CIRCUITS EN RÉGIME SINUSOÏDAL FORCÉ

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CIRCUITS EN RÉGIME SINUSOÏDAL FORCÉ"

Transcription

1 CICUIS EN ÉGIME SINUSOÏDAL FOCÉ Dans ces circuits électriques, les sources d énergie fournissent des tensions ou des courants alternatifs sinusoïdaux qui, après un bref régime transitoire, imposent leur période aux courants et tensions du circuit. 1. ensions et courants alternatifs sinusoïdaux. appel : les grandeurs variables dans le temps se notent en minuscule alors que les valeurs continues se notent en majuscules Une grandeur alternative sinusoïdale peut s écrire sous la forme : x = A cos ( t + ϕ) A est l amplitude ( t + ϕ) est la phase (en rad) ϕ est la phase à l origine. est la pulsation (en rad.s -1 ) = π / est la période (en s) F = / πest la fréquence (en Hz) La valeur moyenne d une grandeur alternative sinusoïdale est nulle. 1.. Valeur icace. L intensité icace d un courant alternatif est égale à l intensité du courant continu qui produirait le même et Joule dans la même portion de circuit résistif. I = I 1 0 Pour un courant alternatif d amplitude I, elle vaut : cos π t dt I I = Cette définition s étend à toutes les grandeurs sinusoïdales rencontrées en régime sinusoïdal forcé.. eprésentation de Fresnel d une grandeur sinusoïdale..1. Vecteur tournant. À toute fonction sinusoïdale du temps x = A cos ( t + ϕ), on peut associer un vecteur de valeur A tournant autour de son origine à la vitesse angulaire... Vecteur de Fresnel outes les grandeurs d un circuit en régime sinusoïdal forcé ont la même pulsation ; le vecteur de Fresnel ne reprend que les principales, l amplitude A et la phase à l origine ϕ (compté positivement dans le sens trigonométrique direct ). emarque : on peut associer le nombre complexe A e j ϕ = A cos ϕ + j sin ϕ au vecteur de Fresnel. A sin ( t + ϕ) A t + ϕ A sin ϕ A ϕ A cos ( t + ϕ) + A cos ϕ reg_sin.doc Page 1 sur 5 IM : JFC

2 3. Impédance d une portion de circuit. On suppose que le circuit est parcouru par un courant alternatif sinusoïdal d intensité i = I cos t (on dit que le courant impose l origine des phases) La tension aux bornes d une portion de circuit peut s écrire u = U cos ( t + ϕ u ). ϕ u est ici le déphasage de la tension par rapport au courant L impédance est le rapport entre les valeurs icaces de la tension et de l intensité ; c est aussi le rapport entre les amplitudes des valeurs correspondantes. U Z = = U I I 3.. Impédance d un conducteur ohmique : Z = I U = I u = I = I cos t ϕ = Impédance d un condensateur : Z = 1 C q u I cos t dt I cos ( t ) C C 1 C 1 C = = = π C I 3.4. Impédance d une bobine : Z = L u L d i = L = L sin t = L I cos ( t + π) d t L I π + π U = I C ϕ = π U = L I ϕ = + π 3.5. Impédance d'une portion de circuit "LC série". La loi d'additivité des tensions dans une circuit "série" s'écrit : u = I cos t + L I cos ( t + π) + I cos ( t ) C 1 π que l'on cherche à écrire : u = U cos ( t + ϕ) La construction de Fresnel permet de trouver directement l'impédance et le déphasage de la tension par rapport au courant. i i U = Z I ϕ I L I C I π + π U = Z I L C 1 tan ϕ u = Z = + L C 1 u u B u C q L C reg_sin.doc Page sur 5 IM : JFC

3 4. Évolution des tensions en fonction de la fréquence Les impédances dépendent de la fréquence : l'impédance d'un conducteur ohmique est indépendante de la fréquence l'impédance d'une bobine augmente avec la fréquence. l'impédance d'un condensateur diminue avec la fréquence. 4.. Le comportement d'un circuit LC série dépend lui aussi de la fréquence. Dans les exemples qui suivent, la tension aux bornes du circuit LC est imposée par un générateur. La tension aux bornes du conducteur ohmique est proportionnelle à l'intensité du courant et permet donc d'étudier ses variations en fonction de la fréquence. = 100 Ω ; L = 0,10 H ; C = 1,0 µf. Basse fréquence : l'intensité du courant est faible à cause de la présence du condensateur. Fréquence moyenne : l'intensité du courant est grande (ici, elle est maximale) ; le condensateur et la bobine se compensent. reg_sin.doc Page 3 sur 5 IM : JFC

4 Fréquence haute : l'intensité du courant est faible à cause de la présence de la bobine 5. Mesures de déphasage. π ϕ u + π / ou - π / π mesure de ϕ u : ϕ = t u signe de ϕ u : la tension u passe par la valeur 0 après l'intensité du courant (visualisée par le tension u aux bornes du conducteur ohmique) ; la tension u est "en retard" sur le courant : ϕ u < 0 emarques : La tension u C aux bornes du condensateur est "en retard" sur le courant : ϕ C = - π / < 0 ; La tension u L aux bornes de la bobine est "en avance" sur le courant ϕ L = + π / > 0 Quand ϕ u < 0, le circuit est dit "capacitif ; la tension aux bornes du condensateur et supérieure à la tension aux bornes de la bobine quand ϕ u > 0, le circuit est dit "inductif" ; la tension aux bornes du condensateur est inférieure à la tension aux bornes de la bobine reg_sin.doc Page 4 sur 5 IM : JFC

5 6. Puissance consommée par un dipôle La puissance électrique instantanée consommée par un dipôle vaut p(t) = u(t) i(t). En régime continu (U et I constant), cette puissance vaut : P = U I Dans la cas du régime sinusoïdal forcé, la puissance moyenne consommée sur une période par un dipôle vaut : P = u(t) i(t) dt = U I cos ϕ En régime sinusoïdal, on définit : La puissance apparente P = U I (elle se mesure grâce aux indication des voltmètre et ampèremètre). La puissance active P a = U I cos ϕ (c'est celle qui est réellement consommée par le dipôle). La puissance réactive P r = U I sin ϕ. Le rapport P a P = cos ϕ est appelée facteur de puissance Importance du facteur de puissance d'une installation domestique. U cos ϕ Le distributeur d'énergie électrique garantit à l'utilisateur une tension d'utilisation U constante. En supposant que l'ensemble des lignes électriques allant de la centrale de production d'électricité jusqu'au consommateur ont une résistance r, la puissance consommée en ligne (pertes) par et joule a pour expression : P pertes = r U cos ϕ Pour réduire les pertes, on peut : diminuer le cos ϕ du consommateur augmenter la tension de distribution (lignes à haute tension) reg_sin.doc Page 5 sur 5 IM : JFC

Grandeurs sinusoïdales

Grandeurs sinusoïdales I. Les différents types de signaux Grandeurs sinusoïdales ignal variable En régime variable, les courants et les tensions sont des signaux variant avec le temps ignal périodique n signal est périodique

Plus en détail

Circuit (R,L,C) série en régime sinusoïdal forcé : Exercices

Circuit (R,L,C) série en régime sinusoïdal forcé : Exercices ircuit (,L,) série en régime sinusoïdal forcé : Exercices Exercice 1 : QM épondre par vrai ou faux 1 Le déphasage de la tension aux bornes d un dipôle (,L,) série par rapport à l intensité peut être nul

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE ÉPREUVE DE PHYSIQUE

BACCALAURÉAT TECHNOLOGIQUE ÉPREUVE DE PHYSIQUE Session 2009 BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE Durée de l'épreuve : 2 heures Coefficient : 3 Le sujet comporte 6 pages numérotées de

Plus en détail

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE

CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE CIRCUITS ELECTRIQUES EN REGIME SINUSOIDAL MONOPHASE I TENSIONS ET INTENSITES ALTERNATIVES INSTANTANEES 1 Sinusoïde et vecteur de FRESNEL 2 Période, fréquence et pulsation 3 Tension maximum -Tension efficace

Plus en détail

C 1 courbe correspondante.

C 1 courbe correspondante. Exercice n : 1 Un oscillateur électrique est constitué des dipôles suivants associés en série : un résistor de résistance R, une bobine d inductance L et de résistance négligeable un condensateur de capacité

Plus en détail

Chapitre 2 : Courant alternatif

Chapitre 2 : Courant alternatif Chapitre 2 : Courant alternatif I. Définition Un courant alternatif est un courant dont l intensité : varie périodiquement en fonction du temps =+ avec la période présente alternativement des valeurs positives

Plus en détail

Chapitre 2 : Plan du chapitre. 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif

Chapitre 2 : Plan du chapitre. 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif Chapitre 2 : Le régime alternatif (AC 1 Plan du chapitre 1. Grandeur alternative 2. Le régime sinusoïdal 3. Représentation ti de Fresnel 4. Puissance en régime AC 5. Récapitulatif 2 Plan du chapitre 1.

Plus en détail

Préparez votre baccalauréat

Préparez votre baccalauréat Exercice N 1 Un générateur basse fréquence, délivrant une tension sinusoïdale u(t) =U m sin(2 Nt), d amplitude U m constante et de fréquence N réglable, alimente un circuit électrique comportant les dipôles

Plus en détail

Chapitre 8 : Dipôles linéaires en régime sinusoïdal

Chapitre 8 : Dipôles linéaires en régime sinusoïdal Chapitre 8 : Dipôles linéaires en régime sinusoïdal I / Introduction 1. position du problème 2. montage II / Résistance 1. Etude théorique 2. Etude expérimentale 3. généralisation 4. application III /

Plus en détail

M ) {( R ), ( B ), ( C )} = UDM

M ) {( R ), ( B ), ( C )} = UDM Exercice 1 :(bac 98) Le circuit électrique de la figure-2 comporte en série : - un résistor ( R ) de résistance R = 80 Ω - une bobine ( B ) d inductance L et de résistance propre r. - un condensateur (

Plus en détail

Série : Oscillation électrique en régime sinusoïdale forcée

Série : Oscillation électrique en régime sinusoïdale forcée Exercice n 1 On considère un circuit électrique série constitué par un G.B.F délivrant une tension sinusoïdale U(t) = U m sin (2πNt), un condensateur de capacité C, un résistor de résistance R = 80 Ω et

Plus en détail

Lycée Maknassy ALIBI.A.

Lycée Maknassy ALIBI.A. Lycée Maknassy ALIBI.A. 2010-2011 - 4 éme TEC - Sc.physiques EXERCICE 1 Un dipôle AB est constitue par l association en série d un résistor de résistance R = 10 ohms, d une bobine d inductance L = 0,5

Plus en détail

remarque : la notation complexe est ici moins pratique car elle s'applique surtout aux opérations linéaires : Re(ui) Re(u)Re(i).

remarque : la notation complexe est ici moins pratique car elle s'applique surtout aux opérations linéaires : Re(ui) Re(u)Re(i). EC.VII - RÉGIME SINUSOÏDAL - ADAPTATIONS. Puissance en régime sinusoïdal permanent.. Puissance moyenne et valeurs efficaces La puissance instantanée reçue par un dipôle est : p(t) = u AB (t) i(t) (convention

Plus en détail

LA THEORIE SUR L ELECTRICITE

LA THEORIE SUR L ELECTRICITE Cours d électricité LA THEORIE SUR L ELECTRICITE LES NOTIONS DE BASE Le courant alternatif PARTIE N 3 : LES PUISSANCES TABLE DES MATIERES 1. La puissance en courant alternatif... 1.1. La puissance instantanée...

Plus en détail

Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone

Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone Julien Seigneurbieux Conversion d énergie Présentation Générale Semestre 1 Electrocinétique Circuits magnétiques Bobine à noyau de fer Transformateur Systèmes triphasés Machine Synchrone 1 Rappels d électrocinétique

Plus en détail

SERIE N 6 ETUDE DES OSCILLATIONS ELECTRIQUE FORCE CIRCUIT RLC EN REGIME SINUSOIDALE

SERIE N 6 ETUDE DES OSCILLATIONS ELECTRIQUE FORCE CIRCUIT RLC EN REGIME SINUSOIDALE SERIE N 6 ETUDE DES OSCILLATIONS ELECTRIQUE FORCE CIRCUIT RLC EN REGIME SINUSOIDALE EXERCICE 1 On réalise entre deux points A et M d un circuit un montage série comportant un résistor de résistance R=40Ω,

Plus en détail

Le circuit électrique de la figure-1 comporte en série : - un résistor ( R ) de résistance R=170.

Le circuit électrique de la figure-1 comporte en série : - un résistor ( R ) de résistance R=170. Lycée Maknassy 2011-2012 - 4 éme TEC et SC EXP- ALIBI.A. Sc.physiques Exercice n : 1 Le circuit électrique de la figure-1 comporte en série : - un résistor ( R ) de résistance R=170. 2 1 une bobine (B)

Plus en détail

tout droit est réservé à l auteur ( SFAXI SALAH : professeur hors classes)

tout droit est réservé à l auteur ( SFAXI SALAH : professeur hors classes) 4eme/math Sc/tec/info PROBLEME N1 On réalise entre deux points A et M d un circuit un montage série comportant un résistor de résistance r=40ω, une bobine d inductance L et de résistance R=13Ω et un condensateur

Plus en détail

Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance

Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance Prof : Barhoumi Ezzedine Classe : 4 ème Math A.S. : 215/216 Tunisie - Sidi Bouzid - Lycée de Cebbala Les oscillations électriques forcées Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance

Plus en détail

PC A DOMICILE WAHAB DIOP LSLL

PC A DOMICILE WAHAB DIOP LSLL cos PC A DOMICILE - 779165576 WAHAB DIOP LSLL P13-OSCILLATIONS E L E C T R I Q U E S F O R C E E S E N R TRAVAUX DIRIGES TERMINALE S 1 On donne deux tensions sinusoïdales, exprimées en volts u 1 = 3cos(250t)

Plus en détail

Génie électrique TD Source d'énergie

Génie électrique TD Source d'énergie Exercice 1 (difficulté *) On considère le circuit suivant : A i(t) C On donne : u(t) u L (t) L R=200 Ω D u R (t) R B M 1. Indiquer les branchements de l oscilloscope pour visualiser u(t) en voie1 et u

Plus en détail

Déterminer le module et l argument des nombres complexes suivants : z 1 = 1 + j ; z 2 = j ; z 3 = 4 ; z 4 = - 1 j ; z 5 = 2 3j ;

Déterminer le module et l argument des nombres complexes suivants : z 1 = 1 + j ; z 2 = j ; z 3 = 4 ; z 4 = - 1 j ; z 5 = 2 3j ; EXERCICES SUR LES NOMBRES COMPLEXES Exercice Déterminer le module et l argument des nombres complexes suivants : z = + j ; z 2 = - 4 + 3j ; z 3 = 4 ; z 4 = - j ; z 5 = 2 3j ; Écrire sous la forme trigonométrique

Plus en détail

TD4: Dipôles linéaires en régime sinusoïdal

TD4: Dipôles linéaires en régime sinusoïdal TD4: Dipôles linéaires en régime sinusoïdal Exercice 1: Détermination des valeurs efficaces et des déphasages Exercice 2: Dipôles R, L série et:/ou parallèle 1. Soit le dipôle AB constitué d'une résistance

Plus en détail

I- Généralités : Pour assimiler le cours

I- Généralités : Pour assimiler le cours I- Généralités : Pour assimiler le cours Exercice N 01 Au cours d une séance de travaux pratiques, on dispose du matériel suivant : Un résistor de résistance R Une bobine de caractéristiques (L; r) Un

Plus en détail

Systèmes triphasés. u ba (t) = v b (t) v a (t) = u ab (t) u cb (t) = v c (t) v b (t) = u bc (t) u ac (t) = v a (t) v c (t) = u ca (t)

Systèmes triphasés. u ba (t) = v b (t) v a (t) = u ab (t) u cb (t) = v c (t) v b (t) = u bc (t) u ac (t) = v a (t) v c (t) = u ca (t) Systèmes triphasés I. Alimentation triphasée 1. Présentation On considère une alimentation triphasée équilibrée disposant de quatre bornes : trois phases repérées par les lettres a, b et c et un neutre

Plus en détail

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition.

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition. Prof : Barhoumi Ezzedine Classe : 4 ème Math A.S. : 213/214 Tunisie - Sidi Bouzid - Lycée de Cebbala Les oscillations électriques forcées Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance

Plus en détail

AL Les sources d énergie Cours AL-1 forme énergie électrique Les formes de l énergie électrique

AL Les sources d énergie Cours AL-1 forme énergie électrique Les formes de l énergie électrique Les formes de l énergie électrique Compétences attendues: RESOUDRE : - Construire graphiquement les lois de l électricité à partir des vecteurs de Fresnel - Déterminer les courants et les tensions dans

Plus en détail

I. Signaux sinusoïdaux. I.1. Expression de la valeur instantanée (ou équation horaire)

I. Signaux sinusoïdaux. I.1. Expression de la valeur instantanée (ou équation horaire) 1/10 I. Signaux sinusoïdaux. I.1. Expression de la valeur instantanée (ou équation horaire) v (t) avec : u (t) :.. du signal en volt Vˆ : du signal ou valeur crête en volt :. du signal u(t) en : en. :

Plus en détail

LA THEORIE SUR L ELECTRICITE

LA THEORIE SUR L ELECTRICITE Cours d électricité LA THEORIE SUR L ELECTRICITE LES NOTIONS DE BASE Le courant alternatif La théorie sur l électricité - les notions de base - AC - Table des matières générales TABLE DES MATIERES PARTIE

Plus en détail

Chapitre n 9 : Circuits alimentés en courant alternatif

Chapitre n 9 : Circuits alimentés en courant alternatif 5 ème OS Chapitre n 9 : Circuits alimentés en courant alternatif Considérations historiques La plupart des lampes de l époque étaient de basse résistance et devaient être montées en série, fonctionnant

Plus en détail

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé 1. Valeur efficace d une tension et d un courant (rappels de PCSI) 1.1. Valeur moyenne d une tension (ou d un courant) périodique 1..

Plus en détail

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé 1. Valeur efficace d une tension et d un courant (rappels de PCSI) 1.1. Valeur moyenne d une tension (ou d un courant) périodique 1..

Plus en détail

Chapitre 4. Réseaux électriques en régime alternatif

Chapitre 4. Réseaux électriques en régime alternatif Chapitre 4 Réseaux électriques en régime alternatif 35 Introduction Dans les premiers chapitres d électrocinétique, nous avons travaillé sur les régimes contenu des circuits électriques simples et complexes,

Plus en détail

CIRCUITS A COURANT ALTERNATIFS. Circuit uniquement résistant.

CIRCUITS A COURANT ALTERNATIFS. Circuit uniquement résistant. CICUITS A COUANT ALTENATIFS. Circuit uniquement résistant. Soient : U la tension efficace aux bornes du circuit de résistance (sans self ni capacité), I l'intensité efficace du courant; on démontre que

Plus en détail

DC21 Modélisation en régime sinusoïdal établi, utilisation des nombres complexes IMPEDANCES / BILAN DE PUISSANCE

DC21 Modélisation en régime sinusoïdal établi, utilisation des nombres complexes IMPEDANCES / BILAN DE PUISSANCE L usage des nombres complexes est incontournable en ce qui concerne l étude des circuits électriques : du point de vue énergétique (bilan de puissance et dimensionnement d un réseau de distribution électrique,

Plus en détail

III COURANT ALTERNATIF SINUSOÏDAL :

III COURANT ALTERNATIF SINUSOÏDAL : III COURANT ALTERNATIF SINUSOÏDAL : III-1 Définition : Le courant alternatif (qui peut être abrégé par CA) est un courant électrique périodique qui change de sens deux fois par période et qui transporte

Plus en détail

Puissances et signaux périodiques

Puissances et signaux périodiques Chapitre 4 Puissances et signaux périodiques Capacités exigibles : Mesurer ou calculer une valeur efficace, un taux de distorsion harmonique. Exprimer la répartition de la puissance dans le domaine fréquentiel.

Plus en détail

AL Les sources d énergie Cours AL-1 forme énergie électrique. Cours AL 1 TSI1 TSI2. Alimenter : Energie électrique

AL Les sources d énergie Cours AL-1 forme énergie électrique. Cours AL 1 TSI1 TSI2. Alimenter : Energie électrique Cours Objectifs Cours AL 1 SI1 SI2 Alimenter : Energie électrique Analyser Modéliser Résoudre Expérimenter Réaliser Concevoir Communiquer - Identifier la nature des flux échangés, préciser leurs caractéristiques

Plus en détail

Les circuits linéaires

Les circuits linéaires Les circuits linéaires Révisé et compris Chapitre à retravaillé Chapitre incompris DEF Soit une tension sinusoïdale u(t)= U 2 sin (wt + ϕ) u(t) : tension instantanée à l instant t, exprimé en Volts U :

Plus en détail

Circuits linéaires en régime sinusoïdal forcé. Contents. Chapitre 8. Les prérequis du lycée. Les prérequis de la prépa

Circuits linéaires en régime sinusoïdal forcé. Contents. Chapitre 8. Les prérequis du lycée. Les prérequis de la prépa Chapitre 8 Circuits linéaires en régime sinusoïdal forcé Contents 1 De l'intérêt du régime sinusoïdal forcé et de l'étude harmonique 3 1.1 Mis en évidence du rôle privilégié du signal sinusoïdal....................

Plus en détail

Les circuits RLC série

Les circuits RLC série Lorsqu'un circuit électrique est alimenté par un régime alternatif sinusoïdal, les récepteurs peuvent être de n'importe quel type. Tous les récepteurs peuvent représenter un couplage mixte, composé de

Plus en détail

Etude des structures électroniques en régime variable

Etude des structures électroniques en régime variable Etude des structures électroniques en régime variable ) Définitions Les signaux reçus ou générés par les structures électroniques peuvent êtres très divers. Il est donc important de les caractériser convenablement,

Plus en détail

Lycée Hédi Chaker Sfax. Devoir de contrôle N 2 Mars Prof : Abdmouleh- Nabil. CHIMIE (5 points)

Lycée Hédi Chaker Sfax. Devoir de contrôle N 2 Mars Prof : Abdmouleh- Nabil. CHIMIE (5 points) Lycée Hédi haker Sfax Devoir de contrôle N 2 Mars 2011 Section : SIENE DE L INFORMATIQUE Durée : 2 Heures Prof : Abdmouleh- Nabil SIENES PHYSIQUES L épreuve comporte un exercice de chimie et deux exercices

Plus en détail

Les circuits oscillants

Les circuits oscillants Chapitre Les circuits oscillants SamyLab 6/0/009 Cours et exercices de communications sur Samylab.com SamyLab.com I. La résonance I.. Circuit résonants série Soit un circuit RLC série, une tension v t

Plus en détail

UTILISATION DES NOMBRES COMPLEXES EN ALTERNATIF SINUSOIDAL.

UTILISATION DES NOMBRES COMPLEXES EN ALTERNATIF SINUSOIDAL. TLSATON DES NOMBRES COMPLEXES EN ALTERNATF SNSODAL. NTRODCTON : Comme il a été établi précédemment, à toute grandeur alternative sinusoïdale, nous pouvons associer un vecteur de Fresnel. Ce vecteur a pour

Plus en détail

Chapitre 1 : Régime sinusoïdal

Chapitre 1 : Régime sinusoïdal I Généralités 1. Définition a) amplitude b) pulsation c) phase à l origine 2. valeur moyenne 3. valeur efficace 4. représentation de Fresnel 5. complexe associé Chapitre 1 : Régime sinusoïdal II Etude

Plus en détail

Résonance électrique

Résonance électrique lectrocinétique 5 ésonance électrique I. éponse du dipôle LC série à une excitation sinusoïdale Soit un circuit LC série, et un générateur de tension e(t) = cos t de résistance interne négligeable. A t

Plus en détail

Chapitre 1 : Régime sinusoïdal

Chapitre 1 : Régime sinusoïdal I Généralités 1. Définition a) amplitude b) pulsation c) phase à l origine 2. valeur moyenne 3. valeur efficace 4. représentation de Fresnel 5. complexe associé Chapitre 1 : Régime sinusoïdal II Etude

Plus en détail

E - COURANTS ET TENSIONS VARIABLES

E - COURANTS ET TENSIONS VARIABLES E - COURANTS ET TENSIONS VARIABLES E - 1 - DIFFERENCE ENTRE TENSION CONTINUE ET TENSION VARIABLE Une fois qu'un circuit électrique est monté, une tension (ou un courant ) est continue si sa valeur ne varie

Plus en détail

3. Puissance alternative et systèmes triphasés

3. Puissance alternative et systèmes triphasés Master 1 Mécatronique J Diouri. Puissance alternative et systèmes triphasés Doc. Electrabel Puissance en alternatif Puissance instantanée [ I cos( ω t) ][ U cos( ω + )] p( t) = ui = t ϕ c c Valeur moyenne

Plus en détail

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé

Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé Conversion de Puissance Chap.1 Puissance en régime sinusoïdal forcé 1. Valeur efficace d une tension et d un courant (rappels de PCSI) 1.1. Valeur moyenne d une tension (ou d un courant) périodique 1.2.

Plus en détail

Devoir Surveillé. Électricité Module P1

Devoir Surveillé. Électricité Module P1 Devoir Surveillé Électricité Module P Semestre Lundi mai Sans document Sans calculatrice Exercice Monophasé (8 points) Soit le circuit suivant, les appareils sont MS : W A c ~ Quelles sont les grandeurs

Plus en détail

Calculs de puissance. Chapitre Introduction

Calculs de puissance. Chapitre Introduction Chapitre 2 Calculs de puissance On explore ici les concepts de puissance qui seront la base pour la résolution de plusieurs types de problèmes. En fait, on verra qu il est souvent plus simple de résoudre

Plus en détail

ETUDE DES GRANDEURS EN RÉGIME SINUSOÏDAL

ETUDE DES GRANDEURS EN RÉGIME SINUSOÏDAL EUDE DES GRANDEURS EN RÉGIME SINUSOÏDAL GÉNÉRALIÉS Définitions On appelle grandeur alternative sinusoïdale, une grandeur périodique dont la valeur instantanée est une fonction sinusoïdale du temps. u(t)

Plus en détail

P U I S S A N C E E N R E G I M E S I N U S O I D A L

P U I S S A N C E E N R E G I M E S I N U S O I D A L ELECROCINEIQUE R.Duperray Lycée F.BUISSON PSI P U I S S A N C E E N R E G I M E S I N U S O I D A L I Puissance instantanée On se place dans ce chapitre en convention récepteur. Source sinusoïdale Ex :

Plus en détail

Devoir n 3. e (t)= d Φ(t ) avec F(t) le flux à travers la spire. Il est très fortement conseillé de lire l'ensemble des énoncés avant de commencer.

Devoir n 3. e (t)= d Φ(t ) avec F(t) le flux à travers la spire. Il est très fortement conseillé de lire l'ensemble des énoncés avant de commencer. Devoir n 3 Il est très fortement conseillé de lire l'ensemble des énoncés avant de commencer. Exercice 1 (1,5 point) Le schéma ci contre représente le dispositif dit des «rails de Laplace». Ce dispositif

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

Sujet 1. L épreuve comporte une partie chimie et une partie physique. CHIMIE : Estérification & pile

Sujet 1. L épreuve comporte une partie chimie et une partie physique. CHIMIE : Estérification & pile Sujet 1 L épreuve comporte une partie chimie et une partie physique CHIMIE : Estérification & pile PHYSIQUE : Oscillations électriques libres & forcées CHIMIE PARTIE II (3,5 points) 1) La limite d'estérification

Plus en détail

SOURCES D ENERGIE. CI3 : Chaînes d énergie SOURCES D ENERGIE TD2. Edition 2-23/09/2018 CHAÎNE D INFORMATION CHAÎNE D ENERGIE

SOURCES D ENERGIE. CI3 : Chaînes d énergie SOURCES D ENERGIE TD2. Edition 2-23/09/2018 CHAÎNE D INFORMATION CHAÎNE D ENERGIE Edition 2-23/09/2018 CHAÎNE D INFORMATION ACQUERIR TRAITER COMMUNIQUER ALIMENTER DISTRIBUER CONVERTIR TRANSMETTRE CHAÎNE D ENERGIE ACTION Lycée Jules Ferry - 06400 Cannes ats.julesferry.cannes@gmail.com

Plus en détail

Correction du devoir n 3

Correction du devoir n 3 Correction du devoir n 3 Il est fortement conseillé de lire l'ensemble des énoncés avant de commencer. Exercice 1 (8 points) 1. On considère l'inductance représentée ci contre. L'intensité i L (t) a une

Plus en détail

CHAPITRE 11 : PUISSANCE EN REGIME FORCE

CHAPITRE 11 : PUISSANCE EN REGIME FORCE CSI CHAIE : SSANCE EN EGIME FOCE /6 CHAIE : SSANCE EN EGIME FOCE I. INODUCION Le lecteur attentif se souvenant de l électrocinétique de première partie aura remarqué que nous avons systématiquement omis

Plus en détail

Introduction à la théorie du courant alternatif

Introduction à la théorie du courant alternatif Chapitre 6 Introduction à la théorie du courant alternatif Objectifs 1. Connaître les quantités électriques utilisées dans la théorie du courant alternatif 2. Savoir comment les éléments passifs R,L et

Plus en détail

Oscillateurs mécaniques forcés

Oscillateurs mécaniques forcés I. Réponse à une excitation I.. Régimes excités Mécanique 5 Oscillateurs mécaniques forcés Soit un oscillateur constitué dun point mobile M de masse m relié à un ressort, pour exercer sur ce pendule une

Plus en détail

P U I S S A N C E E N R E G I M E S I N U S O I D A L

P U I S S A N C E E N R E G I M E S I N U S O I D A L ELECROCINEIQUE R.Duperray Lycée F.BUISSON PSI P U I S S A N C E E N R E G I M E S I N U S O I D A L «L'argent est l'argent, quelles que soient les mains où il se trouve. C est la seule puissance qu on

Plus en détail

Série d'exercices Objet: Oscillations libres amorties et non amorties

Série d'exercices Objet: Oscillations libres amorties et non amorties D.R: SBZ Prof:Baccari.A A.S:2010-2011 Série d'exercices Objet: Oscillations libres amorties et non amorties Lycée Lessouda Classe: 4e SC.exp+M+T Exercice1 : A) Un générateur idéal de tension constante

Plus en détail

Puissance en alternatif

Puissance en alternatif FACULÉ DES SCIENCES E DES ECHNIQUES DE NANES MAIISE SCIENCES PHYSIQUES Module M de Physique Puissance en alternatif Nous utilisons le même circuit, L, C qu'en P avec L=67 mh C= µf r=7 Ω, ext=50 Ω soit

Plus en détail

Exercice 1 : généralités Partie A Partie B Exercice 2

Exercice 1 : généralités Partie A Partie B Exercice 2 Exercice : généralités Un circuit série est formé par un résistor de résistance Ro = 00Ω, un condensateur de capacité C, et une bobine d inductance L et de résistance r, est alimenté par un générateur

Plus en détail

Déterminer le module et l argument des nombres complexes suivants : z 1 = 1 + j ; z 2 = j ; z 3 = 4 ; z 4 = - 1 j ; z 5 = 2 3j ;

Déterminer le module et l argument des nombres complexes suivants : z 1 = 1 + j ; z 2 = j ; z 3 = 4 ; z 4 = - 1 j ; z 5 = 2 3j ; EXERCICES SUR LES NOMBRES COMPLEXES Exercice Déterminer le module et l argument des nombres complexes suivants : z = + j ; z 2 = - 4 + j ; z = 4 ; z 4 = - j ; z 5 = 2 j ; Ecrire sous la forme trigonométrique

Plus en détail

Chapitre I : Courant électrique et méthodes de mesure

Chapitre I : Courant électrique et méthodes de mesure Chapitre I : Courant électrique et méthodes de mesure I - Différents types de courant électrique : Le courant électrique représente le déplacement ordonné des porteurs de charges (électrons dans le cas

Plus en détail

Exercices : bobines et inductances

Exercices : bobines et inductances Exercices : bobines et inductances Sauf indication contraire, les tensions et intensités sont sinusoïdales et leur fréquence égale à 50 Hz. I. Tension et intensité pour une inductance (orientée avec la

Plus en détail

SYSTEMES TRIPHASES EQUILIBRES

SYSTEMES TRIPHASES EQUILIBRES SYSTEMES TRIPHASES EQUILIBRES A noter : Les notations en minuscule décrivent des grandeurs sinusoïdales, et les majuscules leurs valeurs efficaces. I) Intérêts : L énergie électrique sous forme triphasée

Plus en détail

CIRCUITS LINEAIRES EN REGIME SINUSOIDAl FORCE CIRCUIT RLC ET RESONANCE

CIRCUITS LINEAIRES EN REGIME SINUSOIDAl FORCE CIRCUIT RLC ET RESONANCE ELECTROCNETQE Lycée F.BSSON PTS CRCTS LNEARES EN REGME SNSODAl FORCE CRCT RLC ET RESONANCE Nous allons étudier la réponse des circuits soumis à un signal i t ou u t de forme sinusoïdale, on parle de signaux

Plus en détail

Exercice 1 Calculs d intensité (3 points)

Exercice 1 Calculs d intensité (3 points) Page 1/ 5 Devoir électrocinétique n o 1 M1 EFTIS/IUFM Nice Le contrôle est constitué de cinq exercices indépendants, le barême étant approximatif et donné à titre indicatif seulement. Toute erreur éventuelle

Plus en détail

Chapitre 8 : Oscillations électriques dans un circuit RLC série

Chapitre 8 : Oscillations électriques dans un circuit RLC série hapitre 8 : Oscillations électriques dans un circuit RL série onnaissances et savoir-faire exigibles : () (2) (3) (4) (5) (6) (7) Définir et reconnaître les régimes périodique, pseudo-périodique et apériodique.

Plus en détail

TRIPHASE. Définitions de base Grandeurs triphasées. Un système de grandeurs triphasées peut se mettre sous la forme :

TRIPHASE. Définitions de base Grandeurs triphasées. Un système de grandeurs triphasées peut se mettre sous la forme : Achamel.info Cours pratiques en ligne TRIPHASE Le triphasé est un système de trois tensions sinusoïdales de même fréquence et généralement de même amplitude qui sont déphasées entre elles (de 120 ou 2π/3

Plus en détail

Dipôle résistif et capacitif (RC)

Dipôle résistif et capacitif (RC) Dipôle résistif et capacitif (RC) I- But : Etudier les caractéristiques des dipôles RC série, parallèle et série-parallèle. Montrer les rapports entre les différentes grandeurs électriques. II- Matériel

Plus en détail

LYCEE DE MECKHE TERMINALE S 1 ANNEE SCOLAIRE 09/10 TD : DIPOLES RL ;RC :LC;RLC.

LYCEE DE MECKHE TERMINALE S 1 ANNEE SCOLAIRE 09/10 TD : DIPOLES RL ;RC :LC;RLC. TD : DIPOLES RL ;RC :LC;RLC EXERCICE N 1 : Etude d un circuit RC On réalise le circuit électrique suivant et on branche un oscilloscope bicourbe aux bornes du GBF (générateur basse fréquence) et aux bornes

Plus en détail

Cours d électrocinétique

Cours d électrocinétique Cours d électrocinétique C5-Résonance du circuit RLC série Introduction Ce chapitre sera l occasion de reprendre en partie les contenus des deu chapitres précédents : à l aide de la notation complee, nous

Plus en détail

C I R C U I T S L I N E A I R E S E N R E G I M E S I N U S O I D A L F O R C E C I R C U I T R L C E T R E S O N A N C E

C I R C U I T S L I N E A I R E S E N R E G I M E S I N U S O I D A L F O R C E C I R C U I T R L C E T R E S O N A N C E ELECTROCINETIQE R.Duperray Lycée F.BISSON PTSI C I R C I T S L I N E A I R E S E N R E G I M E S I N S O I D A L F O R C E C I R C I T R L C E T R E S O N A N C E Nous allons étudier la réponse des circuits

Plus en détail

Compléments d électricité appliquée. Séance 1: Généralités

Compléments d électricité appliquée. Séance 1: Généralités Compléments d électricité appliquée éance 1: Généralités xercice 1 : Les signaux périodiques. oit le signal suivant : 100 V(V) 5 10 15 20 t(ms) On vous demande de déterminer : a) la période b) la fréquence

Plus en détail

SERIE N 7 LES FILTRES ELECTRIQUES

SERIE N 7 LES FILTRES ELECTRIQUES SERIE N 7 LES FILTRES ELECTRIQUES EXERCICE N A l entrée d un filtre RC schématisé sur la figure ci-contre, on applique une tension sinusoïdale u E (t) de fréquence N réglable : Soit u E (t) = U Em. sin(

Plus en détail

Dans la pratique, les circuits sont généralement composés des éléments que nous venons d'étudier, montés soit en série, soit en parallèle.

Dans la pratique, les circuits sont généralement composés des éléments que nous venons d'étudier, montés soit en série, soit en parallèle. Circuits L et C séries Chapitre 15b Circuits L et C séries Sommaire Circuits L et C série Exemples de calculs pratiques Exercices ntroduction 15 Montage série en courant alternatif : Dans la pratique,

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Mécanique Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE EN ANNEXE DE L ARRETE

Plus en détail

CHAPITRE 6 : Mesure de la puissance en courant continu et alternatif. 1. Mesure de la puissance en courant continu

CHAPITRE 6 : Mesure de la puissance en courant continu et alternatif. 1. Mesure de la puissance en courant continu CHAPITRE 6 : Mesure de la puissance en courant continu et alternatif 1. Mesure de la puissance en courant continu 1.1 Mesure indirecte «méthode voltampère métrique» La puissance fournie à un récepteur

Plus en détail

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10

Sommaire. Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Sommaire Projet 1 Éclairage d un entrepôt - Première partie... 8 Cours 1 Grandeurs sinusoïdales... 10 Projet Éclairage d un entrepôt - Deuxième partie... 1 Cours Puissances et compensation en monophasé...

Plus en détail

Le courant alternatif

Le courant alternatif Le courant alternatif Exercices d'application : 1 la fréquence d un courant alternatif est de 40 Hz. Calculer ses période et pulsation 2 un courant d appel téléphonique à une fréquence de 25 Hz et une

Plus en détail

La tension mesurée par un voltmètre en courant alternatif indique toujours la tension efficace.

La tension mesurée par un voltmètre en courant alternatif indique toujours la tension efficace. Activité ① OBJECTIFS Calculer une période et une fréquence. Calculer une tension maximum et une tension efficace. 1- Visualisation d une tension alternative sinusoïdale On branche un générateur de tension

Plus en détail

Contact.

Contact. Contact Mail : el-hassane.aglzim@u-bourgogne.fr http://sites.google.com/site/isataglzim Bureau : R175 1 Electronique de puissance 1) Rappels et généralités El-Hassane AGLZIM MCF 63 2A Semestre 1 2017/2018

Plus en détail

Les oscillations libres d un circuit (R,L,C) : Exercices

Les oscillations libres d un circuit (R,L,C) : Exercices Les oscillations libres d un circuit (R,L,) : Exercices Exercice 1 : QM 1. Adam affirme pouvoir réaliser un oscillateur à l aide de tout condensateur de capacité et de toute bobine d inductance L, telle

Plus en détail

Sciences Physiques T_STL. Champ magnétique

Sciences Physiques T_STL. Champ magnétique Champ magnétique Aimants : Corps naturels ou artificiels capables d'attirer le fer, le nickel, le cobalt 2 aimants se repoussent ou s'attirent suivant les faces présentées pôles Un aimant libre s'oriente

Plus en détail

Série physique : Forcée électrique

Série physique : Forcée électrique Exercice N 1 Le circuit électrique de la figure (1) comporte : un résistor de résistance R=24Ω, un condensateur de capacité Cet une bobine d inductance L=0.8 H, de résistance interne r. L ensemble est

Plus en détail

Thème II : analyse du signal

Thème II : analyse du signal Thème II : analyse du signal Importance du sinusoïdal 2 ième partie : Le signal sinusoïdal Figure Les signaux sinusoïdaux ont une grande importance en physique. En électrotechnique : la majeure partie

Plus en détail

DOSSIER RESSOURCES A NE PAS COMPLETER

DOSSIER RESSOURCES A NE PAS COMPLETER METIERS DE L ELECTROTECHNIQUE Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants MESURES SUR DES APPLICATIONS PROFESSIONNELLES S01 CIRCUITS PARCOURUS PAR UN COURANT ALTERNATIF

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE

BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE Session 2012 BACCALAURÉAT TECHNOLOGIQUE STL - CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS ÉPREUVE DE PHYSIQUE Durée de l'épreuve : 2 heures Coefficient : 3 Le sujet comporte 5 pages numérotées de

Plus en détail

PIFFRET LES GRANDEURS SINUSOIDALES Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques d'un signal sinusoïdal.

PIFFRET LES GRANDEURS SINUSOIDALES Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques d'un signal sinusoïdal. PIFFRET JBS LES GRANDEURS SINUSOIDALES Elec Objectif terminal : Connaître et définir les grandeurs caractéristiques d'un signal sinusoïdal. Domaine : S0.2, grandeurs fondamentales d'un courant sinusoïdal

Plus en détail

Le déphasage. Sommaire

Le déphasage. Sommaire Lycées Paul Mathou Le déphasage S0.2 circuits parcourus par un courant alternatif Sommaire 1) En continu... 2 2) En alternatif... 2 Rappels : Grandeurs caractéristiques du réseau monophasé... 2 Le déphasage

Plus en détail

L épreuve comporte cinq pages numérotées 1/5 à 5/5 CHIMIE : (7 points)

L épreuve comporte cinq pages numérotées 1/5 à 5/5 CHIMIE : (7 points) Tel : 98 972418 L épreuve comporte cinq pages numérotées 1/5 à 5/5 CHIMIE : (7 points) Exercice n1 : (3,0 points) On donne : A 25 C : le produit ionique de l eau est Ke = 10-14 On considère les couples

Plus en détail

TD Systèmes électriques. Mesures Physiques

TD Systèmes électriques. Mesures Physiques TD Systèmes électriques Mesures Physiques 05-06 Cette série de TD se décompose en 9 chapitres qui seront étudiés durant 0 séances de h. Le tableau en première page est une aide pour les étudiants de ère

Plus en détail