Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Dimension: px
Commencer à balayer dès la page:

Download "Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes"

Transcription

1 Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire de recherche de Sciences Actuarielle et Financière 2/12/213 - ISFA - Journée ISFA-APHEC - Paris Slide 1/33

2 Contents 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 2/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

3 Contents 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 2/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

4 Contents 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 2/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

5 Contents 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 2/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

6 Contents 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 2/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

7 Content 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 3/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

8 Objectifs des systèmes bonus-malus L instauration d un système bonus-malus poursuit essentiellement : La responsabilisation des assurés et les inciter à plus de prudence au volant : les assurés qui ont causé un sinistre pour lequel la compagnie a du intervenir voient leur prime augmenter l année suivante. Ainsi, il y a un intérêt objectif à prendre autant de précautions que possible au volant. Ajuster le montant de la prime au cours du temps afin qui celui-ci reflète le risque réel que représente l assuré. Slide 4/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

9 Système bonus-malus à classes Un système à classes se présente comme suit : Niveau s... `... Prime bs... b` = r` BP... b Prime relative rs... r`... r Le niveau est celui auquel est associée la plus grande ristourne, alors que le niveau s correspond à la pénalité maximale. A chaque échelon est associé un pourcentage. Si l assuré occupe le niveau `, la prime qu il devra payer s obtient en appliquant le pourcentage r` à la prime de base BP librement fixée par l assureur. Slide 5/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

10 Système bonus-malus : Principes Un degré de l échelle est prévu pour le nouvel assuré. Ensuite, un réajustement de la position est effectué annuellement en fonction de la sinistralité de cet assuré et conformément aux règles du système. Ce système a pour effet de pénaliser par une augmentation de prime le responsable d un ou de plusieurs accidents, tandis que dans la situation inverse, l assuré bénéficiera d une réduction de prime. Slide 6/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

11 Content 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 7/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

12 On considère que le portefeuille est constitué de deux types de risques : les bons, pour lesquels le nombre de sinistres obéit à la loi de P(λθ1 ), et les mauvais pour lesquels le nombre de sinistre obéit à la loi P(λθ2 ), avec θ2 > 1 > θ1. Si la proportion de bons risques est ρ, cela revient à écrire ( Θ= θ1 avec une probabilité ρ, θ2 avec une probabilité 1 ρ, où les paramètres θ1, θ2 et ρ sont contraints par E Θ = ρ θ1 + (1 ρ)θ2 = 1. Slide 8/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

13 Un assuré pris au hasard dans le portefeuille génère une suite de sinistres N1, N2, N3... au cours de ses années de conduite. Les variables N1, N2, N3... sont supposées iid. L assureur utilise une échelle bonus-malus à trois niveaux, numérotés, 1 et 2. Les nouveaux assurés font leur entrée dans le système au niveau 1. Chaque année sans sinistre est récompensée par une descente d un degré dans l échelle. Chaque sinistre est pénalisé par une remontée d un niveau. Slide 9/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

14 On note Lt le niveau occupé par l assuré au cours de la période (t, t + 1), t =, 1, 2,.... L hypothèse d indépendance des nombres annuels de sinistre permet d écrire pour les bons conducteurs Pr Lt+1 = ` Lt =, Θ = θ1 = exp( λθ1 ) pour ` =, λθ1 exp( λθ1 ) pour ` = 1, 1 exp( λθ )(1 + λθ ) pour ` = 2, 1 1 Slide 1/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

15 et de la même manière Pr Lt+1 = ` Lt = 1, Θ = θ1 exp( λθ1 ) pour ` =, pour ` = 1, = 1 exp( λθ ) pour ` = 2, 1 et Pr Lt+1 = ` Lt = 2, Θ = θ1 pour ` =, exp( λθ1 ) pour ` = 1, = 1 exp( λθ ) pour ` = 2, 1 avec des expressions similaires pour les mauvais conducteurs. Slide 11/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

16 On peut ranger les probabilités de passer du niveau `1 au niveau `2 d une année sur l autre, Pr Lt+1 = `2 Lt = `1, Θ = θ1 : exp( λθ1 ) λθ1 exp( λθ1 ) 1 exp( λθ1 )(1 + λθ1 ) 1 exp( λθ1 ) P(θ1 ) = exp( λθ1 ) exp( λθ1 ) 1 exp( λθ1 ) qui a la propriété que la somme des lignes donne 1. Cette matrice est appelée matrice de transition, car elle décrit les transitions opérées par les assurés entre les différents niveaux du système bonus-malus. De la même manière pour les mauvais conducteurs. Slide 12/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

17 L évolution dans le système est gouvernée pour un bon conducteur par la relation 2 X Pr Lt = `2 Θ = θ1 = Pr Lt = `2 Lt 1 = `1, Θ = θ1 Pr Lt 1 = `1 Θ = θ1. `1 = Si on note p (t) (θ1 ) le vecteur colonne dont la composante ` est Pr Lt = ` Θ = θ1, on s aperçoit que (1) p (t) (θ1 ) = P T (θ1 )p (t 1) (θ1 ). et en itérant, on a p (t) (θ1 ) = P T (θ1 )P T (θ1 )... P T (θ1 ) 1 puisque Pr[L = 1 = 1 d où p () (θ1 ) = (, 1, )T. Slide 13/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

18 Il suffit de calculer les différentes puissances de la transposée P T (θ1 ) pour obtenir la loi de probabilité des niveaux L1, L2, L3,... qu ils occuperont dans l échelle au cours du temps. On peut s interroger quant à la stabilisation éventuelle des proportions de bons conducteurs dans les différents niveaux de l échelle. Cela revient à étudier le comportement asymptotique de p (t) (θ1 ) lorsque t +, i.e. à chercher l existence d une limite π` (θ1 ) = lim Pr Lt = ` Θ = θ1 = lim p (t) (θ1 ). t + Slide 14/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris t +

19 Application SCILAB λ = 1% θ1 =.5 et θ2 = 1.5 ρ = 5% Slide 15/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

20 Le régime stationnaire fournit rapidement une bonne approximation des lois p (t) (θ1 ) et p (t) (θ2 ). On note L le niveau occupé par un conducteur dans l échelle. On a donc Pr L = ` Θ = θ1 = π(θ1 ) et Pr L = ` Θ = θ2 = π(θ2 ), pour ` =, 1, 2. On cherche à présent la probabilité qu un assuré occupant le niveau ` une fois le système stabilisé soit un bon conducteur : Pr Θ = θ1 L = ` = Pr L = ` Θ = θ1 Pr[Θ = θ1 Pr L = ` Θ = θ1 Pr Θ = θ1 Slide 16/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris + Pr L = ` Θ = θ2 Pr Θ = θ2

21 En supposant les coûts moyens des sinistres unitaires, la prime a priori vaut Pr Θ = θ1 λθ1 + Pr Θ = θ2 λθ2 A posteriori la prime passe à Pr Θ = θ1 L = ` λθ1 + Pr Θ = θ2 L = ` λθ2 pour les assurés occupant le niveau ` de l échelle. On peut aussi la réécrire comme : λ Pr Θ = θ1 L = ` θ1 + Pr Θ = θ2 L = ` θ2 = λe Θ L = ` Le niveau ` occupé par le conducteur renseigne quand à la loi de Θ et précise donc la qualité du risque. La réévaluation des fréquences annuelles de sinistre passe par le calcul des E Θ L = `, pour ` =, 1, 2. Slide 17/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

22 Content 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 18/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

23 Généralisation à l aide des chaines de Markov Soit λ la fréquence annuelle moyenne de sinistre au niveau du portefeuille. On considère que le nombre annuel de sinistres causés par un assuré pris au hasard dans le portefeuille est de loi MP(λΘ) où Θ est une variable aléatoire positive de moyenne 1, souvent supposée de loi G(a, a), i.e. le niveau de risque relatif. Chaque assuré occupe un degré dans l échelle bonus-malus, qui en compte s + 1 numérotés de à s. On note dorénavant Lt le degré occupé par l assuré entre les instants t et t + 1. La trajectoire de l assuré est ainsi représentée par le processus stochastique à temps discret {Lt, t N}. Slide 19/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

24 Généralisation à l aide des chaines de Markov Le degré d un assuré pour une période d assurance donnée est déterminé par le degré de la période précédente et le nombre de sinistres relatifs à cette période. Si l assuré descend d un niveau par an dans l échelle et que chaque sinistre est pénalisé par une remontée de ω degrés, le niveau Lt+1 où sera versé l assuré à l instant t + 1 est donné par Lt+1 = max{min{lt + ωnt+1 1, s}, }. De manière générale, Lt+1 = Φ(Lt, Nt+1 ), où Φ(, ) est une fonction non décroissante, dès lors Pr Lt+1 = `t+1 Lt = `t,..., L = `, Θ = Pr Lt+1 = `t+1 Lt = `t, Θ. L état occupé par l assuré dans l échelle résume toute l information utile pour connaître son évolution future. Slide 2/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

25 Généralisation à l aide des chaines de Markov Cette propriété nous permet de modéliser l assuré à l aide d un processus de Markov. Rappel : Une chaine de Markov est un processus stochastique dans lequel le développement futur dépend uniquement du présent et non de l histoire du processus. C est un processus sans mémoire tels que les différents états de la chaine représentent les différents échelons du système. Pour rappel, le niveau occupé à l instant présent et le nombre de sinistres occasionnés par l assuré durant l année suffisent pour déterminer le niveau que l assuré occupera l année suivante. Il n est donc pas nécessaire de savoir comment a été atteint le niveau qu occupe l assuré actuellement. Le système Bonus-Malus en vigueur en France peut se représenter à l aide d une chaine de Markov, en associant à chaque niveau un pourcentage entre 5 et 35, voir Kelle (2). Slide 21/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

26 Lois transitoires (ν) Si on note p` ` (ϑ) la probabilité qu un assuré dont la fréquence 1 2 annuelle de sinistre ϑ soit envoyé du niveau `1 au niveau `2 en ν années, i.e. (ν) p`1 `2 (ϑ) = Pr Lt+ν = `2 Lt = `1, λθ = ϑ. Clairement, (ν) p`1 `2 (ϑ) = s X Pr Lt+ν = `2 Lt+ν 1 = k, Lt = `1, λθ = ϑ k= Pr Lt+ν 1 = k Lt = `1, λθ = ϑ = s X (ν 1) pk`2 (ϑ)p`1 k (ϑ). k= On reconnait la formule correspondant à la multiplication matricielle. Ainsi, la νème puissance de la transposée P T (ϑ) de la matrice P(ϑ) fournit la matrice de transition en ν pas dont (ν) l élément (`1 `2 ), p`1 `2 (ϑ). Slide 22/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

27 Lois transitoires Si on note (ν) p` (ϑ) = Pr Lν = ` λθ = ϑ. et si on désigne par p (ν) (ϑ) le vecteur dont la `ème composante (ν) est p` (ϑ), on a p (ν) (ϑ) = P T (ϑ)p (ν 1) (ϑ). En général, p () (ϑ) est fixé par l assureur, de sorte qu une application successive de la dernière relation permet de calculer p (ν) (ϑ), lequel donne les pourcentages d assurés occupant les différents niveaux de l échelle après ν années. Slide 23/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

28 Lois stationnaire Il existe un entier ξ 1 tel que tous les éléments de la matrice {P(ϑ)}ξ sont strictement positifs. Dans ce cas la chaine de Markov est dite ergodique, et possède de ce fait une loi stationnaire représentée par le vecteur de probabilités π(ϑ), dont la `ème composante π` (ϑ) est la probabilité qu un assuré depuis suffisamment longtemps dans le portefeuille et dont la fréquence de sinistre est ϑ occupe le niveau `, i.e. π(ϑ) = lim p (ν) (ϑ). ν + Il est intéressant de noter que π(ϑ) ne dépend pas du niveau dans lequel sont versés les nouveaux assurés, conséquence du caractère markovien du système, qui oublie donc son passé. Slide 24/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

29 Lois stationnaire Les probabilités stationnaires π` (ϑ) s obtiennent selon lim p (ν) (ϑ) = P T (ϑ) lim p (ν 1) (ϑ) ν + ν + T π(ϑ) = P (ϑ)π(ϑ) Dès lors, le vecteur π(ϑ) est solution du système ( π T (ϑ) = π T (ϑ)p(ϑ), π T (ϑ)e = 1. Rolski et al. (1999) donnent le résultat suivant : Soit E la matrice de dimension (s + 1) (s + 1) dont tous les éléments valent 1, On a : π T (ϑ) = e T I P(θ) + E Slide 25/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris 1.

30 Prime relative & Méthode de Norberg Norberg (1976) suggère l idée de déterminer les r` de façon à 2 minimiser Q = E (Θ r` ). L idée est donc de choisir les r` qui approximent le mieux Θ au sens des moindres carrées. En développant l expression de Q, on a Q= s X E (Θ r` )2 L = ` Pr[L = ` `= = s Z X `= θ> (Θ r` )2 u(θ `)dθ Pr[L = ` où u( `) désigne la densité de Θ sachant L = `. Ainsi, Pr[L = ` Θ = θ u(θ) u(θ `) =. Pr[L = ` Slide 26/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

31 Prime relative & Méthode de Norberg On obtient Q= s X Z θ> `= Il suffit à présent d imposer = Z θ (θ r` )2 π` (λθ)u(θ)dθ. Q = pour obtenir r` (θ r` )π` (λθ)u(θ)dθ d où l on trouve que R θπ` (λθ)u(θ)dθ. θ π` (λθ)u(θ)dθ θ r` = R Slide 27/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

32 Content 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 28/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

33 Le modèle brésilien Application SCILAB ϑ = 1% Degré 7 (départ) Slide 29/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris Classe d arrivée si sinistre(s)

34 Le modèle brésilien La matrice de transition P(ϑ) s écrit P(ϑ) = p (ϑ) p1 (ϑ) p2 (ϑ) p3 (ϑ) p4 (ϑ) p5 (ϑ) p (ϑ) p1 (ϑ) p2 (ϑ) p3 (ϑ) p4 (ϑ) p (ϑ) p1 (ϑ) p2 (ϑ) p3 (ϑ) p (ϑ) p1 (ϑ) p2 (ϑ) p (ϑ) p (ϑ) p1 (ϑ) p (ϑ) où pk (ϑ) = Slide 3/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris ϑk exp( ϑ). k! P5 pk (ϑ) Pk= 4 pk (ϑ) 1 Pk= 3 pk (ϑ) 1 Pk= 2 pk (ϑ) 1 Pk= pk (ϑ) k= 1 p (ϑ) 1 p (ϑ)

35 Content 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes 2 Exemple introductif Application SCILAB 3 Echelles et chaines de Markov Généralisation à l aide des chaines de Markov Lois transitoires Loi stationnaire Prime relative & Méthode de Norberg 4 Exemple Le modèle brésilien & Application SCILAB 5 Raffinements Slide 31/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

36 Raffinements Univers segmenté : Les classes tarifaires sont déterminés sur base des caractéristiques observables des assurés. Pour chacune des classes, une fréquence annuelle de sinistre λk est déterminée par régression de Poisson et un poids wk est affecté à la classe en faisant le rapport entre l exposition au risque de la classe et l exposition au risque totale du portefeuille. La variance de l effet aléatoire Θ est estimée par la méthode des moments. Soif de bonus : Les pénalités induites par les SBM dépendent exclusivement du nombres de sinistres en tort déclarés par l assuré. Leur coût n est pas pris en compte. Une conséquence est l apparition du phénomène bonus hunger, la soif de bonus. Comme les pénalités du système sont indépendantes du montant des sinistres, les assurés ont tout intérêt à dédommager eux-mêmes les petits sinistres. Performance des échelles bonus-malus : Degré moyen relatif à l état stable (degré qu occupera un assuré moyen au moment où le système bonus-malus atteint l état stationnaire). Le coefficient de variation des primes des assurés (Plus les primes payées par les assurés sont variables, moins il y a de solidarité et plus le système est sévère). Slide 32/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

37 References Denuit, M. and Charpentier, A. (25). Mathématiques de l assurance non-vie Tome II : Tarification et provisionnement. Economie et Statistiques Avancées. Economica. Kelle, M. (2). Modélisation du système de bonus-malus fançais. Bulletin Français d Actuariat, 4(7), Norberg, R. (1976). A credibility theory for automobile bonus system. Scandinavian Actuarial Journal, pages Rolski, T., Schmidli, H., Schmidt, V., and Teugels, J. (1999). Stochastic process for insurance and finance. Wiley, New-York. Slide 33/33 Julien Tomas Système Bonus-Malus 2/12/213 - ISFA - Journée ISFA-APHEC - Paris

Gestion du niveau de la franchise d un contrat avec bonus-malus. Pierre THEROND & Stéphane BONCHE

Gestion du niveau de la franchise d un contrat avec bonus-malus. Pierre THEROND & Stéphane BONCHE Gestion du niveau de la franchise d un contrat avec bonus-malus Pierre THEROND & Stéphane BONCHE SOMMAIRE 1. Réduction de franchise en l absence de système bonus-malus A - Bonnes propriétés du modèle collectif

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Mémoire d Actuariat Tarification de la branche d assurance des accidents du travail Aymeric Souleau aymeric.souleau@axa.com 3 Septembre 2010 Plan 1 Introduction Les accidents du travail L assurance des

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais.

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. Yongwe Jean-Luc Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. (Système ALOHA) (Sous la tutelle de Madame Anne Perrut)

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Théorie de la crédibilité

Théorie de la crédibilité ISFA - Année 2008-2009 Théorie de la crédibilité Chapitre 2 : Prime de Bayes Pierre-E. Thérond Email, Page web, Ressources actuarielles Langage bayesien (1/2) Considérons une hypothèse H et un événement

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Université d Orléans - Maitrise Econométrie Econométrie des Variables Qualitatives Examen Décembre 00. C. Hurlin Exercice 1 (15 points) : Politique de Dividendes On considère un problème de politique de

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

SOMMAIRES D OUVRAGES PARUS

SOMMAIRES D OUVRAGES PARUS SOMMAIRES D OUVRAGES PARUS TITRE : MÉTHODES ACTUARIELLES DE L'ASSURANCE VIE (cours et exercices corrigés) AUTEUR : Christian HESS ÉDITEUR : ÉCONOMICA, PARIS DATE DE PARUTION : NOVEMBRE 2000 357 pages prix

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB PAR : MAROOF ASIM DAN BENTOLILA WISSAM ESSID GROUPE 1 LM206 Lundi 10H45 INTRODUCTION : ( Ce rapport est un compte

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16 ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Journées d études IARD

Journées d études IARD Journées d études IARD Gestion des risques liés à la refonte tarifaire d un portefeuille automobile Niort, le 20 mars 2014 Marie Foucher mfoucher@galea-associes.eu Pierre Thérond ptherond@galea-associes.eu

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Gestion du niveau de la franchise d'un contrat avec bonus-malus

Gestion du niveau de la franchise d'un contrat avec bonus-malus Gestion du niveau de la franchise d'un contrat avec bonus-malus Pierre Thérond Stéphane Bonche Résumé Réduire la franchise d'un contrat d'assurance permet d'améliorer la qualité du contrat du point de

Plus en détail

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus.

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus. JF WALHIN* J PARIS* * Université Catholique de Louvain, Belgique Le Mans Assurances, Belgique RÉSUMÉ Nous proposons une méthodologie générale pour construire un système bonus-malus équilibré basé sur une

Plus en détail

Modélisation du risque opérationnel dans le secteur de l assurance

Modélisation du risque opérationnel dans le secteur de l assurance Avril 2011 N 14 Modélisation du risque opérationnel dans le secteur de l assurance Par Julie Gamonet Centre d études actuarielles Lauréate du prix du jeune actuaire 2010 Un texte paraissant dans SCOR Papers

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Introduction aux modèles financiers

Introduction aux modèles financiers Notes pour le module spécifique Introduction aux modèles financiers Ecole Centrale de Lyon Option Mathématiques 1 2 Introduction Quelques références Pour comprendre les marchés financiers, avoir un apreçu

Plus en détail

LE BONUS-MALUS FRANÇAIS

LE BONUS-MALUS FRANÇAIS LE BONUS-MALUS FRANÇAIS A-T-IL ENCORE UN AVENIR? Arthur Charpentier Université Rennes I et université de Montréal Au lieu de considérer une tarification sur des critères a priori (à l aide de modèles de

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Le métier d actuaire IARD

Le métier d actuaire IARD JJ Mois Année Le métier d actuaire IARD Journées Actuarielles de Strasbourg 6-7 octobre 2010 PLAN Présentation de l assurance non vie Le rôle de l actuaire IARD La tarification des contrats L évaluation

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Segmentation en assurance et problématiques de gestion des risques associées en mortalité

Segmentation en assurance et problématiques de gestion des risques associées en mortalité Segmentation en assurance et problématiques de gestion des risques associées en mortalité 13 septembre 2013, version 1.0 Aymric Kamega, Actuaire aymric.kamega@univ-brest.fr www.euria.univ-brest.fr Sommaire

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux - - Facteurs agissant sur les flux Les modèles pour les SP Les réseaux de files d attente 1 Facteurs agissant sur les flux Au niveau physique : L implantation Le nombre de machines Automatisation (robots,

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Le provisionnement en assurance non-vie prise en compte de la dépendance

Le provisionnement en assurance non-vie prise en compte de la dépendance Le provisionnement en assurance non-vie prise en compte de la dépendance Arthur Charpentier http://freaconometrics.blog.free.fr Séminaire interne Desjardins Assurances Générales, février 2011 Les provisions

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

assurance Février 2012

assurance Février 2012 Modèles fréquence coût : Construire un générateur de scénarios Quelles perspectives économiques d évolution en? assurance Version 0.7 Version 1.2 Mars 2014 Février 2012 Frédéric PLANCHET frederic@planchet.net

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST

pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST GUIDE PRATIQUE pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST Edition du 16 décembre 2011 But Le présent guide pratique s entend comme une aide pour

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

Pierre Thérond pierre@therond.fr. Année universitaire 2013-2014

Pierre Thérond pierre@therond.fr. Année universitaire 2013-2014 http://www.therond.fr pierre@therond.fr Institut de Science Financière et d Assurances - Université Lyon 1 Année universitaire 2013-2014 Plan du cours 1 Chapitre 1 - Introduction 2 3 4 Bibliographie principale

Plus en détail

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.

Plus en détail

ACT-2040 : Assurances I.A.R.D : Tarification et évaluation Hiver 2013 (Cours obligatoire - 3 crédits)

ACT-2040 : Assurances I.A.R.D : Tarification et évaluation Hiver 2013 (Cours obligatoire - 3 crédits) Université du Québec à Montréal Faculté des Sciences Département de mathématiques Section Actuariat ACT-2040 : Assurances I.A.R.D : Tarification et évaluation Hiver 2013 (Cours obligatoire - 3 crédits)

Plus en détail

Une illustration de l utilisation des modèles de durée en actuariat

Une illustration de l utilisation des modèles de durée en actuariat Une illustration de l utilisation des modèles de durée en actuariat Olivier Lopez Université Paris VI, LSTA Formation IPR ENS Cachan Bretagne, 28-09-11 Outline 1 Introduction 2 Tarification d une rente

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Informatique TP 4 & 5. Chaînes de Markov. Partie 1 : exemple introductif

Informatique TP 4 & 5. Chaînes de Markov. Partie 1 : exemple introductif Informatique TP 4 & 5 ECS2 Lyée La Bruyère, Versailles Chaînes de Markov Partie 1 : exemple introdutif Exerie 1 : épidémiologie On modélise l évolution d une maladie en lassant les individus en trois groupes

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ARTHUR CHARPENTIER 1 Soit X la variable aléatoire continue de fonction de densité : { (1.4)e 2x + (0.9)e 3x pour x > 0 f X (x) = 0 sinon. Trouver E[X]. A) 9 20 B)

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Modélisation des coûts d assurance résultant de catastrophes naturelles

Modélisation des coûts d assurance résultant de catastrophes naturelles Modélisation des coûts d assurance résultant de catastrophes naturelles par Mathieu Boudreault Étudiant à la maîtrise en mathématiques (concentration actuariat) Université Laval (Québec) Canada Association

Plus en détail

De la mesure à l analyse des risques

De la mesure à l analyse des risques De la mesure à l analyse des risques Séminaire ISFA - B&W Deloitte Jean-Paul LAURENT Professeur à l'isfa, Université Claude Bernard Lyon 1 laurent.jeanpaul@free.fr http://laurent.jeanpaul.free.fr/ 0 De

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

N 1644 ASSEMBLÉE NATIONALE PROPOSITION DE LOI

N 1644 ASSEMBLÉE NATIONALE PROPOSITION DE LOI N 1644 ASSEMBLÉE NATIONALE CONSTITUTION DU 4 OCTOBRE 1958 DOUZIÈME LÉGISLATURE Enregistré à la Présidence de l Assemblée nationale le 8 juin 2004. PROPOSITION DE LOI visant à établir un lien entre le bon

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Analyse du Risque et Couverture des Tranches de CDO Synthétique

Analyse du Risque et Couverture des Tranches de CDO Synthétique Analyse du Risque et Couverture des Tranches de CDO Synthétique Areski Cousin Laboratoire de Sciences Actuarielle et Financière ISFA, Université Lyon 1 Soutenance de Thèse, Lyon, 17 Octobre 2008 Directeur

Plus en détail

PROBABILITES TRAVAUX DIRIGES

PROBABILITES TRAVAUX DIRIGES Université de Caen Basse-Normandie U.F.R. de Sciences Economiques et de Gestion Année universitaire 2009-2010 LICENCE ECONOMIE ET GESTION Semestre 3 L2 PROBABILITES TRAVAUX DIRIGES (18 heures) Hélène Ferrer

Plus en détail

Modélisation des risques

Modélisation des risques 2 Modélisation des risques 2. Introduction L objectif de ce chapitre est de présenter les modèles de base utilisés pour décrire le comportement aléatoire d un risque en actuariat pour une période xe. Les

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Chapitre I Théorie de la ruine

Chapitre I Théorie de la ruine Chapitre I Théorie de la ruine Olivier Wintenberger ISUP 2, Université Paris VI (slides Olivier Lopez) Année universitaire 2013-2014 1 Risque collectif 2 Modélisation des coûts de sinistres 3 Probabilité

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

des compagnies d assurance : évolutions récentes

des compagnies d assurance : évolutions récentes Les Contrôle normes IFRS de la solvabilité en assurance des compagnies d assurance : évolutions récentes - DIAF Hanoi, le 28 février 2005 Pierre THEROND Consultant JWA - Actuaires & chargé de cours à l

Plus en détail

Gestion du niveau de la franchise d'un contrat avec bonus-malus

Gestion du niveau de la franchise d'un contrat avec bonus-malus Gestion du niveau de la franchise d'un contrat avec bonus-malus Pierre-E. Thérond Stéphane Bonche Résumé Réduire la franchise d'un contrat d'assurance permet d'améliorer la qualité du contrat du point

Plus en détail

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail