Les transformations élémentaires

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les transformations élémentaires"

Transcription

1 Les transformatons élémentares

2 ransformatons Utlsatons : Déplacement d'un objet dans une scène Déplacement d'un observateur par rapport a une scène éplcaton d'un motf ou d'un objet Déformaton d'un objet Projecton etc

3 ransformatons Un objet est décrt par un ensemble de sommets Applquer une transformaton à un objet revent à l applquer à tous ses sommets +

4 ransformatons On utlse la notaton vectorelle Les sommets sont représentés sous forme de vecteurs p

5 ransformatons ranslaton : Ajouter au coordonnées du sommet la valeur de la translaton Notaton matrcelle Addton du vecteur de translaton + ' ' ' ' ' ' p(,) p (, )

6 ransformatons otaton par rapport à l orgne autour de l ae Z Calcul à l ade de l algèbre vectorelle Notaton matrcelle Multplcaton par la matrce de rotaton ' cos sn ' sn cos ' cos sn sn cos ' ' ' p(,) p (, )

7 ransformatons Homothéte Multplcaton par les facteurs d échelles Notaton matrcelle Multplcaton par la matrce d Homothéte ' ' ' ' ' ' p(,) p (, )

8 ransformatons La notaton matrcelle Permet une notaton smple, concse Mas pas vrament unfée Addton ou ben multplcaton en foncton de la transformaton (translaton, rotaton ) On veut une notaton unque concaténer pluseurs transformatons permette de noter auss les combnasons de transformatons

9 Coordonnées homogènes Les coordonnées homogènes sont utlsées en snthèse d'mage afn d'unfer le tratement des transformatons géométrques d'une scène et de les regrouper dans une seule matrce En effet, s l'on utlse une matrce * pour les scènes bdmensonnelles et une matrce 3*3 pour les scènes trdmensonnelles, ces matrces ne peuvent eprmer que des rotatons Pour eprmer auss les translatons, les changements d'échelle et les projectons, on va utlser des matrces 4*4 pour les scènes trdmensonnelles otaton et changement d échelle Perspectve Homothéte ranslaton On rajoute également une 4 ème coordonnées au ponts manpulés w (w) : (,,,w)

10 Coordonnées homogènes Ans, s (,,) sont les coordonnées d'un pont de la scène à transformer et MH la matrce 4*4 de coordonnées homogènes, on effectuera la multplcaton : MH * [ ] Ce qu donnera comme résultat [X Y Z H ] Les coordonnées du pont transformé seront alors ( ) (X/H,Y/H,Z/H) La matrce 4*4 des coordonnées homogènes peut être consdérée comme étant composée de 4 sous-matrces, chacune d'elle étant assocée à un tpe de transformaton

11 Manpulatons géométrques ot un pont p ot une transformaton géométrque défne par la matrce homogènes M donnée en coordonnées p' M p ' M p Le Pont transformé de par la matrce est : ransformatons : ranslaton otaton Changements d échelle métres Projecton Affntés orthogonales etc

12 ranslatons 3 I 3 3 P P P '

13 otatons (angles d Euler) cos sn sn cos cos sn sn cos cos sn sn cos ' P P

14 otatons (angles d Euler) ègles pour la constructon de la matrce de rotaton d angle Ө Lgne assocée à, lgne à et lgne 3 à sur la dagonale pour l ae de rotaton et la coordonnée homogéne cos(ө) sur la dagonale pour les deu autres aes sn(ө) sur les dagonales supéreure et nféreure pour compléter le carré ur la lgne suvant celle de l ae de rotaton, le snus est précédé d un sgne -

15 Homothéte sotrope P P P '

16 Homothéte : Affntés orthogonales P P P ' Affnté d'ae par rapport au plan O Affnté d'ae par rapport au plan O Affnté d'ae par rapport au plan O

17 Glssement Appelée auss shear ou csallement : étrement suvant un ae La matrce d'un glssement parallèle à et de rapport k est : La matrce d'un glssement parallèle à, de rapport k et de lgne de base ref est : k ref k k ref

18 Composton de ransformatons

19 (,) (,) (,) (,) (5,3) (3,) cale(,) ranslate(3,) Multplcaton de matrces : p' ( p ) p Composton de ransformatons 3 3 Eemple :

20 Composton de ransformatons Non- commuta9f homothéte pus translaton : p' ( p ) p (,) (,) cale(,) (,) (,) ranslate(3,) (3,) (5,3) translaton pus homothéte : p' ( p ) p (8,4) (,) (,) ranslate(3,) (3,) (4,) cale(,) (6,)

21 6 3 (3,) (,) 3 3 (,) (3,) Composton de ransformatons

22 Composton de ransformatons Cas général p M p et p" M p > p" M M p ou p" M" p avec M" M M

23 Composton de ransformatons Ordre d Applcaton p" M M p > M pus M On applque M à P, pus M au résultat : l ordre d applcaton des transformatons se lt de drote à gauche, et non dans le sens de la lecture

24 Composton de ransformatons Les transformatons élémentares sont défnes par rapport à l orgne du repère de la scène Pour se placer d un ponts quelconque, on dot : evenr à l orgne du repère (translaton) : P- >O Fare la(les) transformaton(s) voulue(s) 3 e remettre au pont de départ (translaton) : O->P

25 Composton de ransformatons Eemple : On désre établr la transformaton consstant à effectuer une rotaton de Ө radans autour de l'ae colnéare à passant par le pont P de coordonnées (,,) Y ( ) Z X

26 Composton de ransformatons Cette transformaton M est réalsée en amenant p à l'orgne par une translaton de -p, pus en effectuant une rotaton d'angle Ө autour de l'ae O, et enfn en ramenant p à sa poston ntale par une translaton ' de p : p ((,,) ( ) (-,-,- ) ) p M p Y Y (-,-,- ) ( ) (,,) Z Z X X

27 Composton de ransformatons cos sn cos sn sn cos sn cos cos sn cos sn sn cos sn cos cos sn sn cos M M M

28 Composton de ransformatons Les compostons de transformatons servent à Décrre une hérarche de transformatons : graphe de scène Changement de repère

29 Modélsaton hérarchque Un modèle hérarchque permet de décrre faclement des objets complees composés d objets smples La scène est organsée dans un arbre Les objets ne sont plus défns par leur transformaton absolue par rapport au repère global, mas par leur transformaton relatve dans cet arbre : Le repère assocé à la racne est le repère de la scène A chaque nœud est assocé un repère A chaque arc est assocée une transformaton géométrque qu postonne l objet fls dans le repère de son père Un objet peut être nclus pluseurs fos dans la hérarche : la structure de données est un Graphe Orenté Acclque (DAG)

30 Modélsaton hérarchque

31 Modélsaton hérarchque Constructon du graph On commence par un processus descendant ("topdown") dans lequel on effectue une décomposton récursve du modèle géométrque en objets plus smples jusqu'à aboutr à des objets élémentares (prmtves géométrques) On construt la chane cnématque (graph) depus la racne pour aboutr au nœuds

32 Modélsaton hérarchque Eemple : Mason

33 Modélsaton hérarchque m g Mason c ga Garage gb fa Corps Prncpal Facade ot Porte f Fenêtre Fenêtre Fenêtre 3 Fenêtre 4 Fenêtre 5 va Vtre a

34 Modélsaton hérarchque Ple de transformatons porte a du garage porte b du garage vtre a mgga mggb mcfafva etc

35 Changement de repère Permet de transformer les coordonnées d'un pont eprmées dans un premer repère en coordonnées eprmées dans deuème repère Utle lorsque : Les objets manpulés sont défns dans des repères locau Anmaton, modélsaton, etc la modélsaton des caméras

36 Changement de repère oent deu repères et ot M la matrce de passage du repère au repère oent (,,, ) les coordonnées de p dans oent (,,, ) les coordonnées de p dans Z X Z M X Y Y

37 Changement de repère p p M M

38 Changement de repère Z Y X Z Y X Ө Ө Ө

39 Changement de repère Z Y X Z Y X

40 Changement de repère Passage du repère au repère Z Y X Z Y X M ' p M p p M p

Modèles hiérarchiques. Modélisation procédurale. Modèle hiérarchique. Nicolas Holzschuch Cours d Option Majeure 2

Modèles hiérarchiques. Modélisation procédurale. Modèle hiérarchique. Nicolas Holzschuch Cours d Option Majeure 2 Modèles hérarchques Ncolas Holzschuch Cours dopton Maeure 2 Ncolas.Holzschuch@mag.fr Modélsaton procédurale Comme le bonhomme de nege Problèmes : Modèle de plus en plus complexe Écrre le code sans erreurs

Plus en détail

Modélisation Géométrique des Manipulateurs Rigides

Modélisation Géométrique des Manipulateurs Rigides Modélsaton Géométrque des Manpulateurs Rgdes http://rmerzouk.pll.fr R. Merzouk Master SMART 2010-2011 Introducton z 4 Le système artculé rgde est une structure arborescente artculé smple ou multple; o

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

Transformations du plan et complexes

Transformations du plan et complexes Transformatons du plan et complexes I Préambule. Une transformaton du plan est une bjecton du plan dans lu-même. Autrement dt, tout pont a une mage et tout pont a un antécédent unque. Ou encore, une transformaton

Plus en détail

Cinématique Newtonienne

Cinématique Newtonienne Cnématque Newtonenne 1. Chronophotographe du mouvement d un pont moble M : 1.1. nécessté de chosr un référentel : Vor l anmaton «changement de référentel» page 10 sur le ste www.phsquepovo.com Défnr ce

Plus en détail

Fiche technique : diagonalisation, trigonalisation.

Fiche technique : diagonalisation, trigonalisation. Fche technque 4 : dagonalsaton trgonalsaton - - Fche technque : dagonalsaton trgonalsaton Dagonalsaton de matrces le prncpe pour dagonalser en pratque une matrce est smple : calculer les espaces propres

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1.

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1. Trgonométre Défnton du snus et cosnus d'un réel quelconque. (révson de seconde) Len avec la défnton du snus et du cosnus d'un angle agu (dans un trangle rectangle) vue au collège. S O J C I Cette généralsaton

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

MECANIQUE DU POINT Enoncés 1 à 61

MECANIQUE DU POINT Enoncés 1 à 61 MEANIQUE DU INT Enoncés 1 à 61 nématque 1. our ben ntégrer soluton page 31 Une partcule se déplace dans le plan horzontal (,, ), à la vtesse constante v 0, sur une courbe dont le raon de courbure R est

Plus en détail

Géométrie des masses

Géométrie des masses Cours - éométre des masses CE M éométre des masses ommare éométre des masses... Masse et nerte d un sstème... 3. Notons d nert... 3. Masse... 3.3 Centre d'nerte centre de gravté... 4.4 Algorthme de calcul

Plus en détail

Corrigé Exercice 1 : TRAIN CYLINDRIQUE.

Corrigé Exercice 1 : TRAIN CYLINDRIQUE. TD 21 corrgé - Lo E-S pour les réducteurs et multplcateurs de vtesse à tran smple Page 1/6 CORRIGÉ EXERCICE 1 : TRAIN CYLINDRIQUE.... 1 Exemple 1.1 : Engrenages cylndrques smples.... 1 Exemple 1.2 : Motoréducteur

Plus en détail

UE MAT234. Notes de cours sur l algèbre linéaire

UE MAT234. Notes de cours sur l algèbre linéaire UE MAT234 Notes de cours sur l algèbre lnéare Matrces - Systèmes lnéares - Détermnants - Dagonalsaton Dans tout ce document, K désgne ndfféremment le corps des nombres réels IR, ou celu des nombres complexes

Plus en détail

b) Homothéties Définition : Soir u P On appelle translation de vecteur u l'application : t u P P telle que MM '= u. M M '

b) Homothéties Définition : Soir u P On appelle translation de vecteur u l'application : t u P P telle que MM '= u. M M ' Exposé 27 : homothétes et translatons ; transformaton vectorelle assocée. Invarants élémentares : effets sur les dstances, les drectons, l'algnement... Applcatons à l'acton sur les confguratons usuelles

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

Analyse en Composantes Principales (ACP) asymétrique

Analyse en Composantes Principales (ACP) asymétrique Analse en Composantes Prncpales (ACP) asmétrque A. El Orrak 1, Drss Aboutadne, M. Elhachlouf 1, M.N. Kaddou 1 1 Faculté des scences Semlala, Dept Informatque, LISI, Marrakech, Maroc orrak@ahoo.fr Faculté

Plus en détail

Exemple : Translation du centre de masse et rotation autour du centre de masse. Évaluer expérimentalement la position du centre de masse

Exemple : Translation du centre de masse et rotation autour du centre de masse. Évaluer expérimentalement la position du centre de masse Chaptre 4. Le centre de asse Centre de asse Le centre de asse d un corps est un pont de référence agnare stué à la poston oenne de la asse du corps. Voc quelques caractérstques du centre de asse : Cette

Plus en détail

Chapitre 2.1 Les vecteurs

Chapitre 2.1 Les vecteurs Chaptre.1 Les vecteurs Le vecteur Le vecteur représente un module (grandeur) avec une orentaton. On utlse la flèche pour le représenter graphquement. Pour dentfer une varable comme étant vectorelle, l

Plus en détail

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Les nombres complexes. Défnton............................................................... Opératons...............................................................3 Parte réelle

Plus en détail

I. PRINCIPE FONDAMENTAL DE LA DYNAMIQUE

I. PRINCIPE FONDAMENTAL DE LA DYNAMIQUE P-P DYNQUE DE LDE PNCPE FNDENTL DE L DYNQUE Prncpe = théore vérfée par l epérence onc valable ans un omane étue précs PBLETQUE Cnématque : étue u mouvement un ou pluseurs soles sans se poser la queston

Plus en détail

Travaux pratiques de Mathématiques. Ajustement

Travaux pratiques de Mathématiques. Ajustement I.U.T de Sant-azare Département de Géne cvl E LETTRES CAPITALES OM(S) : PRÉOM(S) : GROUPE : Travaux pratques de Mathématques Ajustement Travaux pratques de Mathématques joseoun.fr Page 1 / 7 Travaux pratques

Plus en détail

Chapitre 10 Les systèmes de particules

Chapitre 10 Les systèmes de particules 0.0 Introducton. Chaptre 0 Les systèmes de partcules Dans l expérence sur les collsons vous avez constaté que le centre de masse du système se déplace en lgne drote à vtesse constante. Pourquo? Parce que

Plus en détail

Mécanique : dynamique. Chapitre 6 : Travail et puissance d'une force

Mécanique : dynamique. Chapitre 6 : Travail et puissance d'une force e B et C 6 Traval et pussance d une orce 56 Mécanque : dynamque Les eets des orces et les modcatons mécanques des systèmes sont souvent décrts à l ade du concept de l énerge mécanque. Or, les transmssons

Plus en détail

Chap. B2 : fonctions usuelles (fin)

Chap. B2 : fonctions usuelles (fin) MPSI Semane 7, du 4 au 8 Novembre 6 Chap. B : fonctons usuelles (fn) IV Fonctons trgonométrques : ) Proprétés admses des fonctons sn et cos Vor appendce pour une constructon des fonctons sn et cos, c on

Plus en détail

L onglet Mode Plan est sélectionné dans la barre des onglets. Les règles ne sont plus visibles et chaque paragraphe est précédé d un rond grisé.

L onglet Mode Plan est sélectionné dans la barre des onglets. Les règles ne sont plus visibles et chaque paragraphe est précédé d un rond grisé. Plans et tables Plans et tables Word 2010 Créer un plan en utlsant les styles prédéfns Actvez le mode d affchage Plan : clquez sur l onglet Affchage pus sur le bouton Plan vsble dans le groupe Affchages

Plus en détail

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2 1 UNIVERSITE DE BOURGOGNE MM5: Analyse Numérque Elémentare FchedeTDno2 1 Que peut-on dre d une méthode tératve dont la matrce a un rayon spectral nul? 2 Etuder les méthodes de Jacob et Gauss-Sedel pour

Plus en détail

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon

Maquette Tournesol Soleil, Terre et rotations La géométrie et mathématiques du système Maquette pour comprendre PhM Observatoire de Lyon Maquette ournesol olel, erre et rotatons La géométre et mathématques du sstème Maquette pour comprendre hm Observatore de Lon Les repères classques éclptque (longtudes et lattudes éclptques) et équatoral

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

Fiche jamais corrigée...

Fiche jamais corrigée... Fche jamas corrgée... 1 Torseur cnématque Torseur cnématque Sot Σ un solde (de repère d orgne O Σ) et A un pont quelconque de ce solde, alors v A/Σ = 0. Par la lo de composton des vtesses, v A/R = 0 +

Plus en détail

A =

A = Exercces avec corrgé succnct du chaptre 2 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

1 ère S Exercices sur les dérivées des fonctions de référence

1 ère S Exercices sur les dérivées des fonctions de référence ère S Eercces sur les dérvées des onctons de réérence ans chaque cas, donner la dérvée de la oncton. n se contentera d écrre '.... ) est la oncton déne sur par 0. ) est la oncton déne sur par 6.. ) est

Plus en détail

Exercices type Bac Nombres complexes

Exercices type Bac Nombres complexes Exercces type Bac Nombres complexes Exercce 1 : Pour chaque queston, une seule réponse est exacte. Chaque réponse juste rapporte 1 pont. Une absence de réponse n est pas sanctonnée. Il sera retré 0,5 pont

Plus en détail

Leçon 1. Statistiques

Leçon 1. Statistiques Leçon 1 Statstques Lors d une séance de saut en hauteur, le professeur d EPS a relevé, en centmètres, les performances c-dessous : 110-115-10-110-100-110-15-15-100-95-135-105-1-110-95-100-110-85-85-105-140-15-100-135-105-1-135-115-10-135

Plus en détail

2. Demi Additionneur. 1. Les Circuits combinatoires. Chapitre 4 : Les circuits combinatoires. Exemple de Circuits combinatoires

2. Demi Additionneur. 1. Les Circuits combinatoires. Chapitre 4 : Les circuits combinatoires. Exemple de Circuits combinatoires haptre : Les crcuts combnatores Object Les rcuts combnatores Un crcut combnatore est un crcut numérque dont les sortes dépendent unquement des entrées F(E F(E E E n pprendre la structure de quelques crcuts

Plus en détail

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver

Plus en détail

Devoil libre N 6 2ème TSI 1 Correction

Devoil libre N 6 2ème TSI 1 Correction CPGE- Lycée technque Mohammeda Devol lbre N 6 Correcton Mathématques Exercce 1 : Un compact de R est une parte bornée fermée http://mathscpge.wordpress.com 1 http://mathscpge.wordpress.com CPGE- Lycée

Plus en détail

Cours d analyse numérique de C. Bertelle. FMdKdD fmdkdd [à] free.fr

Cours d analyse numérique de C. Bertelle. FMdKdD fmdkdd [à] free.fr Cours d analyse numérque de C Bertelle FMdKdD fmdkdd [à] freefr Unversté du Havre Année 009 00 Table des matères Rappels d algèbre lnéare Espace vectorel Applcatons lnéares et matrces Matrce nverse d une

Plus en détail

II MOMENTS - TORSEURS

II MOMENTS - TORSEURS II OENTS - TORSEURS Le torseur est l'outl prvlégé de la mécanque. Il sert à représenter le mouvement d'un solde, à caractérser une acton mécanque et à formuler le PFD (prncpe fondamental de la dynamque),

Plus en détail

Circuits en courant continu

Circuits en courant continu Crcuts en courant contnu xercce On consdère les tros montages suvants : montage montage montage ) Montrer que le premer montage équvaut à une résstance unque eq telle que : + eq ) Montrer que le deuxème

Plus en détail

Table des matières. Outils symboliques pour l'écriture de modèles et l étude de sensibilité des multicorps

Table des matières. Outils symboliques pour l'écriture de modèles et l étude de sensibilité des multicorps 3 Lste des fgures 11 Lste des tableaux 13 Introducton générale 15 Parte 1 Ecrture automatque des équatons du mouvement grâce aux Tenseurs d'inerte Globaux (TIG). Cas des lasons complexes et des pseudo-paramètres.

Plus en détail

2. Loi de propagation des erreurs (cas simples)

2. Loi de propagation des erreurs (cas simples) Lycée Blase-Cendrars/Physque/Labos/DC///04 Labos de physque : Mesures - Propagaton d erreurs - Mesures répéttves - Statstques. Prncpe de la mesure en physque Une mesure est toujours mprécse. La précson

Plus en détail

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1 EXERCICE 1. Détermner (x + y ), représentaton cartésenne du nombre complexe : 1.1. (5 ) ; ( + ) ; (1 5 ). 1.. (5 )( + 6 ); ( + ) ( ). 1.. 1.. 1.5. 1+ ; 1 ; +. 1+ 7 + + + 1. 1+ α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

Chap.4 Application du 2 e principe aux réactions chimiques Evolution et équilibre d un système chimique

Chap.4 Application du 2 e principe aux réactions chimiques Evolution et équilibre d un système chimique Chap.4 Applcaton du e prncpe aux réactons chmques Evoluton et équlbre d un système chmque 1. Entrope standard de réacton 1.1. (Rappels) e prncpe de la thermodynamque 1.. Défnton et méthodes de calcul de

Plus en détail

Boules Critiques. Serge Beucher. Centre de Morphologie Mathématique Mines Paristech

Boules Critiques. Serge Beucher. Centre de Morphologie Mathématique Mines Paristech Boules Crtques Serge Beucher Centre de Morphologe Mathématque Mnes Parstech Sémnare sur la caractérsaton de formes Fontanebleau, 27 Avrl 2009 1 Avertssement! Cette présentaton est un document de traval

Plus en détail

Nombres complexes. i² = -1

Nombres complexes. i² = -1 Prof : Hadj Salem Habb I ] Forme 1. Défntons Le nombre complexe est tel que algébrque ² = -1 Un nombre complexe s'écrt de façon unque sous la forme a + b ; a IR, b IR C = ensemble des nombres complexes

Plus en détail

Fractions rationnelles

Fractions rationnelles Bblothèque d exercces Énoncés L Feulle n 8 Fractons ratonnelles Exercce Décomposer + 4 Décomposer + + + Décomposer + + + 4 Décomposer 4 + + 5 Décomposer 4 6 Décomposer 5 + 4 + 7 Décomposer 5 + 4 + ( )

Plus en détail

Terminale S Divers,QCM, France points QCM, Asie 2009, 4 points

Terminale S Divers,QCM, France points QCM, Asie 2009, 4 points Termnale S Nombres Complexes Exercces Dvers,QCM, France 00-5 ponts QCM, se 009, 4 ponts QCM, ntlles 009, 5 ponts 4 4 QCM, Polynése rempl 005 - ponts 5 QCM, N Calédone nov 007-4 ponts 4 5 6 QCM d après

Plus en détail

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles Clôture transtve (accessblté) Problème G = (S, A) graphe (orenté) Calculer H = (S, B) où B est la clôture réflexve et transtve de A. Clôture transtve des graphes et tous les plus courts chemns Note : (s,t)

Plus en détail

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 :

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 : Termnales S Exercces sur les nombres complexes Page sur 6 Exercce : ) Calculer, et 05 06 07 ) En dédure, et ) Détermner les enters n pour lesquels n est a) un réel, b) est un magnare pur, c) égal à Exercce

Plus en détail

Chapitre 4.8 L énergie, le travail et la puissance en rotation

Chapitre 4.8 L énergie, le travail et la puissance en rotation Chaptre 4.8 L énerge, le traval et la pussance en rotaton Une roue qu roule sans glsser Une roue qu roule sans glsser sur une surace de contact peret à celle-c d eectuer une translaton et une rotaton.

Plus en détail

Spé. Lycée P. Mendès France Epinal. Cinématique du solide - Etudiant.docx 1/23

Spé. Lycée P. Mendès France Epinal. Cinématique du solide - Etudiant.docx 1/23 Cnématque du solde - Etudant.docx /3 SOMMIE Cnématque du solde... 3. Modélsaton des pèces mécanques :... 3 a. Solde déformable en pettes déformatons :... 3 b. Solde déformable en grandes déformatons :...

Plus en détail

Établir une relation entre deux tables

Établir une relation entre deux tables Access 2013 Tables Relatons entre les tables Access 2013 Établr une relaton entre deux tables Les dfférents types de relaton entre les tables Établr une relaton entre les tables de la base de données va

Plus en détail

Déformations - méthode du travail - énergie et méthode du travail virtuel.

Déformations - méthode du travail - énergie et méthode du travail virtuel. TS CM MCANQU Page sur 9 Déformatons - méthode du traval - énerge et méthode du traval vrtuel. Problème posé : Détermner le déplacement d'un pont quelconque d'un système sostatque. ntroducton : es méthodes

Plus en détail

Utilisation du solveur d Excel

Utilisation du solveur d Excel Cycle ICM : 1A Pôle nformatque Cours applcatons nformatques Auteur : Bertrand Jullen 22/12/04 Utlsaton du solveur d Excel Le but de ce TP est de famlarser les élèves avec la foncton Solveur d Excel, dans

Plus en détail

2 Produit scalaire - Exercices

2 Produit scalaire - Exercices 6 Edton 007-008 / DELM Géométre métrqe Prodt scalare - Exercces Les exercces dont le nméro content la lettre A, par exemple -A1, sont des exercces complémentares destnés ax élèves d nvea avancé. Lens hypertextes

Plus en détail

et h l homothétie de centre Ω et de rapport.

et h l homothétie de centre Ω et de rapport. Termnale S Nombres Exercces Dvers,QCM, France 00 Qcm, Polynése rempl 005 QCM, N Calédone nov 007 4 QCM d après des sujets de concours GEIPI 5 Basque, ntlles 007 4 6 Basque, ntlles 006 5 7 nd degré et barycentre,

Plus en détail

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1 NOMBRES COMPLEXES EXERCICE 1 Détermner (x + y ), représentaton cartésenne du nombre complexe : 11 (5 ) ; ( + ) ; (1 5 ) 1 (5 4 )( + 6 ); (4 + ) (4 ) 1 14 15 ; 1 ; + 7 + + + 1 α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

»

» Leçon 1 Nombres enters En lsant avec attenton le lvre Le calcul et la géométre au temps des pharaons de M. ROUSSELET, Thomas apprend que «Les premers nombres qu ont été écrts en Égypte datent de 5 000

Plus en détail

1. Principales matrices d expériences

1. Principales matrices d expériences Annexes Prncpales matrces d expérences Annexes. Prncpales matrces d expérences On rappelle les dfférences observées entre les expressons «lste» d expérences, «matrce» d expérences et «plan» d expérences.

Plus en détail

C 15/03/2017. Cahier Technique E. Tests de conformité 1/7

C 15/03/2017. Cahier Technique E. Tests de conformité 1/7 Indce de Révson Date de mse en applcaton C 15/03/017 Caher Technque E 1/7 Table des matères TABLE DES MATIERES... 1 1 PRICIPE... CRITERES DE COFORMITE DE LA VALEUR THERMIQUE DECLAREE....1 TEST DE COFORMITE

Plus en détail

Version du 7 décembre 2016 (11h53)

Version du 7 décembre 2016 (11h53) CHAPITRE 4. ÉOMÉTRIE DE MAE....................................... - 4.1-4.1. Descrpton d un système matérel.......................................... - 4.1-4.1.1. Noton de pont matérel..........................................

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

Création des objets animés

Création des objets animés Créaton des objets anmés 51 Créaton des objets anmés L'objectf Dans ce chaptre nous allons apprendre à créer les objets nécessares à la créaton des anmatons : les symboles. Nous verrons auss l'envronnement

Plus en détail

Factorisation. Résolution de

Factorisation. Résolution de Factorsaton LU Pour smpl er la présentaton de l'algorthme, on ne va pas tenr compte d'éventuelles permutatons, n de l'ntalsaton des lu() de Sclab c. help lu. Note la commande permutatons, Factorsaton LU

Plus en détail

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d etour au menu éseaux lnéares Défntons Un réseau électrque lnéare est un ensemble de dpôles lnéares, relés par des conducteurs de résstance néglgeable. On suppose que le réseau content au mons un générateur.

Plus en détail

L'objectif. Analyse de Données Structurées - Cours 5. La bonne approche pour l'analyse syntaxique? L'approche suivie pour l'analyse lexicale

L'objectif. Analyse de Données Structurées - Cours 5. La bonne approche pour l'analyse syntaxique? L'approche suivie pour l'analyse lexicale Constructon d'analyseurs syntaxques L'objectf Ralf Trenen Unversté Pars Dderot UFR Informatque Insttut de Recherche en Informatque Fondamentale trenen@rf.fr L'analyse syntaxque a deux objectfs : détecter

Plus en détail

Interface : OneNote 2010

Interface : OneNote 2010 Interface : OneNote 2010 Interface : OneNote 2010 Offce 2010 Lancer OneNote 2010 Clquez sur le bouton Démarrer de la barre des tâches stuée en bas de l écran pus clquez sur l opton Tous les programmes

Plus en détail

Editions ENI. Access Collection Référence Bureautique. Extrait

Editions ENI. Access Collection Référence Bureautique. Extrait Edtons ENI Access 2010 Collecton Référence Bureautque Extrat Relatons entres les tables Tables Établr une relaton entre deux tables Les dfférents types de relaton entre les tables Établr une relaton entre

Plus en détail

Type d anima)on de personnage Armature (Skeleton) Anima)on avec armature Architecture du système d anima)on

Type d anima)on de personnage Armature (Skeleton) Anima)on avec armature Architecture du système d anima)on Modélsa)on et anma)on de personnage LOG725 Ingénere et concep)on de eu déo Références: Gregor J, Game Engne Archtecture 2 ème édton CRC Press, 204 et trée de Gregor J, Anmaton n Vdeo Games LOG725: Ing.

Plus en détail

Travaux Pratiques de Physique

Travaux Pratiques de Physique Travaux Pratques de Physque Optque 1 : optque géométrque Servce de Physque Bomédcale Unversté de Mons Plan Rappel Théorque Réflexon Réfracton Réflexon totale Manpulaton Mror / Lame à faces parallèles /

Plus en détail

Microsoft WORD Fonctions de base

Microsoft WORD Fonctions de base Mcrosoft WORD 2016 Fonctons de base Table des matères Généraltés Envronnement Lancer/qutter Word 2016.................................. 7 Utlser/gérer le ruban..................................... 11 Annuler/rétablr/répéter

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Cours 2. Méthode des différences finies Approche stationnaire

Cours 2. Méthode des différences finies Approche stationnaire Cours Méthode des dfférences fnes Approche statonnare Technque de dscrétsaton en D Constructon du système Prse en compte des condtons aux lmtes Noton de convergence Extenson au D Verson 09/006 (E.L.) NF04

Plus en détail

Exercice 1 : Classification, d un point de vue général (4 points)

Exercice 1 : Classification, d un point de vue général (4 points) Corrgé du Devor survellé de Reconnassance de Formes I3 Informatque Mard 8 anver 003 - durée : heures Tous documents autorsés Noté sur 30 ponts (/0 Exercce : Classfcaton, d un pont de vue général ( ponts

Plus en détail

Ecole Nationale d Ingénieurs de Brest. Module Qualité et Fiabilité. Les Plans d Expériences

Ecole Nationale d Ingénieurs de Brest. Module Qualité et Fiabilité. Les Plans d Expériences Notes de cours Ecole Natonale d Ingéneurs de Brest Module Qualté et Fablté Les Plans d Expérences Cours proposé par M. Parenthoën année 2002-2003 enb c mp2003....... 1 Plan du cours Plans d Expérences

Plus en détail

Modélisation cinématique d un robot manipulateur à chaine continue ouverte

Modélisation cinématique d un robot manipulateur à chaine continue ouverte UNIVERSITE KASDI MERBAH OUARGLA Faculte des Scences et Technologe et des Scences de la Matere Département Géne Mécanque Mémore MASTER PROFESSIONNEL Domane Scences Technques Flère Géne Mécanque Spécalté

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

Bac Blanc TS 2016 Physique Chimie sujet : Non spécialiste. PRENDRE UNE AUTRE FEUILLE Exercice 3 : Objectif Lune!

Bac Blanc TS 2016 Physique Chimie sujet : Non spécialiste. PRENDRE UNE AUTRE FEUILLE Exercice 3 : Objectif Lune! Bac Blanc TS 6 Phsque Chme sujet : Non spécalste PRENDRE UNE AUTRE FEUILLE Exercce 3 : Objectf Lune! Dans la BD d Hergé ( 953 ), Tntn et ses compagnons s embarquent à bord d une fusée pour rejondre la

Plus en détail

ASI 3. Méthodes numériques pour l ingénieur. Interpolation f(x)

ASI 3. Méthodes numériques pour l ingénieur. Interpolation f(x) ASI 3 Métodes nuérques pour l ngéneur Interpolaton f Approaton de fonctons Sot une foncton f nconnue eplcteent connue seuleent en certans ponts, n ou évaluable par un calcul coûteu. rncpe : représenter

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous UTILS MATHEMATIQUES L1 SVG 1 Paul Broussous Chaptre II. Nombres complees Défnton. L ensemble C des nombres complees est formé des epressons de la forme +, et nombres réels avec les règles : (Egalté) +

Plus en détail

Application du Règlement Parasismique Algérien RPOA-2008 pour l Analyse d un Pont à Poutres sous Chaussée

Application du Règlement Parasismique Algérien RPOA-2008 pour l Analyse d un Pont à Poutres sous Chaussée 13 TH ARAB STRUCTURAL ENGINEERING CONFERENCE UNIVERSITY OF BLIDA 1 DECEMBER 13-15, 015 ALGERIA Applcaton du Règlement Parassmque Algéren RPOA-008 pour l Analyse d un Pont à Poutres sous Chaussée Abderrahmane

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN REPERGE DNS LE PLN I. Repère du plan 1. Repère et coordonnées Tros ponts dstncts deux à deux, I et J du plan forment un repère, que l on peut noter (, I, J). L orgne et les untés I et J permettent de graduer

Plus en détail

1 L1 MATHÉMATIQUES FINANCIÈRES

1 L1 MATHÉMATIQUES FINANCIÈRES 1 1 L1 MATHÉMATIQUES FINANCIÈRES 2 Equvalence d effets à ntérêts composés. Deux effets sont équvalents à une date donnée, s escomptés au même taux ls ont à cette date la même valeur actuelle. Un effet

Plus en détail

Chapitre 4 PLASTICITÉ, RÉSISTANCE AU CISAILLEMENT, STABILITÉ DES PENTES RAPPELS DE MÉCANIQUE DES MILIEUX CONTINUS

Chapitre 4 PLASTICITÉ, RÉSISTANCE AU CISAILLEMENT, STABILITÉ DES PENTES RAPPELS DE MÉCANIQUE DES MILIEUX CONTINUS Chaptre 4 PLASTICITÉ, RÉSISTANCE AU CISAILLEMENT, STABILITÉ DES PENTES 4. - RAPPELS DE MÉCANIQUE DES MILIEUX CONTINUS 4.. - Etat de contrantes La contrante en un pont M stué à l ntéreur d un mleu contnu

Plus en détail

L ANOVA (complements)

L ANOVA (complements) L ANOVA (complements) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA 1. L applcaton

Plus en détail

Equilibres chimiques et loi d action des masses

Equilibres chimiques et loi d action des masses Cnétque et thermodynamque chmques CHI305 Chaptre 8 Equlbres chmques et lo d acton des masses CHI305 Chaptre 9 : Equlbres chmques et lo d acton des masses I. Equlbres chmques II. Affnté chmque, monôme des

Plus en détail

ça s écrit comme ça se prononce la classe 3

ça s écrit comme ça se prononce la classe 3 ça s écrt comme ça se prononce! PRÉSENTATION Ça s écrt comme ça se prononce! est un outl de producton de mots. Il a pour but de rendre les élèves capables, dès la fn de la Grande Secton de maternelle,

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE I. Les fonctions affines : LES FONCTIONS DE REFERENCE Définition : On appelle fonction affine toute fonction définie sur IR, ou sur un intervalle de IR, par f : a + b avec a et b deu nombres réels. Propriétés

Plus en détail

Version du 15 août 2016 (11h16)

Version du 15 août 2016 (11h16) CHAPTRE. CARACTÉRSTQUES GÉOMÉTRQUES DES SECTONS PLANES........ -.1 -.1. ntroducton............................................................. -.1 -.. Moment statque et centre de gravté..........................................

Plus en détail

( c d) 6i i i(2 4i 2 2 i) 4i 2 2 4i

( c d) 6i i i(2 4i 2 2 i) 4i 2 2 4i Nombres complexes Exercces corrgés Qcm et exercce comporte quatre affrmatons repérées par les lettres a, b, c et d Vous deve ndquer pour chacune de ces affrmatons, s elle est vrae (V) où fausse (F) Une

Plus en détail

EPREUVE N 4 MATHEMATIQUES ET SCIENCES PHYSIQUES

EPREUVE N 4 MATHEMATIQUES ET SCIENCES PHYSIQUES EPREUVE N 4 MATHEMATIQUES ET SCIENCES PHYSIQUES Pour TCV en produts hortcoles et de jardnage :(Coeffcent : - Durée : 3 heures) Autres optons : (Coeffcent :,5 - Durée : 3 heures) Matérel autorsé : calculatrce

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail