Recherche d Information(RI): Fondements et illustration avec Apache Lucene. par Majirus

Dimension: px
Commencer à balayer dès la page:

Download "Recherche d Information(RI): Fondements et illustration avec Apache Lucene. par Majirus Fansi @majirus"

Transcription

1 1 Recherche d Information(RI): Fondements et illustration avec Apache Lucene par Majirus

2 Résumé Fondements de la Recherche d Information (RI) Noyau de toute application de RI Éléments à prendre en compte Modèles Booléens et Vectoriels Construction des index inversés et calcul du niveau de pertinence Librairie Apache Lucene 2

3 Majirus Fansi, PhD, Chercheur au laboratoire Informatique de l Université de Pau Stockolm Business School Executive MBA Consultant SOA/Java EE à Valtech SA Maintenant à Devoxx France 3

4 Définition 4

5 Recherche d Information (RI) Trouver des ressources (des documents) De nature non structurée (des textes) Besoin d information (pas une requête) parmi une large collection Stockées sur ordinateurs 5

6 RI Web/Traditionnelle RI Web (Web Information Retrieval) La plus grande collection de documents (liés) RI traditionnelle (Traditional Information Retrieval) Collection plus ou moins contrôlable, plus petite en taille Votre intranet Scénario le plus souvent rencontré par le développeur 6

7 RI Traditionnelle Trois techniques basiques de recherche d Information Modèles Booléens (Boolean Models) Modèles Vectoriels (Vector Space Models) Modèles Probabilistes (Probabilistic Models) Les moteurs de recherche s appuient sur un ou plusieurs modèles Apache Lucene se repose sur les modèles booléens et vectoriels 7

8 Exemple de Problème RI Bibliothèque numérique de l entreprise Documents techniques, rapport de réunions, spécifications, etc Dizaines de milliers de documents Lucene AND Cutting AND NOT SOLR Grep de la collection pour retrouver les documents candidats Peut être un processus efficace mais 8

9 Exemple de Problème RI (2) Grep ne répond pas à tous les besoins Traiter rapidement une large collection de documents Permettre des recherches plus flexibles "Lucene Cutting"~5 Permettre la recherche par pertinence (ranked retrieval) Meilleures réponses à un besoin d information Parmi les documents qui contiennent certains mots 9

10 Index/terme/document L index est le moyen d éviter le scan linéaire de la collection On indexe au préalable les documents de la collection L unité d index est un terme Mot dans le document indexé, mais pas toujours Document: Tout élément sur lequel est basé l index Ligne d une table, livre, chapitre de livre, présentation, etc 10

11 Index: structure et construction 11

12 Index : structure Supposons N= 1 million de documents, 1000 mots par document, M= termes environ pour la collection Un milliard de mots pour termes Quelle structure pour l index? 12

13 Matrice d incidence termedocument Doc 1 Doc 2 Doc 3 Doc 4 Lucene Cutting Solr Majirus Méthode naïve, matrice clairsemée: un terme dans 2 documents L index doit idéalement tenir en mémoire 13

14 Index Inversé (Inverted index) Maintien d un dictionnaire de termes Pour chaque terme t, lister les documents (postings list) où apparaît t docid pour identifier chaque document de la liste Cutting Posting Lucene SOLR Dictionnaire Trier par docid Postings 14

15 Construction de l index Inversé Documents à indexer Friends, to, Romans, countrymen. Flow de jetons Analyseur Module linguistique Friends Romans Countrymen Jetons modifiés friend roman countryman Index inversé Indexeur friend 2 4 roman 1 2 countryman

16 Analyser le texte Découper le texte en pièces appelées jetons (token) Dépendant du langage (Français, Allemand, etc...) Exclure les termes peu pertinents pour la recherche (stop words) Indice: Nombre d occurrence du terme dans la collection Réduit la taille de l index mais attention Phrases comme requête (phrase query): "réunion de geek" Ecoutez-vous? :"I did it all", "Ni Oui Ni Non", "Oui Mais Non" 16

17 Normaliser les jetons Processus de standardisation des jetons Pour éliminer les différences superficielles Création implicite des classes d équivalence Suppression des points et tirets: U.S.A USA; anti-héros antiheros Suppression des accents: cliché cliche; naïve naive Tout en minuscule? CAT, Bush 17

18 Indexeur: dictionnaire et postings Fusion des entrées du même terme dans un document Partition entre dictionnaire et postings La fréquence de document est ajouté 18

19 Modèle Booléen 19

20 Modèle Booléen Requête sous forme d expression booléenne de termes Termes combinés par les opérateurs AND, OR, NOT Un document est vu comme un ensemble de mots 20

21 Traitement des requêtes: AND On considère la requête Lucene AND Cutting Localiser Lucene dans le dictionnaire Extraire son postings Localiser Cutting dans le dictionnaire Extraire son postings Faire l intersection des deux postings 21

22 Traitement des requêtes: AND (2) On considère la requête Lucene AND Cutting Lucene Cutting Si les listes sont de tailles X et Y, alors fusion en O(X+Y) Important: les listes sont triées par docid 22

23 Requêtes Booléennes: correspondances exactes Modèle très précis: le document match les conditions ou pas Sans doute le modèle le plus simple pour construire un système RI La seule option disponible jusqu en 1990 Trois siècles de règne sans partage Plusieurs systèmes utilisent toujours ce modèle , catalogues de librairie, Mac OS X Spotlight 23

24 Requêtes Booléennes avec Apache Lucene AND (ou &&), "+ ", OR (ou ), NOT (ou!) et "-" Opérateur par défaut: OR Retourner les documents qui contiennent "Apache Lucene" ou Lucene "Apache Lucene" Lucene ou "apache Lucene" OR Lucene "+" impose que le terme après ce signe existe dans le document 24

25 Requêtes Booléennes avec Apache Lucene (2) NOT (-): exclut les documents qui contiennent le terme après l opérateur Ne peut être utilisé avec un seul terme ( NOT SOLR) Utiliser les parenthèses pour forcer les priorités (A OR B) AND C 25

26 Req Booléennes : Limitations Problème général avec la recherche booléenne AND très précis mais très restreint OR peu précis, mais moins restreint Difficile de trouver le juste milieu Ne répond pas toujours au besoin d information des utilisateurs Modèle booléen étendu: proximité entre termes (term proximity) Apache et Lucene dans 10 mots ("Apache Lucene" ~10) 26

27 Req Booléennes : Perspectives Renseigne uniquement sur la présence ou l absence d un terme Nous aimerions donner un poids important aux documents où le terme est plus fréquent Besoin de la fréquence du terme (term frequency) Retourne l ensemble des documents qui matchent la condition Nous souhaiterions ordonner les résultats par pertinence Besoin d un mécanisme pour déterminer le score du document 27

28 Recherche ordonnée (Ranked Retrieval) 28

29 Recherche ordonnée (Motivations) Jusqu en 1990 uniquement les requêtes Booléennes Les documents correspondent ou pas Bien pour les experts qui comprennent bien leurs besoins et la collection Peu adapté pour la majorité des utilisateurs Beaucoup sont incapables d écrire les requêtes booléennes Très peu sont disposés à explorer une liste de 1000 résultats 29

30 Recherche ordonnée (Principes) Plutôt qu un ensemble de documents qui satisfont la requête Le système retourne les tops k documents les plus pertinents La taille des résultats n est plus un problème Seule condition: l algorithme de ranking fonctionne Plutôt qu une requête avec expressions et opérateurs L utilisateur soumet une requête en texte libre 30

31 Scoring 31

32 Score Élément clé pour la recherche ordonnée Nous voulons retourner en priorité les documents les plus utiles à l utilisateur Comment ordonner les documents de la collection par rapport à la requête? Assigner un score [0, 1] à chaque document Ce score mesure combien le document et la requête matchent. 32

33 Éléments de scoring Fréquence du terme (term frequency) Fréquence document (document frequency) Non en fait la fréquence document inversée (Inverse doc freq) 33

34 Fréquence du terme - tf t,d La fréquence tf t,d : nombre d occurrences de t dans d tf peut-il être le score? Tf comme score n est pas ce que nous voulons: Un document avec 10 occurrences du terme est plus pertinent qu un document avec 1 seule occurrence du même terme Mais pas 10 fois plus pertinent 34

35 tf t,d - Inconvénients Tous les termes sont considérés avec la même importance Certains termes ont peu ou pas du tout de pouvoir discriminant Poids du terme «java» dans une collection de documents sur les frameworks java. Besoin d un Mécanisme pour atténuer l effet des termes trop fréquents 35

36 Fréquence document (df t ) Nombre de documents contenant le terme dans la collection Les termes rares sont plus informatifs que les termes fréquents Le but est d attribuer un poids élevé pour les termes fréquents Mais moins important que les termes rares La fréquence document (df) permet de matérialiser ce besoin 36

37 Fréquence document inversé df t est la fréquence document de t: le nombre de documents qui contiennent t df t est une mesure inverse du caractère informatif de t df t N; N étant le nombre de document de la collection Idf t (inverse document frequency) de t est ainsi défini idf log ( N/df t 10 t La fonction log est utilisée pour rendre idf moins prononcé ) 37

38 tf.idf Scoring Le score tf.idf d un terme est le produit de ses poids tf et idf w log(1 tft, ) log ( N / df t, d d t ) Schéma de calcul de score très utilisé en RI w t,d Augmente avec le nombre d occurrences de t dans d w t,d Augmente suivant la rareté de t dans la collection w t,d plus élevé si t apparaît plusieurs fois dans n documents, n petit w t,d est le moindre si t apparaît dans presque tous les documents 38

39 Modèle Vectoriel (Vector Space Model) 39

40 VSM: Principes Documents comme vecteurs dans l espace Requête comme vecteur dans l espace Calcul de la similarité entre les vecteurs 40

41 document comme vecteur (document vector) Les documents sont des points ou des vecteurs dans un espace vectoriel Les termes sont les axes de l espace: d (w t1,d ; w t2,d ; w tn,d ) Espace vectoriel de dimension n, n = nombre de termes Vecteurs très dispersés: beaucoup d entrées à zéro 41

42 Req comme vecteur (Query vector) Idée clef 1: Représenter les requêtes comme vecteurs dans l espace Idée clef 2: ordonner les documents suivant leurs proximités à la requête dans l espace 42

43 Proximité (d, q) Proximité par mesure de distance Euclidienne Ne reflète pas la distribution des termes Dupliquer le contenu de d pour obtenir d d a une plus grande distance et s écarte de d Proximité donné par l angle avec la requête: cos(0) = 1 = similarité maximale Respecte mieux la similarité sur la distribution des termes (d,d)=0 43

44 Ranking Ordonner les documents par ordre décroissant de l angle entre le document et la requête Ou par ordre croissant de cos(requête, document) 44

45 cos(requête q, document d) produit scalaire q d cos( q, d) q d q q vecteurs unitaires q i est le poids tf-idf du terme i dans la requête q d d V i 1 q V i 1 2 i q d i i V i 1 d 2 i fondamental pour tout système RI à modèle vectoriel d i est le poids tf-idf du terme i dans le document d cos(q,d) donne le score du document d considérant la requête q On retourne les top K documents 45

46 Adaptation Lucene (1) Normaliser le vecteur v(d) à un vecteur unitaire est problématique Supprime toute information sur la longueur du document D où la fonction doc-len-norm(d) qui normalise à un vecteur supérieur ou égal au vecteur unitaire (2) On peut décider à l indexation qu un document est plus important qu un autre Ajout d un boost pour le document (doc-boost(d)) 46

47 Adaptation Lucene (2) (3) On peut attribuer un facteur de boost aux termes de la requête (queryboost(q)) Multiplie la contribution d un terme au score du document (4) Un document peut satisfaire une requête à plusieurs termes Mais ne contient pas tous les termes de la requête L utilisateur récompense le document qui contient le plus de termes Coord-factor(q,d) 47

48 Lucene: Formule de scoring conceptuelle Suppose un champ (field) par document q d score( q, d) coordfact(q, d).queryboost ( q).doclennorm ( d).docboost( d) q 48

49 Lucene: Scoring Pratique Formule pratique : un document a plusieurs champs score( q, d) coord(q, d).query Norm( q) t q ( tf ( t d). idf numdocs tf ( t d) tf idf ( t) 1 log( ) t, d docfreq 1 ( t) 2. t. getboost(). norm( field( t), d)) norm( field( t), d) doclennorm( field( t), d). docboost( d) QueryNorm(q) utile pour comparer les scores entre requêtes doclennorm(field(t),d) calculé de sorte que les champs courts contribuent plus au score 49

50 Conclusion et perspectives 50

51 Perspectives Schéma d extraction «Inexact Top K» documents Retourner les K documents susceptibles d être parmi les K meilleurs scores L algorithme de scoring n est qu un proxy vers le besoin d information Modèles Probabilistes Aller plus loin dans la recherche avec la sémantisation La recherche de base est à mots clés 51

52 Remerciements Pandu Nayak and Prabhakar Raghavan: Introduction to Information Retrieval Amy N. Langville and Carl D. Meyer: Google s PageRank and Beyond Equipe de développement de Lucene L organisation de Devoxx France Le management de Michels, Maj-Daniels et Sonzia Fansi Bien sûr vous, pour votre présence et votre attention 52

53 A ceux et celles qui œuvrent pour l enseignement et la recherche! 53

54 54 Please note : slide format is 1280x720 We d like to record in 16:9 But prepare also a 1024x768 as a backup plan if your computer is not able to output a video signal with a 1280x720 resolution

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction a la recherche d information Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département

Plus en détail

TRAITEMENT AUTOMATIQUE DES LANGUES. Licence d'informatique 2ème Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie

TRAITEMENT AUTOMATIQUE DES LANGUES. Licence d'informatique 2ème Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie TRAITEMENT AUTOMATIQUE DES LANGUES Licence d'informatique 2ème Année Semestre 1 Département d'informatique Université de Caen Basse-Normandie https://dias.users.greyc.fr/?op=paginas/tal.html Plan Définition

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

Bases de données multimédia VII Bag of words

Bases de données multimédia VII Bag of words Bases de données multimédia VII Bag of words ENSIMAG 2014-2015 Matthijs Douze & Karteek Alahari Video-Google! LA référence : Josef Sivic and Andrew Zisserman «Video Google: A Text Retrieval Approach to

Plus en détail

Introduction à Lucene et à Solr

Introduction à Lucene et à Solr 1/22 et à Solr Ludovic Jean-Louis Netmail Mercredi 21 Octobre 2015 2/22 Motivations Comprendre les différences entre Lucene et Solr Comprendre le processus d indexation des données Éclairer le choix entre

Plus en détail

Présentation d Apache Solr. Aurélien Pontacq 06/01/2009

Présentation d Apache Solr. Aurélien Pontacq 06/01/2009 Présentation d Apache Solr Aurélien Pontacq 06/01/2009 Plan 1. Introduction 2. Principe de Solr 3. Indexation des documents 4. Recherche de documents 5. Schema.xml 6. Analyse 7. Caractéristiques intéressantes

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

Master 2 Informatique UAG. Classification de documents/textes

Master 2 Informatique UAG. Classification de documents/textes Data Mining Master 2 Informatique UAG Classification de documents/textes Utilisée en text mining, information retrieval : amélioration du recall et de la précision Moyen de trouver les voisins les plus

Plus en détail

LA RECHERCHE BIBLIOGRAPHIQUE

LA RECHERCHE BIBLIOGRAPHIQUE LA RECHERCHE BIBLIOGRAPHIQUE Les outils d aide à la recherche bibliographique C.Augustyniak 31 janvier 2012 SOMMAIRE Généralités BDSP GOOGLE SCHOLAR Babord + CiSMeF SUDOC PUBMED MEDLINE SCOPUS Centres

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

Encyclopaedia Universalis Guide d utilisation

Encyclopaedia Universalis Guide d utilisation Encyclopaedia Universalis Guide d utilisation Ouverture d une session... 2 Écrans de recherche.. 2 Opérateurs logiques et booléens. 3 Affichage et consultation des résultats... 5 Impression.... 7 TABLE

Plus en détail

Le ranking de Augure Influencers La méthodologie AIR en détails

Le ranking de Augure Influencers La méthodologie AIR en détails Le ranking de Augure Influencers La méthodologie AIR en détails V1.0 Octobre 2014 Oualid Abderrazek Product Marketing Sommaire 1. Contexte...3 2. L algorithme...3 a. Exposition...4 b. Echo...4 c. Niveau

Plus en détail

Top_Keyword: Agrégation de motsclefs dans un environnement OLAP

Top_Keyword: Agrégation de motsclefs dans un environnement OLAP SIG/ED Top_Keyword: Agrégation de motsclefs dans un environnement OLAP Franck Ravat, Olivier Teste, Ronan Tournier, Gilles Zurfluh. IRIT: Institut de Recherche en Informatique de Toulouse. tournier@irit.fr

Plus en détail

Travaux Pratiques : Lucène - Gestion d un index plein texte

Travaux Pratiques : Lucène - Gestion d un index plein texte Chapter 1 Travaux Pratiques : Lucène - Gestion d un index plein texte Pour ce TP, nous allons étudier l utilisation d un index de recherche textuel OpenSource : Lucene 1. Nous allons créer un projet en

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Application de la logique floue à un modèle de recherche d information basé sur la proximité

Application de la logique floue à un modèle de recherche d information basé sur la proximité Application de la logique floue à un modèle de recherche d information basé sur la proximité Fuzzy set theory applied to a proximity model for information retrieval Michel BEIGBEDER 1 Annabelle MERCIER

Plus en détail

Espaces vectoriels et recherche d information

Espaces vectoriels et recherche d information Espaces vectoriels et recherche d information Matthieu Constant Université Paris-Est Marne-la-Vallée, LIGM Plan Introduction Géométrie vectorielle Rappels sur les vecteurs en géométrie 2D Généralisation

Plus en détail

ANALYSE DES DONNÉES TEXTUELLES

ANALYSE DES DONNÉES TEXTUELLES Université Paris Dauphine Ecole Doctorale de Gestion M. Gettler Summa, C. Pardoux ANALYSE DES DONNÉES TEXTUELLES Traitement automatique des questions ouvertes Question ouverte Souhaitez-vous ajouter des

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Laboratoire 2 Extraction des caractéristiques

Laboratoire 2 Extraction des caractéristiques Laboratoire 2 Extraction des caractéristiques L objectif de l extraction et de la sélection de caractéristiques est d identifier les caractéristiques importantes pour la discrimination entre classes. Après

Plus en détail

Comparatif CMS. Laurent BAUREN S Bérenger VIDAL Julie NOVI Tautu IENFA

Comparatif CMS. Laurent BAUREN S Bérenger VIDAL Julie NOVI Tautu IENFA Comparatif CMS Laurent BAUREN S Bérenger VIDAL Julie NOVI Tautu IENFA Sommaire Introduction : Dans le cadre de notre projet de master première année, il nous a été demandé de développer un moteur de recherche

Plus en détail

Quand et pourquoi utiliser une base de données NoSQL?

Quand et pourquoi utiliser une base de données NoSQL? Quand et pourquoi utiliser une base de données NoSQL? Introduction Les bases de données NoSQL sont devenues un sujet très à la mode dans le milieu du développement web. Il n est pas rare de tomber sur

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Le système SMART 1. Indexation

Le système SMART 1. Indexation Le système SMART Le système SMART (System for the Mechanical Analysis and Retrieval of Text) (aussi appelé Salton's Magic Automatic Retrieval Technique:-) est un système de RI expérimental. Il utilise

Plus en détail

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition L'apport de la sémantique et de la linguistique statistique pour le SEO SEO Camp'us -4 et 5 février 2009 Philippe YONNET Directeur du pôle métiers Aposition Président de l association SEOCamp Comment classer

Plus en détail

Mathématiques pour l informatique 1 notes de cours sur la seconde partie

Mathématiques pour l informatique 1 notes de cours sur la seconde partie Mathématiques pour l informatique notes de cours sur la seconde partie L Université Paris-Est, Marne-la-Vallée Cyril Nicaud Organisation Ce demi-cours est composé de 6 séances de cours et 6 séances de

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

GUIDE PRATIQUE DE LA RECHERCHE D INFORMATIONS

GUIDE PRATIQUE DE LA RECHERCHE D INFORMATIONS GUIDE PRATIQUE DE LA RECHERCHE D INFORMATIONS SUR INTERNET JUIN 2007 CHAMBRE DE COMMERCE ET D'INDUSTRIE DE LYON DIRECTION DES SERVICES AUX ENTREPRISES ESPACE INTELLIGENCE ECONOMIQUE - Sommaire Améliorez

Plus en détail

Introduction à l'indexation fulltext

Introduction à l'indexation fulltext Introduction à l'indexation fulltext Robert VISEUR Assistant (FPMs) Guideur technologique (CETIC) robert.viseur@fpms.ac.be Solutions Linux 2008 31 janvier 2008 Objectifs de l'exposé Proposer une introduction

Plus en détail

Algorithmes de tri. 1 Introduction

Algorithmes de tri. 1 Introduction Algorithmes de tri L objectif de ce document est de présenter plusieurs algorithmes classiques de tri. On commence par présenter chaque méthode de manière intuitive, puis on détaille un exemple d exécution

Plus en détail

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

Bases de données cours 2 Éléments d algèbre relationnelle. Catalin Dima

Bases de données cours 2 Éléments d algèbre relationnelle. Catalin Dima Bases de données cours 2 Éléments d algèbre relationnelle Catalin Dima Qu est-ce qu une algèbre? Algèbre : ensemble de domaines et d opérations. Exemple : les nombres (naturels, réels, complexes). Leurs

Plus en détail

Traitement automatique des messages courts par des approches de Fouille de Textes

Traitement automatique des messages courts par des approches de Fouille de Textes Traitement automatique des messages courts par des approches de Fouille de Textes Mathieu ROCHE Equipe TEXTE LIRMM, CNRS, Université Montpellier 2 1 Séminaire Sud4Science 28 septembre 2011 1. Introduction

Plus en détail

Info0101 Intro. à l'algorithmique et à la programmation. Cours 5. Tableaux

Info0101 Intro. à l'algorithmique et à la programmation. Cours 5. Tableaux Info0101 Intro. à l'algorithmique et à la programmation Cours 5 Tableaux Pierre Delisle, Cyril Rabat et Christophe Jaillet Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique

Plus en détail

Examen organisé en vue du recrutement et de la constitution de réserves de recrutement. d'assistants (gestionnaire de systèmes et développeur)

Examen organisé en vue du recrutement et de la constitution de réserves de recrutement. d'assistants (gestionnaire de systèmes et développeur) Examen organisé en vue du recrutement et de la constitution de réserves de recrutement d'assistants (gestionnaire de systèmes et développeur) porteurs d'un diplôme établi en langue française pour le service

Plus en détail

Manipulation des données textuelles utilisation des outils WEKA/JAVA pour le projet AFD

Manipulation des données textuelles utilisation des outils WEKA/JAVA pour le projet AFD Manipulation des données textuelles utilisation des outils WEKA/JAVA pour le projet AFD Vincent Guigue UPMC - LIP6 Vincent Guigue Preprocessing & JAVA 1/24 Traitements pour la classification de textes

Plus en détail

Recommandation dans les réseaux sociaux professionnels

Recommandation dans les réseaux sociaux professionnels Recommandation dans les réseaux sociaux professionnels Application sur un réseau bibliographique 6 mai 2010 Objectif et Motivation Techniques utilisées Algorithme exhaustive de recherche de toutes les

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction du cours Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

PRINCIPES DIRECTEURS PERMETTANT DE DÉTERMINER L ENDROIT OÙ DOIVENT ÊTRE CLASSÉS LES DOCUMENTS DE BREVET DANS LA CIB

PRINCIPES DIRECTEURS PERMETTANT DE DÉTERMINER L ENDROIT OÙ DOIVENT ÊTRE CLASSÉS LES DOCUMENTS DE BREVET DANS LA CIB PRINCIPES DIRECTEURS PERMETTANT DE DÉTERMINER L ENDROIT OÙ DOIVENT ÊTRE CLASSÉS LES DOCUMENTS DE BREVET DANS LA CIB adoptés par le Comité d experts de l Union de l IPC à sa quarante-deuxième session et

Plus en détail

EDSP rechercher et publier sur le net!

EDSP rechercher et publier sur le net! EDSP rechercher et publier sur le net! Francoise.Tort@ens-cachan.fr! Mai 2012! Recherche avancée Les moteurs des recherche offrent des fonctionnalités de recherche avancée:! Requêtes booléennes! Recherche

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 5 : Structures de données linéaires Benjamin Wack 2015-2016 1 / 37 La dernière fois Logique de Hoare Dichotomie Aujourd hui Type Abstrait de Données

Plus en détail

TD de statistique : introduction à R

TD de statistique : introduction à R TD de statistique : introduction à R Jean-Baptiste Lamy 11 octobre 2007 1 Introduction : pourquoi R? R est un logiciel pour l analyse statistique. C est un logiciel libre; il est disponible gratuitement

Plus en détail

Épreuve d informatique 2011

Épreuve d informatique 2011 A 2011 INFO. MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

Examen de Bases de données multimédia 5 février 2014 durée : 2h00

Examen de Bases de données multimédia 5 février 2014 durée : 2h00 Examen de Bases de données multimédia 5 février 2014 durée : 2h00 Documents autorisés : transparents du cours, notes de cours. Calculatrice non autorisée. Bonus = points en plus hors barème. EXERCICE 1.

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Système de Gestion de Base de Données (SGBD) A Introduction

Système de Gestion de Base de Données (SGBD) A Introduction A Introduction - Qu est-ce qu on entend généralement par BASE DE DONNEES? - Petit historique - Vers la structuration des données - Quelques exemple de bases connues (Sécu Sociale, Fichiers d inscription

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

Les graphes d intervalles

Les graphes d intervalles Les graphes d intervalles Complément au chapitre 3 «Vol aux archives cantonales» Considérons un ensemble de tâches ayant chacune une heure de début et une heure de fin bien précises. Supposons qu on demande

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

Arbres de segments. Plan. Arbres de segments. Arbres de sélection Listes à saut Compléments de Java Dictionnaires Automates. Solution.

Arbres de segments. Plan. Arbres de segments. Arbres de sélection Listes à saut Compléments de Java Dictionnaires Automates. Solution. Plan Arbres de segments Arbres de segments Arbres de sélection Listes à saut Compléments de Java Dictionnaires Automates Problème : Chercher, dans un ensemble d intervalles de la droite réelle, les intervalles

Plus en détail

PCSI - informatique commune Vendredi 6 juin 2014 : DS 3. Whatever works!

PCSI - informatique commune Vendredi 6 juin 2014 : DS 3. Whatever works! PCSI - informatique commune Vendredi 6 juin 2014 : DS 3 Avertissements : Whatever works! Vous avez droit à tout document : papier, web... Allumez l ordinateur, loguez vous, lancez Python. En cas de problème,

Plus en détail

Listes et arbres binaires

Listes et arbres binaires Des structures de données dynamiques Listes, Listes ordonnées Arbres binaires, arbre binaires de recherche Listes chaînées Utile si le nombre d éléments n est pas connu à l avance et évolue beaucoup. Permet

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental

Plus en détail

Composition d Informatique (2 heures), Filière MP (XC)

Composition d Informatique (2 heures), Filière MP (XC) école polytechnique concours d admission 2014 ens : cachan Composition d Informatique (2 heures), Filière MP (XC) Rapport de M. Didier CASSEREAU, correcteur. 1. Bilan général A titre de rappel, cette épreuve

Plus en détail

QUESTIONNAIRE ENQUÊTE LOGICIEL DOCUMENTAIRE JANVIER 2002

QUESTIONNAIRE ENQUÊTE LOGICIEL DOCUMENTAIRE JANVIER 2002 QUESTIONNAIRE ENQUÊTE LOGICIEL DOCUMENTAIRE JANVIER 2002 Pour faciliter l élaboration d un cahier des charges pour qualifier le futur logiciel documentaire de l académie dans le cadre de l appel à marché

Plus en détail

Introduction 2 Environnement de travail... 2 Groupement de commandes... 2 Caractères spéciaux... 2

Introduction 2 Environnement de travail... 2 Groupement de commandes... 2 Caractères spéciaux... 2 TP OS n 5 2012 tv - v.1.0 Sommaire Introduction 2 Environnement de travail....................................... 2 Groupement de commandes..................................... 2 Caractères

Plus en détail

Plan. Tableaux. Utilité. Définition. Exemples. Déclaration d un tableau

Plan. Tableaux. Utilité. Définition. Exemples. Déclaration d un tableau Plan Tableaux Université de Nice - Sophia Antipolis Richard Grin Version 1.0.4 25/11/10 Définition Déclaration d un tableau Création d un tableau Utilisation d un dun tableau Tableau des paramètres de

Plus en détail

Web Science. Master 1 IFI. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.

Web Science. Master 1 IFI. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice. Web Science Master 1 IFI Andrea G. B. Tettamanzi Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.fr 1 CM - Séance 3 PageRank et comment Google transforme des mots en

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Installation de Solr Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique.

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique. I INTRODUCTION Les pages de phishing sont l un des problèmes majeurs de sécurité sur internet. La majorité des attaques utilisent des méthodes sophistiquées comme les fausses pages pour tromper les utilisateurs

Plus en détail

Thèse de Doctorat en Informatique

Thèse de Doctorat en Informatique République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mouloud Mammeri de Tizi-Ouzou Faculté de Génie Electrique et de l Informatique

Plus en détail

Java. Java. Le livrede. Avec 80 exercices corrigés. Avec 80 exercices corrigés. Le livre. Anne Tasso. 5 e édition. Un best-seller qui a déjà conquis

Java. Java. Le livrede. Avec 80 exercices corrigés. Avec 80 exercices corrigés. Le livre. Anne Tasso. 5 e édition. Un best-seller qui a déjà conquis Anne Tasso Un best-seller qui a déjà conquis des milliers d'étudiants! Java Le livre Java Le livrede de premier premier langage langage Avec 80 exercices corrigés Avec 80 exercices corrigés 5 e édition

Plus en détail

PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES

PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES PROPOSITION D UNE APPROCHE DE SEGMENTATION D IMAGES HYPERSPECTRALES Nathalie GORRETTA MONTEIRO 1 1 UMR Information et Technologies pour les Agro-Procédés, Cemagref Montpellier, France Présentée le 25 Février

Plus en détail

Internet Module 2 Chèque n 3

Internet Module 2 Chèque n 3 Internet Module 2 Chèque n 3 Par Christophe ROCA et Ludovic RANDU Animateurs du Syndicat Mixte de l'oise Picarde 27/11/2007 Les 3 types de recherche Il est courant de considérer qu il y a 3 types de recherche

Plus en détail

Solutions de gestion de la sécurité Livre blanc

Solutions de gestion de la sécurité Livre blanc Solutions de gestion de la sécurité Livre blanc L intégration de la gestion des identités et des accès avec l authentification unique Objectif : Renforcer la politique de sécurité et améliorer la productivité

Plus en détail

Apprentissage par méthodes à noyaux en reconnaissance d images

Apprentissage par méthodes à noyaux en reconnaissance d images Apprentissage par méthodes à noyaux en reconnaissance d images Alberto Bietti Table des matières Introduction 2 1 Apprentissage par méthodes à noyaux 2 1.1 Position du problème et motivation..........................

Plus en détail

Concevoir sa stratégie de recherche d information

Concevoir sa stratégie de recherche d information Concevoir sa stratégie de recherche d information Réalisé : mars 2007 Dernière mise à jour : mars 2011 Bibliothèque HEC Paris Contact : biblio@hec.fr 01 39 67 94 78 Cette création est mise à disposition

Plus en détail

http://www.bibliotheques.uqam.ca/ressources/doc_elec/bases.html ou accès direct à : http://webspirs.uqam.ca:8590

http://www.bibliotheques.uqam.ca/ressources/doc_elec/bases.html ou accès direct à : http://webspirs.uqam.ca:8590 RECHERCHE DANS LES BANQUES DE DONNÉES PRÉSENTATION GÉNÉRALE Les banques de données contiennent des résumés d articles, de chapitre de livres, de livres, de thèses et de rapports divers dans différents

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Trouver l information scientifique sur Internet. Morgane Le Gall (BLP)

Trouver l information scientifique sur Internet. Morgane Le Gall (BLP) Trouver l information scientifique sur Internet Morgane Le Gall (BLP) Programme Accueil Le Web : présentation Les moteurs de recherche généralistes (n 1: Google) Les moteurs spécialisés (ex.google scholar,

Plus en détail

LA RECHERCHE DOCUMENTAIRE

LA RECHERCHE DOCUMENTAIRE LA RECHERCHE DOCUMENTAIRE Introduction I. Les étapes de la recherche d'information II. Méthodologie spécifique 2.1 Bibliothèque 2.2 Internet Conclusion INTRODUCTION Lorsque on débute une réflexion sur

Plus en détail

Logiciel Libre Cours 3 Fondements: Génie Logiciel

Logiciel Libre Cours 3 Fondements: Génie Logiciel Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli zack@pps.univ-paris-diderot.fr Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/

Plus en détail

SQL : Dans les articles précédents vous avez acquis

SQL : Dans les articles précédents vous avez acquis Fiche technique SQL : les sous-requêtes Les bases de données sont très utilisées dans les applications Web. La création, l interrogation et la manipulation des données de la base sont réalisées en SQL.

Plus en détail

Eléments de Programmation - Thème 9

Eléments de Programmation - Thème 9 Eléments de Programmation - Thème 9 Equipe enseignants 1i-001 UPMC Licence 1 2014/2015 Table des matières Exercice 1 : Différence symétrique 1 Exercice 2 : Traduction 2 Exercice 3 : Magasin en ligne 4

Plus en détail

Introduction aux Composants Logiciels

Introduction aux Composants Logiciels Introduction aux Composants Logiciels Christian Pérez LIP/INRIA Année 2010-11 Plan Introduction aux composants logiciels Pourquoi des composants logiciels Notions de composants logiciels Conclusion Survol

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Recherche bibliographique

Recherche bibliographique Séminaire «Maîtrise de l information scientifique» Recherche bibliographique Dernière mise à jour : 07/01/2015 - Auteur : Frédérique Flamerie Recherche bibliographique : méthode & outils La recherche bibliographique

Plus en détail

Prise en main du système de gestion de signets «Delicious»

Prise en main du système de gestion de signets «Delicious» Prise en main du système de gestion de signets «Delicious» Introduction : quelques règles pour indexer avec des TAGS (d après Olivier le Doeuff) I.1 : se créer un compte puis installer les extensions pour

Plus en détail

LES RENCONTRES DE LA COMMUNICATION HOSPITALIÈRE

LES RENCONTRES DE LA COMMUNICATION HOSPITALIÈRE LES LA COMMUNICATION HOSPITALIÈRE Mieux référencer son site @ et développer son visitorat. Paris, les 27 et 28 mars 2012 Qu est-ce que le référencement? Ensemble des techniques qui consistent à posi3onner

Plus en détail

Rédiger un rapport technique

Rédiger un rapport technique Rédiger un rapport technique Prof. N. Fatemi Plan Introduction Présentation écrite Programmation du travail Rédaction Conseils génériques Références 2 Introduction Objectifs du cours Savoir étudier un

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Analyse des textes avec Solr Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique

Plus en détail

Pistes pour la recherche d informations

Pistes pour la recherche d informations Pistes pour la recherche d informations Portail de liens de la bibliothèque : www.netvibes.com/bcga Documentation de l atelier sur le site de l école : http://www.cgafr.ch/fr/formation/travaux-de-maturite

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA Découverte de Règles Associatives Hiérarchiques entre termes Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA 1 Plan Problématique et État de l art Nouvelle approche Approche Conceptuelle

Plus en détail

Recherche - Évaluation

Recherche - Évaluation Recherche - Évaluation Rappels des épisodes précédents Extraction d Information dans les textes I xavier.tannier@limsi.fr Les acteurs de la Recherche d'information Recherche d'information Collection :

Plus en détail

Le Langage SQL version Oracle

Le Langage SQL version Oracle Université de Manouba École Supérieure d Économie Numérique Département des Technologies des Systèmes d Information Le Langage SQL version Oracle Document version 1.1 Mohamed Anis BACH TOBJI anis.bach@isg.rnu.tn

Plus en détail

Mise en place d une gestion d un fond d images pour le service d un community manager

Mise en place d une gestion d un fond d images pour le service d un community manager Projet Informatique Mise en place d une gestion d un fond d images pour le service d un community manager Projet réalisé avec Filemaker Pro 12 Projet informatique présenté en vue d obtenir la LICENCE PROFESSIONNELLE

Plus en détail

ELASTICSEARCH MAINTENANT EN VERSION 1.4

ELASTICSEARCH MAINTENANT EN VERSION 1.4 ELASTICSEARCH MAINTENANT EN VERSION 1.4 firm1 29 octobre 2015 Table des matières 1 Introduction 5 2 Les principaux atouts 7 2.1 Moteur de recherche vs Moteur d indexation.................... 7 2.2 Du

Plus en détail

CHARTE UTILISATEUR DE LA PHOTOTHEQUE

CHARTE UTILISATEUR DE LA PHOTOTHEQUE CHARTE UTILISATEUR DE LA PHOTOTHEQUE 1 La présente charte a pour but de formaliser les règles de bonne utilisation du logiciel de consultation "Iconothèque Foncière des Régions sur le logiciel " Délia

Plus en détail

Licence STIC, Semestre 1 Algorithmique & Programmation 1

Licence STIC, Semestre 1 Algorithmique & Programmation 1 Licence STIC, Semestre 1 Algorithmique & Programmation 1 Exercices Alexandre Tessier 1 Introduction 2 instruction de sortie 3 expressions 4 variable informatique 5 séquence d instructions, trace Exercice

Plus en détail

Comment maximiser le référencement de votre site e-commerce en 15 minutes Tout le monde veut optimiser le référencement de son site.

Comment maximiser le référencement de votre site e-commerce en 15 minutes Tout le monde veut optimiser le référencement de son site. Comment maximiser le référencement de votre site e-commerce en 15 minutes Tout le monde veut optimiser le référencement de son site. C est simple, pas une semaine ne se passe sans qu un nouvel article

Plus en détail

La recherche avec l interface COLLEGE

La recherche avec l interface COLLEGE BCDI 2.06 - Recherche Usager COLLEGE Modif : 09/10/2009 1 La recherche avec l interface COLLEGE Nouveauté 1. Paramétrages de l interface de recherche : COLLEGE 1.1 Onglet Interfaces Supprimer toutes les

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Evaluation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques basés sur les documents

Plus en détail

La Clé informatique. Formation Access XP Aide-mémoire

La Clé informatique. Formation Access XP Aide-mémoire La Clé informatique Formation Access XP Aide-mémoire Septembre 2003 Définitions de termes Base de données : Se compare à un énorme classeur ayant plusieurs tiroirs où chacun d eux contient des informations

Plus en détail

Notes de cours Moteurs de recherche : Master 2 Pro, Université Paris Diderot

Notes de cours Moteurs de recherche : Master 2 Pro, Université Paris Diderot Notes de cours Moteurs de recherche : Master 2 Pro, Université Paris Diderot Michel Habib and Antoine Meyer 22 janvier 2009 1 Introduction Ce document a été rédigé à partir des trois mémoires de thèses

Plus en détail

Logiciel R et programmation

Logiciel R et programmation M1 Statistique & Économétrie Ewen Gallic 1 http://egallic.fr 2015 Logiciel R et programmation Exercices Partie 1 : Données Exercice 1 (manipulation de vecteurs) Considérons le vecteur suivant : x = [ 1

Plus en détail

Guide d utilisation de Solution CGP

Guide d utilisation de Solution CGP Guide d utilisation de Solution CGP Sommaire Vue d ensemble Comment se connecter à l Espace Abonnés? p.3 Page d accueil p.4 Recherche Recherche simple p.5 Recherche avancée p.7 Naviguer p.9 Mes fonctionnalités

Plus en détail