B = EXERCICE 2 Soit A = Cas des matrices carrées d ordre 2 Calculer A 2, A 3 et A 4 En déduire A 1 Définition 8 et propriété : a11 a Soit A M 2 R, A = 12 a 21 a 22 La matrice A est inversible si, et seulement si, a 11 a 22 a 21 a 12 0 Le réel a 11 a 22 a 21 a 12 est appelé déterminant de la matrice A et noté deta Si deta 0, A 1 = deta a 21 a 11 1 a22 a 12 II2 Exemple 5 Calculer A 1 à partir de A de l exercice 2 Application à la résolution de systèmes On a vu qu il est possible d écrire un système sous forme matricielle : Propriété 1 Un système linéaire à n équations et n inconnues x 1, x 2,, x n : a 11 x 1 + a 12 x a 1n x n = y 1 a 21 x 1 + a 22 x a 2n x n = y 2 a n1 x 1 + a n2 x a nn x n = y n peut s écrire sous la forme matricielle AX = Y Y = y i sont des matrices colonnes de M n1 R où A = a ij est une matrice carrée d ordre n, X = x i et Si A est inversible, le système a alors une unique solution donnée par X = A 1 Y Démonstration : My Maths Space 4 sur 5

5 2x 1 + 4x 2 x 3 = 1 EXERCICE 3 Soit S : 3x 1 2x 2 + x 3 = 2 x 1 3x 2 + x 3 = 4 1 Écrire S sous forme matricielle AX = Y 2 Déterminer A 1 à la calculatrice 3 En déduire les solutions de ce système II3 Puissances de matrices carrées d ordre 2 ou 3 De nombreux problèmes conduisent à calculer des puissances de matrices : Pour des puissances raisonnables, la calculatrice permet d obtenir un résultat ; Avec un logiciel de calcul formel Xcas,, dans certains cas, on peut obtenir l expression des coefficients de A n en fonction de n Une difficulté subsiste lorsque l on doit interpréter A n avec n tendant vers l infini II31 Matrice triangulaire Définition 9 Une matrice est dite triangulaire supérieure lorsque ses coeffcients situés sous la diagonale principale sont nuls Une matrice carrée d ordre 3 triangulaire supérieure est de la forme : Propriété 2 Soit T une matrice de M 3 R triangulaire supérieure et p un entier naturel non nul On a : T p = ap 11 0 a p a p 33 Définition 10 Une matrice est dite strictement triangulaire supérieure lorsqu elle est triangulaire supérieure et que ses coeffcients de la diagonale principale sont nuls Une matrice carrée d ordre 3 strictement triangulaire supérieure est de la forme : EXERCICE 4 Prouver que les matrices strictement triangulaires supérieures de M 3 R ont leurs puissances nulles à compter de la troisième au plus II32 Matrice diagonale Définition 11 Une matrice est dite diagonale lorsque tous les coeffcients non situés sur la diagonale principale sont nuls Une matrice diagonale d ordre 3 est de la forme : Si D M 3 R est diagonale, alors D p est diagonale et ses coeffcients sont obtenues en calculant les puissances des coeffcients diagonaux de D Remarque 5 Ce qui précède se généralise aux matrices de M n R My Maths Space 5 sur 5

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 Matrice p. 1/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL Lycée Dominique Villars ECE 1 COURS CALCUL MATRICIEL 1 Définitions et Notations Soit n N et m N On appelle matrice à n lignes et m colonnes tout tableau de la forme suivant : a 1,1 a 1,2 a 1,m a 2,1 a

Plus en détail

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 Chapitre 13 Calcul matriciel Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 On note K = R ou C Mathématiques PTSI (Lycée Déodat de Séverac)

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre 2 : Matrices 1 Notion de matrice et vocabulaire Notation 1 Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Dans tout ce qui suit, n, m et p sont des entiers naturels supérieurs ou égaux à 1.

Dans tout ce qui suit, n, m et p sont des entiers naturels supérieurs ou égaux à 1. I Généralités sur les matrices Activité 1 Dans tout ce qui suit, n, m et p sont des entiers naturels supérieurs ou égaux à 1 Une matrice A de dimensions m p est un tableau de nombres à m lignes et p colonnes

Plus en détail

[ [ [ ] 1. Définitions et Vocabulaire. Chapitre 3 Calcul matriciel. a. Définitions d'une matrice

[ [ [ ] 1. Définitions et Vocabulaire. Chapitre 3 Calcul matriciel. a. Définitions d'une matrice Chapitre Calcul matriciel. Définitions et Vocabulaire a. Définitions d'une matrice Définition Une matrice de dimension n p est un tableau de nombres comportant n lignes et p colonnes s [ 8 6 0 [ 6 8 0

Plus en détail

Matrices. () Matrices 1 / 45

Matrices. () Matrices 1 / 45 Matrices () Matrices 1 / 45 1 Matrices : définitions 2 Calcul matriciel 3 Opérations élémentaires sur les lignes d une matrice 4 Transposition On va principalement travailler avec R Mais on peut remplacer

Plus en détail

Matrices. Christophe ROSSIGNOL. Année scolaire 2016/2017

Matrices. Christophe ROSSIGNOL. Année scolaire 2016/2017 Matrices Christophe ROSSIGNOL Année scolaire 016/017 Table des matières 1 Notion de matrice 1.1 Définition................................................. 1. Addition de matrices...........................................

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C.

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C. Matrices Dans tout ce chapitre, K désigne R ou C Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes à coefficients dans K tout tableau rectangulaire

Plus en détail

Plan (1/2) Support au cours. Plan (2/2) Vecteurs de R N et opérations Produit scalaire de deux vecteurs de R N Norme d un vecteur

Plan (1/2) Support au cours. Plan (2/2) Vecteurs de R N et opérations Produit scalaire de deux vecteurs de R N Norme d un vecteur Plan (1/2) Mathématique Élémentaire Introduction à l algèbre linéaire Support au cours S. Bridoux Université de Mons-Hainaut 1 L espace R N Vecteurs de R N et opérations Produit scalaire de deux vecteurs

Plus en détail

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier Calcul matriciel Dans ce qui suit, K désigne R ou C. 1 Petite visite au zoo matriciel 1.1 matrices générales notion de matrice : une matrice à coefficients dans K est une liste d éléments de K disposés

Plus en détail

Suites. 1 Notion de matrice-vocabulaire Exemple d utilisation Définitions et vocabulaire... 2

Suites. 1 Notion de matrice-vocabulaire Exemple d utilisation Définitions et vocabulaire... 2 Table des matières 1 Notion de matrice-vocabulaire 1 1.1 Exemple d utilisation......................................... 1 1.2 Définitions et vocabulaire...................................... 2 2 Multiplication

Plus en détail

Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2...

Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2... 11 mars 014 Calcul matriciel I IA Matrices : définition, opérations et propriétés Définitions et structure d espace vectoriel Définition 1 (Définition Une matrice de type (n, p est un tableau à n lignes

Plus en détail

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C.

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C. CHAPITRE 0 Calcul matriciel Dans tout le chapitre, K désigne le corps R ou C 0 L'ensemble des matrices 0 Dénitions Dénition Soient n, p N On appelle matrice à coecients dans K à n lignes et p colonnes

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

Résolution de problèmes à l aide de matrices

Résolution de problèmes à l aide de matrices 3 Résolution de problèmes à l aide de matrices L E Ç O N Niveau : Terminale ES Prérequis : (définition d une matrice, opérations sur les matrices), fonction dérivée, intégrales, résolution d un système

Plus en détail

ISET Jerba wwww.isetjb.rnu.tn Département Génie Électrique. Cours d algèbre2. Haj Dahmane DHAFER

ISET Jerba wwww.isetjb.rnu.tn Département Génie Électrique. Cours d algèbre2. Haj Dahmane DHAFER ISET Jerba wwwwisetjbrnutn Département Génie Électrique Cours d algèbre2 Haj Dahmane DHAFER 19 février 2015 Chapitre I Généralités sur les matrices Sommaire I Définitions et notations 1 II Opérations sur

Plus en détail

Index. I- Notion de matrice. Matrices

Index. I- Notion de matrice. Matrices Index I- Notion de matrice... 1 I-1- Définitions et notations... 1 I-1-1- Matrice... 1 I-1-2- Matrice ligne... 2 I-1-3- Matrice colonne... 2 I-1-4- Matrice carrée... 2 I-1-5- Matrice diagonale... 2 I-1-6-

Plus en détail

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3 Table des matières I Matrices à coefficients dans K............................ 3 I.1 Généralités.................................. 3 I.2 Matrices particulières............................. 3 I.3 Matrices

Plus en détail

Matrices A = 6. Exemple Si A =

Matrices A = 6. Exemple Si A = Matrices 1. Définition Une matriceade dimensionn p ou de format(n;p) est un tableau de nombres comportant n lignes et p colonnes. On note a ij l élément se trouvant à l intersection de la ligne i et de

Plus en détail

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22...

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22... Chapitre 3 Matrices 1 Définitions et généralités Définition 11 Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a 12 a 1q a 21 a 22 a 2q A a p1 a p2 a ps Les coefficients a ij,

Plus en détail

Matrices à coecients réels

Matrices à coecients réels Matrices à coecients réels Dans tout ce chapitre d, n, p et q sont des entiers naturels non nuls 1 Systèmes linéaires : 11 Généralités : Dénition 1 : On appelle système linéaire de n équations à p inconnues

Plus en détail

Calcul matriciel Matrices Cours

Calcul matriciel Matrices Cours Calcul matriciel Matrices Cours CHAPITRE 1 : Généralités sur les matrices 1) Notion de matrice 2) Matrices particulières CHAPITRE 2 : Egalité de deux matrices CHAPITRE 3 : Opérations sur les matrices 1)

Plus en détail

La production du mois d octobre 2015 est donnée par la matrice P 1 =

La production du mois d octobre 2015 est donnée par la matrice P 1 = ACTIVITÉ Une entreprise fabrique deux types de produits notés A et B Ces produits sont fabriqués sur trois sites de production S, S et S3 En septembre 05 : le site S a fabriqué 50 milliers d articles A

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R)

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R) Matrices Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes un tableau rectangulaire de nombres réels comportant n lignes et p colonnes } }{{}

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne.

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne. 40 CHAPITRE 4. MATRICES ligne L M 1,n (K) et d une matrice B M n,q (K) est encore une matrice ligne. De plus, si on note L i la i-ième ligne de A, alors le produit AB est la L 1 B L 2 B matrice (la juxtaposition

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC systèmes d équations suites 1. Vocabulaire 2.Calcul matriciel 3. suites Prérequis Plan du cours 1. Vocabulaire Définition : Une matrice de dimension est un tableau de nombres comportant lignes colonnes.

Plus en détail

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016.

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016. 2. Matrices Sections 2.4 et 2.5 MTH1007 J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016 (v4) MTH1007: algèbre linéaire 1/18 Plan 1. Les règles des opérations matricielles 2.

Plus en détail

Révisions sur les matrices

Révisions sur les matrices BCPST2 9 5 2 10Révisions sur les matrices I Dénition et structure A) Ensemble des matrices Soient n, p N des entiers xés On appelle matrice à n lignes et p colonnes et à coecients à K la donnée d'une famille

Plus en détail

deux matrices de M n,p (K) et λ K. On définit

deux matrices de M n,p (K) et λ K. On définit CHAPITRE 6 MATRICES Dans tout le chapitre, K désignera R ou C 1 Matrices à éléments dans K 11 Algèbre des matrices Définition 61 Soient n, p N On appelle matrice de taille (n, p) à coefficients dans K

Plus en détail

9 : Matrices. 1. Opérations sur les matrices. 1.1 Les espaces vectoriels R n et C n

9 : Matrices. 1. Opérations sur les matrices. 1.1 Les espaces vectoriels R n et C n 9 : Matrices Opérations sur les matrices Les espaces vectoriels R n et C n Notation Dans tout le chapitre, K désigne R ou C, et n, p, q sont des entiers naturels non nuls On rappelle que si E est un ensemble,

Plus en détail

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices Chapitre 6 Algèbre matricielle En plus d être des tableaux de nombres susceptibles d être manipulés par des algorithmes pour la résolution des systèmes linéaires et des outils de calcul pour les applications

Plus en détail

Chapitre I : MATRICES ET OPERATIONS

Chapitre I : MATRICES ET OPERATIONS I- Notion de matrice Chapitre I : MATRICES ET OPERATIONS Définition 1 : et désignent deux entiers naturels non nuls. On appelle matrice de format (,) tout tableau de nombres réels à lignes et colonnes.

Plus en détail

Chap. I. Calcul Matriciel

Chap. I. Calcul Matriciel Printemps 2010 Chap. I. Calcul Matriciel 1 Chap. I. Calcul Matriciel Printemps 2010 Printemps 2010 Chap. I. Calcul Matriciel 2 Dans tout ce qui suit, K désigne R ou C. 1 Dénitions et propriétés Un tableau

Plus en détail

Ch. 03 MATRICES et SUITES

Ch. 03 MATRICES et SUITES Ch 03 MATRICES et SUITES I Notion de matrice Une matrice est un tableau de nombres réels à n lignes et p colonnes, de taille (n, p) ou n p Notation La matrice M ci-dessous peut être notée M = (a ij ) où

Plus en détail

LES MATRICES. Chapitre Premières définitions

LES MATRICES. Chapitre Premières définitions Chapitre 1 LES MATRICES 11 Premières définitions Définition Une matrice à n lignes et p colonnes et à coefficients dans R est un tableau de np éléments de R que l on représente sous la forme : a 11 a 12

Plus en détail

MATRICES - DEFINITION 1 Une matrice est un tableau rectangulaire de nombres.

MATRICES - DEFINITION 1 Une matrice est un tableau rectangulaire de nombres. MATRICES - DEFINITION 1 Une matrice est un tableau rectangulaire de nombres. Exemple: A = 1 17 1.12 3 π 6. Une matrice est de format mxn ssi elle a m lignes et n colonnes (m,n IN 0) Exemple : A est de

Plus en détail

Etude de l ensemble des matrices

Etude de l ensemble des matrices Autour du produit Exercice 1 - Produits possibles - L1/Math ( Sup - ) On considère les matrices suivantes : A = 1 2 3, B = ( 1 2 ), C = 2 1 3 0 1 2, D = ( 2 5 5 0 ), E = 1 1 3 1 4 0 0 2 5 Quels sont les

Plus en détail

Exercices Corrigés Matrices 1 2 A = 2 1

Exercices Corrigés Matrices 1 2 A = 2 1 Exercices Corrigés Matrices Exercice Considérons les matrices à coefficients réels : A =, B = 4 C =, D = 0, E = Si elles ont un sens, calculer les matrices AB, BA, CD, DC, AE, CE Exercice extrait partiel

Plus en détail

Calcul matriciel. Julien Reichert. m1;1 m 1;2 m 1;3 m 2;1 m 2;2 m 2;3

Calcul matriciel. Julien Reichert. m1;1 m 1;2 m 1;3 m 2;1 m 2;2 m 2;3 Calcul matriciel Julien Reichert Notions de base Une matrice est un tableau comportant m lignes et n colonnes, dont les cellules contiennent des réels. La dimension de la matrice est m n, on parle alors

Plus en détail

a 11 a 1n A = (a ij ) = ... a m1 a mn

a 11 a 1n A = (a ij ) = ... a m1 a mn Chapitre 4 Les matrices 4 Notions de bases Définition Une matrice est un tableau rectangulaire contenant des nombres : a a n A a ij a m a mn Les matrices peuvent représenter toutes sortes d informations

Plus en détail

MAT 1200: Introduction à l algèbre linéaire

MAT 1200: Introduction à l algèbre linéaire MAT 1200: Introduction à l algèbre linéaire Robert Guénette et Saïd El Morchid Département de Mathématiques et de Statistique Chapitre 2: Les matrices. Références Exemple, Définitions, Notations Exemple:

Plus en détail

Chapitre 2 : Les matrices

Chapitre 2 : Les matrices Chapitre 2 : Les matrices I. Définitions On appelle matrice à lignes et colonnes N, N à coefficients dans =R C un tableau à lignes et colonnes contenant un élément de à l intersection de chaque ligne et

Plus en détail

Base d algèbre Chapitre 1. Calcul matriciel. 1. Vecteurs

Base d algèbre Chapitre 1. Calcul matriciel. 1. Vecteurs Base d algèbre Chapitre 1. Calcul matriciel 1. Vecteurs Base d algèbre Chapitre 1. Calcul matriciel 1. Vecteurs Définition. On appelle un vecteur réel en dimension n une colonne x 1 x 2. x n de n nombres

Plus en détail

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1 Préparation à l'agrégation Interne 2005-2006 F. Dupré Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME On notera N n l'ensemble des entiers compris entre et n, n désignant un

Plus en détail

Chapitre 2 : Calcul matriciel.

Chapitre 2 : Calcul matriciel. I. Exemples introductifs. Des commandes et des prix. Chapitre 2 : Calcul matriciel. Exemple : Une usine fabrique des pantalons, des vestes et des chemises. Un client passe une commande : il commande 0

Plus en détail

colonne j ligne i Proposition 12.1: Deux matrices sont égales ssi elles ont même taille et mêmes coefficients.

colonne j ligne i Proposition 12.1: Deux matrices sont égales ssi elles ont même taille et mêmes coefficients. Chapitre 12 : Matrices - résumé de cours Dans tout le chapitre désigne ou, n et p deux entiers naturels non nuls. 1. L'ensemble M n,p() 1.1 Définition et vocabulaire Déf: On appelle matrice à n lignes

Plus en détail

Chapitre 1 : Matrices

Chapitre 1 : Matrices Chapitre 1 : Matrices Sommaire I. Définitions... 3 II. Opérations sur les matrices... 4 1) Egalité de matrices, matrice nulle... 4 2) Addition, multiplication par un réel... 4 3) Multiplication de matrices...

Plus en détail

Matrices. 1 Structure d espace vectoriel sur l ensemble des matrices

Matrices. 1 Structure d espace vectoriel sur l ensemble des matrices Matrices Structure d espace vectoriel sur l ensemble des matrices Soient K un corps (i.e. R où C), m,n N. Une matrice de type (m,n) à coefficients dans K est la donnée de mn éléments de K. On représentera

Plus en détail

Algèbre 4 CALCUL MATRICIEL SYSTEMES LINEAIRES

Algèbre 4 CALCUL MATRICIEL SYSTEMES LINEAIRES Algèbre - cha 4 /9 Dans tout le chaitre K désigne R ou C, n et désignent des entiers naturels non nuls.. OPERATIONS SUR LES MATRICES. Notion de matrice Algèbre 4 CALCUL MATRICIEL SYSTEMES LINEAIRES Définition

Plus en détail

MATRICES. Quelques repères historiques (Voir le magazine «Tangente», HS N 44, janvier 2012)

MATRICES. Quelques repères historiques (Voir le magazine «Tangente», HS N 44, janvier 2012) MATRICES Quelques repères historiques (Voir le magazine «Tangente», HS N 44, janvier 2012) Les carrés «latins», ancêtres des Sudoku, sont connus depuis longtemps (on en trouve dans une légende chinoise

Plus en détail

Calcul matriciel : rappels et compléments

Calcul matriciel : rappels et compléments CHAPITRE 5 Calcul matriciel : rappels et compléments 5 L ensemble M n,p (K) 5 Structure d espace vectoriel Définition Soit K = R ou C On note M n,p (K) l ensemble des matrices ayant n lignes et p colonnes

Plus en détail

Les opérations sur les matrices Algèbre linéaire I MATH 1057 F

Les opérations sur les matrices Algèbre linéaire I MATH 1057 F Les opérations sur les matrices Algèbre linéaire I MATH 1057 F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne Sudbury, 30 janvier 2011 Matrices (p. 107) Définition

Plus en détail

Algèbre linéaire pour GM Jeudi 01 novembre 2012 Prof. A. Abdulle

Algèbre linéaire pour GM Jeudi 01 novembre 2012 Prof. A. Abdulle Algèbre linéaire pour GM Jeudi novembre Prof A Abdulle EPFL Série 6 Corrigé Exercice a Calculer la décomposition LU de la matrice A = 9 6 6 On effectue la réduction de la matrice A jusqu à obtenir une

Plus en détail

Calcul matriciel 1. Calcul matriciel

Calcul matriciel 1. Calcul matriciel Calcul matriciel 1 le 29 Novembre 2008 UTBM MT11 Arthur LANNUZEL http ://mathutbmal.free.fr Calcul matriciel Introduction. A un système linéaire de p équations à n inconnues on associe un tableau avec

Plus en détail

XIII. Matrices. 1 Opérations sur les matrices. On note K = R ou C.

XIII. Matrices. 1 Opérations sur les matrices. On note K = R ou C. XIII Matrices 1 Opérations sur les matrices On note K = R ou C Définition 1 On appelle matrice à n lignes et p colonnes à coefficients réels ou complexes un tableau rectangulaire à n lignes et p colonnes

Plus en détail

Calcul matriciel. Décembre 2010

Calcul matriciel. Décembre 2010 Calcul matriciel Dédou Décembre 2010 Matrices colonnes Les matrices à une seule colonne s appellent matrices-colonnes. Les matrices à une seule ligne s appellent matrices-lignes. On peut voir les vecteurs

Plus en détail

Puissances n-ieme d une matrice. Application aux systèmes linéaires. x + 2y = 6 Exemple : soit à résoudre le système linéaire ( )

Puissances n-ieme d une matrice. Application aux systèmes linéaires. x + 2y = 6 Exemple : soit à résoudre le système linéaire ( ) II Application aux systèmes linéaires { x + 2y = 6 Exemple : soit à résoudre le système linéaire où x et y sont les inconnues x + 2y = 5 x 6 On forme ensuite les matrices suivantes : A =, X = et B = Donc

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

LES MATRICES. (a11 a12 a13 a1. a 22. a 23. a 33. a 32. a n 2. a n 3. ] avec i = 1, n et j = 1, p.

LES MATRICES. (a11 a12 a13 a1. a 22. a 23. a 33. a 32. a n 2. a n 3. ] avec i = 1, n et j = 1, p. I. LES MATRICES Un tableau rectangulaire de la forme ci-dessous est aelé matrice. A = (a11 a12 a13 a1 a 23 a 31 a 32 a 33 a 3 a n 1 a n 3 Elle a colonnes et n lignes. Le coefficient a ij R de la matrice

Plus en détail

Méthodes directes de résolution du système linéaire Ax = b

Méthodes directes de résolution du système linéaire Ax = b Chapitre 3 Méthodes directes de résolution du système linéaire Ax = b 3.1 Introduction Dans ce chapitre, on étudie quelques méthodes directes permettant de résoudre le système Ax = b (3.1) où A M n (R),

Plus en détail

Calculer l inverse d une matrice

Calculer l inverse d une matrice Méthodes et techniques des exercices Calculer l inverse d une matrice Définition. On dit qu une matrice A carrée n n à cœfficients dans un corps K est inversible si il existe une matrice carrée n n, B

Plus en détail

Matrices. 1. Définition Définition

Matrices. 1. Définition Définition Matrices Vidéo partie Définition Vidéo partie Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse d'une matrice

Plus en détail

UE MAT234. Notes de cours sur l algèbre linéaire

UE MAT234. Notes de cours sur l algèbre linéaire UE MAT234 Notes de cours sur l algèbre linéaire Matrices - Systèmes linéaires - Déterminants - Diagonalisation Dans tout ce document, K désigne indifféremment le corps des nombres réels IR, ou celui des

Plus en détail

Chapitre 6 Matrices. descend! Table des matières

Chapitre 6 Matrices. descend! Table des matières descend! Chapitre 6 Matrices Version du 25-09-2017 à 06:15 Table des matières 1 Matrices de format n p 2 Structure de K-espace vectoriel sur M n,p (K 3 Produit matriciel 4 Matrices carrées 5 Matrices carrées

Plus en détail

Résumé 02 : Matrices & Déterminants

Résumé 02 : Matrices & Déterminants http://mpbertholletwordpresscom Résumé 02 : Matrices & Déterminants Dans tout ce chapitre, K sera le corps R ou C 1 LES BASES 1 L opérateur L A Toute application linéaire de R p dans R n est l application

Plus en détail

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application Chapitre X Chapitre X : Matrice inverse et réciproque d une application Introduction Dans ce chapitre, on fera le lien entre la matrice d une application linéaire et l inverse d une matrice (notion vue

Plus en détail

Michel Rigo. October 7, 2009

Michel Rigo. October 7, 2009 MATRICES (INTRODUCTION) Michel Rigo Premiers bacheliers en sciences mathématiques October 7, 2009 champ K fixé une fois pour toutes matrice m n à coefficients dans K a 11 a 1n A =... a m1 a mn L élément

Plus en détail

MATRICES. 1. Définition. 2. Matrices carrées particulières. ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K)

MATRICES. 1. Définition. 2. Matrices carrées particulières. ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K) 21-10- 2007 JFC Mat p 1 MATRICES I GÉNÉRALITÉS 1 Définitions 2 Matrices carrées particulières II ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K) 1 Structure d espace vectoriel de M n,p (K) 2 Base canonique

Plus en détail

Déterminants. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau

Déterminants. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Déterminants Définition Déterminant d une matrice On définit par récurrence le déterminant, noté det(a),

Plus en détail

Chapitre II : Matrices et systèmes d équations linéaires

Chapitre II : Matrices et systèmes d équations linéaires Chapitre II : Matrices et systèmes d équations linéaires I. Les matrices A. Définitions B. Représentation matricielle d un système d équations linéaires C. Opérations sur les matrices II. Dépendance ou

Plus en détail

CH III Matrices. 1 / 8

CH III Matrices. 1 / 8 CH III Matrices. 1 / 8 Objectifs : Définition, dimension et opérations de matrices. Matrice transposée. Multiplication de deux matrices. Application à la résolution de système linéaire. I. La notion de

Plus en détail

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année Calcul matriciel Bernard Ycart Ce chapitre est essentiellement technique

Plus en détail

Chapitre 1 : Diviseurs et multiples.

Chapitre 1 : Diviseurs et multiples. Chapitre 1 : Diviseurs et multiples. 1. Chiffre et nombre : a. Chiffre : Ce sont les symboles utilisés pour écrire les nombres. Dans notre système (système décimal), il y a 10 chiffres distincts qui permettent

Plus en détail

Matrices Systèmes linéaires

Matrices Systèmes linéaires Chaitre Matrices Systèmes linéaires James Sylvester s intéresse à des tableaux de nombres qu il nomme matrices en 850. Peu arès, Arthur Cayley définit des oérations sur les matrices. Curieusement, c est

Plus en détail

2 Systèmes linéaires & Matrices

2 Systèmes linéaires & Matrices 2 Systèmes linéaires & Matrices On appelle système linéaire toute famille d équations de la forme a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 a m x + a m2 x 2 + + a mn x n = b m Si

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Donner une base de M 2 (R) qui soit formée de matrices inversibles Exercice 2 [ Indication ] [ Correction ] 1 a 0 0 0 1 a 0 Calculer

Plus en détail

Notes de cours L1 LM 125. Sophie Chemla

Notes de cours L1 LM 125. Sophie Chemla Notes de cours L1 LM 125 Sophie Chemla 10 septembre 2009 2 Table des matières 1 Matrices 7 1.1 Matrices : définitions, opérations.................... 7 1.1.1 Définitions........................... 7 1.1.2

Plus en détail

Techniques de calcul matriciel

Techniques de calcul matriciel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Techniques de calcul matriciel Introduction Une matrice est un tableau de nombres avec lequel on pourra faire des opérations. C est un objet numérique

Plus en détail

TD de révisions : Calcul matriciel

TD de révisions : Calcul matriciel TD de révisions : Calcul matriciel I. Révisions sur le calcul matriciel a) Remarques générales sur le calcul matriciel Le calcul matriciel n'a pas autant de propriétés que le calcul numérique : - On ne

Plus en détail

2 Diverses interprétations des matrices

2 Diverses interprétations des matrices 1 Rappels Espace vectoriel M p,n (K) : Addition : dénition et propriétés élémentaires : commutativité, associativité, existence d'un neutre, toute matrice admet un(e) opposé(e) pour + Multiplication par

Plus en détail

Compléments sur les matrices : exercices

Compléments sur les matrices : exercices Compléments sur les matrices : exercices ECT 6/7 Résoudre le système suivant : On pose A 7 7 (S et B Exercice 7x +y +z x +y +7z x +y +z Résoudre l équation AX B (d inconnue X Que constate-on? x y z M,

Plus en détail

Calcul matriciel , ,2 35 1,58

Calcul matriciel , ,2 35 1,58 Matrices Définition Soit m et n deux entiers naturels non nuls. On appelle «matrice de dimension m n» tout tableau de nombres réels comportant m lignes et n colonnes. Traditionnellement, on utilise une

Plus en détail

Systèmes d équations linéaires, Résumé

Systèmes d équations linéaires, Résumé Systèmes d équations linéaires, Résumé ycée Berthollet, PCSI1 2016-17 Exemple introductif (fil rouge) Exemple 1 On considère le système suivant : (S) x +2y 2z +3t = 2 2x +4y 3z +4t = 5 5x +10y 8z +11t

Plus en détail

Calcul matriciel, corrections des exercices

Calcul matriciel, corrections des exercices Calcul matriciel, corrections des exercices Systèmes linéaires Correction de l exercice. (Système linéaire paramétrique { { x + 2y x + 2y 2x + my (4 my Ce système n admet de solution que si m 4. Dans ce

Plus en détail

2,5 0 0,3 2 1, , π π 2. (b) Les propriétés se vérifient en regardant les coefficients des matrices.

2,5 0 0,3 2 1, , π π 2. (b) Les propriétés se vérifient en regardant les coefficients des matrices. Exercices du chapitre II : Opérations sur les matrices N o 1 a Effectuer les additions suivantes : 1 3 2 + 3 2 1 2 3 1 3 1 2 π π 2 2 25 3 + 1 2 3 2 14 3 0 2 2 b Vérifier les propriétés suivantes i A B

Plus en détail

Chap. II. Déterminants

Chap. II. Déterminants Printemps 2010 Chap. II. Déterminants 1 Chap. II. Déterminants Printemps 2010 Printemps 2010 Chap. II. Déterminants 2 1 Déterminant d'ordre 2 Le symbole a 11 a 12 a 21 a 22 matrice A a 11 a 12 a 21 a 22

Plus en détail

EXERCICES MPSI A 8 B. MATRICES R. FERRÉOL 13/14

EXERCICES MPSI A 8 B. MATRICES R. FERRÉOL 13/14 EXERCICES MPSI A 8 B MATRICES R FERRÉOL 13/14 1 : Calculer si c est possible : (a) (b) (c) 1 2 3 4 5 6 7 8 9 1 i i 0 1 2 1 2 1 2 1 2 3 2 1 i 0 i 1 2 1 0 ; 1 2 3 4 5 6 2 1 2 1 2 3 1 2 1 2 MATRICES 1 0 2

Plus en détail

CHAPITRE 13 : CALCUL LITTERAL EQUATIONS INEQUATIONS.

CHAPITRE 13 : CALCUL LITTERAL EQUATIONS INEQUATIONS. CHAPITRE 13 : CALCUL LITTERAL EQUATIONS INEQUATIONS. I DEVELOPPEMENT ET FACTORISATION : Rappelons que, dans une suite de calculs, les calculs dans les parenthèses sont prioritaires ; en cas d absence de

Plus en détail

et Systèmes d équations linéaires

et Systèmes d équations linéaires Opérations élémentaires et Systèmes d équations linéaires MPSI-Schwarz Prytanée National Militaire Pascal Delahaye 2 avril 2015 1 Les opérations élémentaires 11 Matrices associées aux OEL et aux OEC Lemme

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

CONCOURS DE RECRUTEMENT AU PROFESSORAT DE L'ENSEIGNEMENT DU SECOND DEGRÉ AGRICOLE DEUXIÈME ÉPREUVE ÉCRITE D ADMISSIBILITÉ.

CONCOURS DE RECRUTEMENT AU PROFESSORAT DE L'ENSEIGNEMENT DU SECOND DEGRÉ AGRICOLE DEUXIÈME ÉPREUVE ÉCRITE D ADMISSIBILITÉ. CONCOURS DE RECRUTEMENT AU PROFESSORAT DE L'ENSEIGNEMENT DU SECOND DEGRÉ AGRICOLE CAPESA CONCOURS D ACCÈS à la 2 e catégorie des emplois de professeurs des établissements d enseignement agricole privés

Plus en détail

Vecteurs et applications linéaires

Vecteurs et applications linéaires Vecteurs et applications linéaires (1) (1) () Vecteurs et applications linéaires 1 / 41 1 Familles de vecteurs de R n 2 Sous-espace vectoriels dans R n 3 Base d un sous-espace vectoriel (1) () Vecteurs

Plus en détail

CHAPITRE III. Matrices. Sommaire MATRICES 1

CHAPITRE III. Matrices. Sommaire MATRICES 1 CHAPITRE III Matrices MATRICES 1 Sommaire I Notion de matrice 20 A Introduction 20 B Définition générale 20 C Égalité matricielle 21 II Calcul matriciel 21 A Addition matricielle 21 B Produit d une matrice

Plus en détail