Méthodes du calcul de la prime : Bonus-malus, Réassurance, Système aléatoire à liaisons complètes

Dimension: px
Commencer à balayer dès la page:

Download "Méthodes du calcul de la prime : Bonus-malus, Réassurance, Système aléatoire à liaisons complètes"

Transcription

1 NICOLAS ES SIS-BRETON Méthodes du calcul de la prime : Bonus-malus, Réassurance, Système aléatoire à liaisons complètes Mémoire présenté à la Faculté des études supérieures de l'université Laval dans le cadre du programme de maîtrise en mathématiques pour l'obtention du grade de maître ès sciences (M.Sc.) DÉPARTEMENT DE MATHÉMATIQUES ET DE STATISTIQUE FACULTÉ DES SCIENCES ET GÉNIE UNIVERSITÉ LAVAL QUÉBEC 2009 Nicolas Essis-Breton, 2009

2 Résumé Dans ce mémoire, nous considérons différentes méthodes du calcul de la prime et de révision de la prime. Dans l'introduction, nous examinons d'abord les propriétés souhaitables d'un calcul de la prime ainsi que les différentes méthodes pour déterminer un principe de prime. Nous nous concentrons ensuite sur deux contextes où le principe de prime est déterminé de façon à réviser la prime en fonction de l'expérience de l'assuré. Nous considérons aussi un contexte où les aspects numériques reliés au calcul d'un principe de prime peuvent être analysés. Avec les systèmes bonus-malus, nous présentons une méthode classique de révision de la prime. Puis, après une analyse des principaux produits de réassurance, nous expliquons différentes méthodes numériques pour évaluer la prime. Avec les systèmes aléatoires à liaisons complètes, nous introduisons une approche nouvelle au problème de révision de la prime qui permet de déterminer des principes de prime optimaux dans certaines situations.

3 A vant-propos Je tiens à remercier M. Léveillé, mon directeur de recherche, qui a su me guider dans cette entreprise formidable qu'est la rédaction d'un mémoire. Je ne saurais trop exprimer ma gratitude pour son encadrement et le support qu'il m'a apporté. Son enthousiasme et sa rigueur pour la recherche m'ont inspiré et continueront de le faire. À ma femme, Ivana, je tiens à exprimer ma grande reconnaissance. Le soutien qu'elle m'a apporté est inestimable. C'est sans compter qu'elle m'a constamment encouragé. Je lui en serais toujours redevable. Enfin, je voudrais remercier le Conseil de recherche en sciences naturelles et en génie du Canada et la Chaire en assurance L'Industrielle-Alliance (Université Laval). Par des octrois à mon directeur, ils ont contribué financièrement à ce travail. Je remercie aussi la Chaire en assurance L'Industrielle-Alliance pour la bourse de deuxième cycle qu'elle m'a accordée.

4 TABLE DES MATIÈRES IV Table des matières Résumé Avant-propos Table des matières Table des figures Liste des tableaux Introduction 2 Systèmes bonus-malus 2. Vue d'ensemble des systèmes bonus-malus 2.2 Description d'un système bonus-malus 2.3 Analyse d'un système bonus-malus 2.3. Structure markovienne Mesures d'efficacité 3 Réassurance 3. Principaux produits de réassurance 3.2 Réassurance stop-ioss Résultats les plus importants Formule récursive Approximations Réassurance proportionnelle et non proportionnelle 3.4 Optimalité de certains produits de réassurance Optimalité du stop-ioss Optimalité du proportionnel Réassurance dans un contexte économique 4 Systèmes aléatoires à liaisons complètes 4. Introduction Historique Théorie des SALe ii iii IV vi vii

5 TABLE DES MATIÈRES 4.3. Nature d'un SALC SALC en actuariat 4.4 Exemples Contexte et notation Probabilité de ruine Distribution du temps de la ruine Espérance du moment de la ruine en cas de ruine Fonctions de répartition du surplus Espérances et écart-types 4.5 Comparaison Conclusion Bibliographie v

6 TABLE DES FIGURES VI Table des figures 3. Fonction de répartition exacte et obtenue par approximation 3 4. Fonction de répartition du surplus pour BI Fonction de répartition du surplus pour B Fonction de répartition du surplus pour B Fonction de répartition du surplus pour B Fonction de répartition du surplus pour B Évolution de E ((i) et E (Çi) pour B Évolution de JVar((i) et JVar(çJ pour B Évolution de E (IIi), E (Si) et E (Ri) pour B Évolution de JVar (IIi), JVar (Si) et JVar (Ri) pour B3 54

7 LISTE DES TABLEAUX vu Liste des tableaux 2. Classe attribuée selon le nombre de points d 'inaptitude Classe attribuée après k réclamations c', b' et NSRE pour le système de la Thaïlande Coefficient de variation de la prime de l'assuré pour le système de la Thailande Stationnarité et variation totale moyenne pour le système de la Thailande Paramètres des contrats de réassurance Écart relatif entre les contextes sans réassurance et avec réassurance. 3.3 Caractéristiques du portefeuille S Paramètres des différentes approximations 3.5 Écart relatif avec la prime stop-loss exacte 4. Notation pour les cinq cas étudiés Paramètres pour les cinq cas étudiés 4.3 Probabilité de ruine Distribution du temps de la ruine Espérance et écart-type du moment de la ruine 4.6 Espérance et écart-type de la sévérité de la ruine

8 Chapitre Introduction La prime chargée par un assureur permet aux assurés de bénéficier d'une couverture d'assurance contre un risque financier. Le montant de cette prime dépend de nombreux facteurs. Dans ce mémoire, nous présentons différentes méthodes et différents contextes où la théorie du risque aide à la modélisation de certains facteurs et ultimement à la détermination de la prime. Pour ce faire, nous nous concentrerons principalement sur les systèmes bonusmalus, la réassurance et les systèmes aléatoires à liaisons complètes. Avant de présenter le contenu de ces chapitres, nous discutons de ce qu'est un principe de prime, des propriétés désirables qu'il peut posséder, et présentons certains principes de primes importants. Cette discussion préliminaire soutient le contenu des chapitres où nous pourrons nous concentrer sur le calcul de la prime en tant que tel et son ajustement en fonction du contexte. Le lecteur souhaitant obtenir plus de détails sur ce sujet peut se référer à Goovaerts et autres [8], Kaas et autres [24]. Nous notons par II (X) la prime chargée par l'assureur pour couvrir le risque X. Toute règle qui permet d'associer à un risque X, une prime II (X) est appelée un principe de prime. Les propriétés suivantes sont des propriétés désirables pour un principe de prime. La liste n'est pas exhaustive, mais n'en présente pas moins les propriétés les plus importantes en pratique. Marge de sécurité positive: II (X) ~ le (X) Cette propriété exige que la prime soit supérieure ou égale au montant espéré des réclamations. Un principe de prime qui ne respecte pas cette propriété conduit l'assureur avec certitude à la ruine. 2 Additivité: II (X + Y) = II (X) + II (Y) Si X et Y sont des variables aléatoires indépendantes, cette propriété spécifie que la prime pour le risque combiné II (X + Y) doit être égale à la somme des primes individuelles II (X) et II (Y). Cette propriété garantit qu'il n'y a aucune différence entre assurer la totalité des risques ou répartir la couverture sur plusieurs contrats. 3 Proportionnalité: pour toute constante a ~ 0, II (ax) = ail (X) Si le montant des réclamations subit un changement d'échelle, à cause de l'inflation par exemple, cette propriété spécifie que la prime pour le nouveau risque ax est proportionnelle à la prime du risque de base II (X). Cette propriété garantit à l'assureur le même

9 2 niveau de profitabilité en cas de changement d'échelle du montant des réclamations. 4 Cohérence: pour toute constante a 2 0, II (X + a) == II (X) + a Si le montant de toutes réclamations est augmenté de a, à cause d'une taxe à l'émission du contrat par exemple, cette propriété spécifie que la prime de base II (X) est augmentée de a. Cette propriété garantit que le principe de prime donne un résultat logique face à de nouveaux coûts fixes par contrat. 5 Plafonnement: II (X) ~ X m où X m == max Dom (X) Si le montant maximal de réclamation est X m, cette propriété spécifie que la prime ne dépasse pas ce montant maximal. Dans le cas contraire, il n'y aurait aucune raison pour l'assuré de souscrire à la couverture d'assurance. Lors du choix d'un principe de prime, les propriétés qu'il possède sont déterminantes. En effet, il n'existe malheureusement pas de principe de prime qui satisfasse à toutes les propriétés. C'est le contexte qui dicte les propriétés requises pour le principe de prime. Toutefois, plusieurs tentatives ont été faites pour créer un principe de prime qui satisfasse au plus grand nombre de propriétés. Nous présentons maintenant les plus importants. A - Principe de la prime nette: II (X) == E (X) La prime est égale au montant espéré des réclamations. Ce principe est attrayant du fait qu'il est simple à utiliser. Cependant, il n'inclut aucune marge de sécurité et ne peut donc être utilisé pour établir la prime finale. Ce principe reste tout de même intéressant pour donner une idée de la prime de par sa simplicité. En plus, il respecte toutes les autres propriétés'. B - Principe de la valeur espérée : II (X) == ( + e) le (X),e > 0 Le montant espéré des réclamations est majoré d'une marge de sécurité ele (X). Ce principe est aussi simple à utiliser. Il est très utile en théorie du risque pour déterminer des bornes sur la probabilité de ruine. En pratique, l'inconvénient majeur de ce principe est qu'il alloue la nême marge aux risques qui ont le même montant espéré. Par exemple, soit X et Y des variables aléatoires tel que Pr (X = 0) Pr (Y == 0) Pr (X == 20) == /2, Pr (Y == 30) == /2. Les risques X et Y ont la même espérance, mais charger la même prime pour ces deux risques n'est pas prudent puisque la variance de Y est beaucoup plus grande (450 vs 50). Les deux prochains principes tentent de remédier à cet inconvénient. Ce principe ajoute une marge de sécurité positive, est additif et proportionnel. Cependant il n'est pas cohérent, ni plafonné, C - Principe de la variance: II (X) == le (X) + evar (X),e > 0 Ce principe modifie le principe de la valeur espérée en faisant dépendre la majoration de la variance du risque. Cette modification pernet de donner une prime différente à des risques qui n'ont pas la même variance. Ce principe a aussi' l'avantage d'être cohérent. Cependant, il n'est pas proportionnel puisque

10 3 II (ax) le (ax) ~ evar (ax) aie (X) + ea 2 Var (X) -# ait (X). Il n'est pas plafonné non plus, car pour une certaine valeur de e, il est possible d'avoir II (X) > Xm. D - Principe de l'écart-type: II (X) = le (X) + ejvar (X), e > 0 Ce principe est inspiré du principe de la valeur espérée et du principe de la variance. Ceci lui permet de bénéficier des avantages de chacun. En effet, ce principe donne une prime différente à des risques qui n'ont pas la même variance, en plus d'être proportionnel. Cependant, il n'est pas additif, car les écarts-types ne s'additionnent pas. Pour les mêmes raisons que pour le principe de la variance, ce principe n'est pas plafonné. E - Principe de l'utilité équivalente: u (w) = E (u (w - X + II (X))) Soit u la fonction d'utilité de l'assureur et w son surplus initial. Ce principe établi la prime comme le montant minimal que l'assureur doit charger, conformément à son aversion au risque, pour offrir la couverture. Ce principe inclut une marge de sécurité positive puisque, avec l'inégalité de Jensen u (w) = E (u (w - X + IT (X))) ~ u (w - X + II (X)). Le principe est cohérent et plafonné, cependant, il n'est pas additif ni proportionnel. F - Principe exponentiel: II (X) = ~ ln le (exp (f3x)),f3 > 0 Ce principe découle du principe de l'utilité équivalente lorsque la fonction d'utilité u est exponentielle, i.e. u = - exp (- f3x ),f3 > O. Ce principe possède la propriété de ne pas dépendre du surplus initial. Il est aussi proportionnel puisque II (X + Y) :a ln le (exp (8 (X + Y))) - ln le (exp (,ox) exp (f3y)) f3. :B ln le (exp (/3X)) + :Bln le (exp (f3y)) fi (X) + II (Y). Cependant, comme le principe de l'utilité équivalente, il n'est pas additif. G - Principe d'esscher : II (X) = le (X e hx ) lie (e hx ) Ce principe découle du principe de l'utilité exponentiel. Il survient lorsque l'assureur vise à optimiser son utilité selon le principe de l'utilité équivalente Inax u (w) - he (u (w - X + II (X))),h > O. TI

11 4 Ce principe peut aussi être vu comme une pondération du risque où plus de poids est donné aux évènements extrêmes. Il possède l'avantage d'être additif. Cependant, il n'est pas proportionnel puisque II (ax) aie (X e hax ) lie (e hax ) i- aie (X e hx ) lie (e hx ). Bülhman dérive ce principe de façon économique en [] et [2]. H - Principe du risque ajusté: II (X) = Jo oo Sx (t)c dt, 0 < c < où S x = - F x est la fonction de survie du risque X. Ce principe est semblable au principe d'esscher en ce sens qu'il produit aussi une pondération du risque où plus de poids est donné aux évènements extrêmes. Contrairement au principe d'esscher, il t proportionnel, mais pas additif puisque II (X + Y) = 00 Sx+Y (t)c dt 00 #- Ce principe possède toutes les autres propriétés. 00 Sx (tt dt + Sy (tt dt. La list,e de propriétés désirables pour un principe de prime et la liste des principes de prime, nous permettent de choisir un principe de prime de deux façons (Young [50)). Soit nous adoptons un principe de prime, puis nous analysons les propriétés qu'il possède. Soit nous déterminons une liste de propriétés désirables puis nous adoptons le principe de prime dont les propriétés s'approchent le plus de cette liste. Une troisième façon, dite économique, consiste à modéliser le contexte associé au problème étudié puis à en déduire un principe de prime. Par exemple, en assurance automobile, le problème consiste à attribuer à chaque assuré la bonne classe de tarif. Une des solutions classiques consiste à utiliser un système bonus-malus, dont le principe de prime implicite est de faire dépendre la marge de sécurité de l'expérience de l'assuré. Dans ce mémoire, avec les systèmes bonus-malus et les systèmes aléatoires à liaisons complètes, nous présentons plus en détail deux contextes où le principe de prime est déterminé de façon économique. Avec la réassurance nous présentons les aspects numériques reliés au calcul d'un principe de prime. Dans le chapitre sur les systèmes bonus-malus, nous considérons une approche classique au problème de révision de la prime. Dans le cadre de ces systèmes, l'accent est mis sur une modélisation adéquate des réclamations individuelles qui permet d'offrir la meilleure prime tout en maintenant un niveau raisonnable pour la probabilité de ruine. De par leur prise en compte de l'expérience de l'assuré et un ensemble de mesures d'efficacité permettant d'évaluer la santé financière du système, les systèmes bonus-malus parviennent à atteindre ces buts. Dans le chapitre sur la réassurance, nous analysons les principaux produits de réassurance et considérons les facteurs qui influencent le choix de la forme du contrat. Même si certains

12 contrats sont plus optimaux que d'autres, la cédante peut opter pour un contrat moins onéreux du moment qu'il maintient une probabilité de ruine raisonnable. Nous abordons ensuite les différentes méthodes de calcul et d'approximation de la valeur d'un contrat de réassurance. En effet, la complexité de la distribution de probabilité des contrats de réassurance doit être surmontée afin de pouvoir obtenir la prime. Dans le chapitre sur les systèmes aléatoires à liaisons complètes, nous considérons une approche nouvelle au problème de révision de la prime. Les systèmes aléatoires à liaisons complètes offrent un modèle qui explicite la relation entre la distribution des réclamations et le processus de révision de la prime. En analysant la probabilité de ruine, il est possible de déterminer des règles de décisions optimales pour le niveau de prime, et des situations optimales pour la dépendance entre le niveau de prime et la distribution des réclamations. 5

13 6 Chapitre 2 Systèmes bonus-malus 2. Vue d'ensemble des systèmes bonus-malus Les premiers systèmes bonus-malus furent utilisés en assurance automobile et remontent à aussi loin qu'en 90 en Angleterre, suivi de près par le Canada en 930 (Lemaire [29)). Ces systèmes accordaient une réduction de 0 % par exemple, en cas d'une année passée saris réclamation. En cas de réclamation, aucune pénalité n'était appliquée. Depuis ce temps, les systèmes bonus-malus ont beaucoup évolué et une théorie fondée sur les chaînes de Nlarkov a permis de mieux les analyser. Leur principal avantage est d'offrir un moyen simple de tenir compte de variables de tarification à posteriori, tout en récompensant les assurés qui conduisent prudemment. Les systèmes bonus-malus sont surtout utilisés en assurance automobile car il est généralement reconnu qu'un conducteur a un certain contrôle sur son nombre d'accidents. C'est pour ce domaine que la théorie a été le plus développée et a acquis sa terminologie. Le principe des bonus-malus se retrouve aussi, entre autres, en réassurance et en assurance collective. La théorie de la tarification par l'expérience et la théorie de la crédibilité, tout comme les bonus-malus, visent à tenir compte de variables à posteriori. Les deux précédents domaines ayant leurs propres saveurs théoriques, ils ne seront pas abordés ici. À travers le monde, soit les systènes bonus-malus sont imposés par le gouvernement, soit le marché est complètement libre. Lorsqu'ils sont imposés par le gouvernement, tous les assureurs doivent adopter le même système. Tandis que lorsque le marché est complètement libre chaque assureur construit son propre système. En Europe, une loi sur le libre marché est en cours d'application, tandis que dans les pays asiatiques les bonus-malus sont généralement réglementés par le gouvernement (Lemaire [30]). En Anérique, les deux types se retrouvent. Dans le cas particulier du Québec, la SAAQI utilise un système semblabe au bonus-malus pour pénaliser les infractions au code de la route. La configuration des systèmes varie aussi à travers le monde. Certains sont très simples et ne tiennent compte que du nombre de réclamations, tandis que d'autres tiennent aussi compte de la sévérité des accidents, de la possibilité de non augmentation de la prime et de la possibilité de couverture gratuite (Lemaire [29], [30)). l Société de l'assurance Automobile du Québec

14 2.2. DESCRiPTION D'UN SYSTÈME BONUS-MALUS 7 Dans ce chapitre, nous analyserons les systèmes bonus-malus à partir du concept de système de tarification. Cette présentation offre un cadre mathématique rigoureux qui permet de synthétiser les notions essentielles de la théorie. Dans la section (2.2) nous précisons la terminologie et les définitions utilisées dans la section (2.3) pour l'analyse théorique. La structure markovienne d'un système bonus-malus est analysée dans la section (2.3. ) et un ensemble de mesure d'efficacité du système est défini en (2.3.2). Un fait notable de la présentation, de par l'utilisation du cadre mathématique des systèmes de tarification, st le recours à la notion de règle de décision et l'obtention d 'une classification cohérente des mesures d'efficacité. 2.2 Description d'un système bonus-malus En assurance automobile, un assureur doit établir un système de tarification de sorte à être compétitif tout en contrôlant le risque qu'il assume. Soit (Xt)tE N le risque à tarifer et (Ct)t EN la classe de tarif d'un risque. Muni de cette notation, nous allons préciser la terminologie. Définition (Classe de tarif) Un e classe de tarif Ct détermine la prime à être chargée au temps t pour assumer le risque encouru dans la période [t, t + ]. Le processus (Ct)t EN représente l'évolution de la classe de tarif d'un risque dans le temps. Il est généralement supposé que (Xt\EN est indépendant de (Ct)t EN ' i.e. que le risque ne dépend pas de la classe de tarif. Nous adopterons aussi cette hypothèse. Cependant, la classe de tarif dépend du risque comme le requiert tout système de tarification. Définition 2 (Système de tarification) Un système de tarification est une règle de décision u (indépendante du temps) qui permet, au temps t, d 'associer une classe de tarif Ct au risque X t + à couvrir dans la prochaine période [t,t + ]. La définition précédente est largenent inspirée de Krahnen ([25]). Dans le contexte des bonus-malus, la règle de décision u d'un système de tarification définit la classe de tarif Ct à partir de variables de tarification. Ce que nous noterons par Ct == u (variables de tarification). Les variables de tarification dépendent du risque à tarifer et peuvent être classées en deux catégories. Définition 3 (Variable de tarification à priori) Variable de tarification dont la valeur est connue avant que le risque soit observé, i. e. si (At)tEN est une variable de tarification à priori pour le risque (Xt)tENJ alors At est connue avant que X t + soit observé, Yt EN.

15 2.2. DESCRIPTION D'UN SYSTÈME BONUS-MALUS 8 Définition 4 (Variable de tarification à posteriori) Variable de tarification dont la valeur est connue après que le risque soit observé, i. e. si (Yt)tEN est une variable de tarification à posteriori pour le risque (Xt)tE N' alors Yt+l est connue une fois X t + observé, Yt EN. Des exemples de variables à priori sont l'âge, le sexe, le,type de voiture, le lieu d'habitation.. Pour les variables à posteriori, le nombre de réclamations, le nombre d'accidents responsables, ou le nombre d'infractions au code de la route, sont des exemples. Des études comme celle de Lemaire, [27], montrent que les variables à posteriori sont de bien meilleurs prédicateurs pour l'estimation du risque comparativement aux variables à priori. C'est pourquoi il est crucial que la règle de décision u d 'un système de tarification incorpore des variables à posteriori dans son design. Un système bonus-malus définit Yt comme le nombre d'accidents responsables et At comme la classe de tarif de la période précédente. Définition 5 (Système bonus-malus) (i) Un système bonus-malus est un système de tarification où en début de période un risque est classé dans la classe de tarif Ct. En fin de période, le risque est classé dans la classe C t +, d'après la règle de décision u. La règle de décision u détermine la classe de tarif C t + en fonction de la classe de tarif Ct et du nombre d'accidents responsables observé Yt+l de la période précédente À t == 0, la valeur de Co est fixé à io' (ii) les classe de tarif (Ct )ten peuvent prendre. leur valeur parmi l classes possibles. La classe accorde le plus grand bonus, tandis que la classe l accorde le plus grand malus. (iii) À la i-ième classe de tarif correspond un pourcentage d'une prime de base b i tel que b l S b 2 S... S b l. Dans un système bonus-malus, les variables à priori mentionnées plus haut, comme l'âge ou le type de voiture, sont utilisées pour déterminer la prime de base d'un nouvel assuré. La prime accordée par la classe i correspond ainsi à la prime de base multipliée par le niveau de prime bi. Le système bonus-malus classique, présenté dans la définition précédente, peut être généralisé en modifiant la règle de décision u. Par exenple, en plus du nombre d'accidents responsables observé Yt+l, nous pourrions aussi faire dépendre les classes de tarifs du type d'accident ~~ tel que (2.) Exemple 6 (Système bonus-malus de la SAAQ) Au Québec, la SAAQ utilise un système de points d'inaptitude basé sur la gravité relative des infractions au code de la route. Par exemple, brûler un feu rouge entraîne 3 points d 'inaptitude, tandis qu 'un excès de vitesse, de 00km sur la limite prescrite, entraîne 2 points d 'inaptitude. Ces points sont inscrits au dossier du conducteur pour une période de deux ans. Le système bonus-malus tel que présenté dans ([46 j) possède 5 classes (voir le tableau 2.).

16 2.3. ANALYSE D'UN SYSTÈME BONUS-NIALUS 9 Ce système n'est pas un bonus-malus traditionel du f ait que les classes sont définies d'après la gravité relative des infractions au code de la route, plutôt que du nombre d'infractions au code de la route. Cependant, le système n'en demeure pas moins un système bonus-malus en tant que tel et constitue un exemple d'un système où les infractions mineures n'entraînent pas les mêmes sanctions que les infractions majeures. E n ce sens, le système de la SAA Q corrige un des déf auts des systèmes bonus-malus que plusieurs auteurs ont relevés (Lemaire [30]). Classe P oints d'inaptitude Niveau de prime 5 > % 4 [2, 4] 572 % 3 [8, Il] 348 % 2 [4, 7] 200 % [0,3] 00 % T AB Classe attribuée selon le nombre de points d'inaptit ude Remarque 7 Le système bonus-malus de la SAAQ entre dans le cadre des systèmes alétaoires à liaisons complètes (SA L C) car il garde un historique du moment où sont inscrits les points au dossier. N ous appronf ondirons plus en détails ces systèmes dans le chapitre sur les SA L C. Exemple 8 (Système bonus-malus classique) Le systèm e bonus-malus de la Thaïlande, tel que présenté dans!28), constitue un exemple représentatif d'un système bonus-malus classique. Il possède 7 classes avec un niveau de prime (b l,..., b 7 ) = (60 %,70 %,80 %, 00 %,20 %,30 %, 40 et la classe de départ Co = 4. La règle de transition est m in(,i - :~k =O etl~i~7 (. k) = 4, k - et 'l < 4 u 'l, 5, k ~ 2 et i < 4 { mi n (7, i + ), k -::J 0 et i 2 4 Ceci est représenté de f açon compacte dans le tableau (2.2). 2.3 Analyse d'un système bonus-malus 2.3. Structure markovienne Il est généralement supposé que (Yt)tEN forme une suite de variables aléatoires indépendantes et identiquement distribuées. Ceci revient à assumer que les habiletés de conduite d'un assuré ne changent pas dans le temps, i.e. que les conduct eurs n'apprennent pas de leurs expériences. Nous poserons aussi cette hypothèse. Comnle nous le verrons à la remarque (3) les systèmes bonus-malus possèdent un mécanisme pour compenser les lacunes de cette hypothèse.

17 2.3. ANALYSE D'UN SYSTÈME BONUS-MALUS 0 Classe Niveau de prime k=o k=l k? TAB Classe attribuée après k réclamations Proposition 9 (Chaîne de Markov de la classe de tarif) Le processus de classe de tarif (Ct)tE N forme une chaîne de Markov homogène. Preuve. Soit it la valeur prise par la classe de tarif au temps t. Avec (2.) nous obtenons Pr (Ct+ = it+lct = it,..., Co = io) Pr (u (it, Yt+) = it+lu (it-, Yt) = it,..., Co = io) Pr ( u (it, Yt+ ) = it+ ) Pr (u (it, Yt+) = it+lct = it) = Pr (Ct+ = it+!ct = it). (2.2) En (2.2) nous utilisons le fait que les variables Co,..., Ct définies par Yi,..., Yt sont indépendantes de u (it, Yt+). La probabilité conditionnelle Pr (Ct+ = i t + lc t = it) donnée par Pr (u (it, Yt+ ) = it+ ) ne dépend pas de la classe de tarif Ct puisque les Yt sont identiquement distribuées. Donc le processus de classe de tarif (Ct)tEN forme une chaîne de Markov hon0gène. _ Remarque 0 (Équation stochastique récursive) L 'équation (2.) peut être vu,e comme une équation stochastique récursive et, comme il est souligné dans Rolski et autres [4 j, le processus (Ct)tE N forme alors automatiquement une chaîne de Markov. La preuve utilisée ci-haut est d'ailleurs celle prése'ntée dans la référence précédente. Soit {Pk} ken la distribution de probabilité commune à la suite (Yt )ten' nous pouvons obtenir la matrice de transition Q associée à (Ct)t EN en considérant chacun des éléments qij tel que Q = (qij) i,j=l,,,.,l. Proposition Il (Probabilités de transition de la classe de tarif) La probabilité de transition qij de passer de la classe i à la classe j est donnée par LPkj (u (i, k)). k=o

18 2.3. ANALYSE D'UN SYSTÈNIE BONUS-MALUS Il Preuve. Comme (Ct)tE N forme une chaîne de Markov, avec (2.), nous obtenons le résultat qij Pr (Ct+ == jlct == i) Pr ( u ( i, Yt) == j Ct == i) E ( j (u (i, Yt+ ) )). Remarque 2 La quantité Ij (u (i, k)) est parfois notée comme une règle de transition tij (k), si la police passe de la classe i à la classe j tij (k) == lorsque k réclamations surviennent. { 0, autrement Ceci permet de former une matrice de transition T (k) == (tij (k))i,j=l,...,l' T (k) est une matrice 0- ayant exactement un dans chaque ligne. La notation Ij (u (i, k)) facilite l'analyse comme nous l'avons vu à la proposition (9). Tandis que la notation tij (k) facilite la présentation de la règle de décision comme nous l'avons vu dans les exemples (6) et (8). Les tableaux récapitulatifs de ces exemples correspondent en effet à la matrice T (k) représentée de façon compacte. Le choix de l'une où l'autre des notations dépend du contexte. En pratique, il est généralement supposé que le nombre d'accidents responsables Yt suit une loi de Poisson avec intensité aléatoire A (Lemaire [28]). La distribution de A est définie par sa fonction de densité g appelée fonction de structure. Le choix classique pour la distribution de A est une distribution Gamma. La fréquence des réclamations suit alors une loi Binomiale Négative Lemma 3 Si Y V'"I Poisson( A) où A V'"I r ( Œ, (3) avec alors Yt ~ Binomiale Négative ( Cf,!/3)' Preuve. En conditionnant sur A, nous pouvons utiliser la fonction génératrice des probabilités d'une loi de Poisson E (E (ysia)) E ( exp (A (s - ))). En reconnaissant la dernière égalité comme la fonction génératrice des n0ments de A, nous obtenons la fonction génératrice des moments d'une loi Binomiale Négative ( - /3 (s - )) -Q ( ) Q ( (3 )-Q + /3 - + f3 s

19 2.3. ANALYSE D'UN SYSTÈME BONUS-MALUS 2 -Avec la proposition () et le lemme (3) nous pouvons calculer qf;), la probabilité de passer de la classe i à la classe j en n périodes, en multipliant la matrice Q par elle-même n fois. Pour analyser le comportement asymptotique de la classe de tarif, nous utilisons la notion de communication entre les classes i.e. que la classe i communique avec la classe j si 3 n E N tel que q~n) > 0 (Ross [42]). Proposition 4 (Ct\EN est une chaîne de Markov ergodique si et seulement si toutes les classes de tarif communiquent entre elles. Preuve. Si toutes les classes de tarif communiquent entre elles, la matrice de transition Q est irréductible et apériodique, d'où l'ergodicité de la chaîne de Markov (Ct)tEN _ Proposition 5 Si (Ct )ten est une chaîne de Markov ergodique alors il existe une distribution stationnaire a = (aj)j=l,..,p où aj = limn-too qf;) est la solution unique de l'équation a = aq, Laj =. j=l Preuve. Suit directement de la théorie sur les chaînes de Markov. _ Remarque 6 (i) Pour vérifier que toutes les classes d'une chaîne de Markov communiquent entre elles, une façon simple consiste à faire le graphe de la chaîne de Markov. Si le graphe est fermé, i. e. que tous les états peuvent être rejoint à partir de n'importe quel état de départ, alors tous les états communiquent entre eux. Si ce n'est pas le cas, tous les états ne communiquent pas entre eux, et la chaîne de Markov n'est pas ergodique. (ii) Plus de détails sur les notions d'ergodicité, d'irréductibilité et d' apériodicité peuvent être trouvés dans Rolski et autres [4 j. Ces notions y sont introduites en utilisant le concept de matrice régulière. Comme ces concepts ne sont pas directement reliés à notre sujet, nous ne les élaborons pas davantage Mesures d'efficacité L'efficacité d'un système constitue sa capacité à atteindre ses buts. Pour un système de tarification, trois buts distincts sont visés. En premier lieu, de par son influence directe sur les primes chargées, un système de tarification vise à maintenir les réserves de l'assureur à un bon niveau. En même temps, ce but n'est atteint que si le systène estine adéquatement le risque encouru par l'assureur. Finalement, les corrections à la prime effectuées par le systènle ne doivent pas être trop sévères sinon le système ne parvient pas à offrir aux assurés une couverture d'assurance qui pourrait les intéresser. Définition 7 (Efficacité d'un système de tarification) Un système de tarification est efficace s'il entraîne l

20 2.3. ANALYSE D'UN SYSTÈME BONUS-MALUS 3 (i) une stabilité financière du système, (ii) une estimation adéquate du risque, (iii) un respect du principe d'assurance de transfert du risque. La définition précédente, ainsi que le reste de cette section, suit le traitement proposé par Lemaire pour analyser l'efficacité d'un système bonus-malus(lemaire [29], [30)). Les sections suivantes précisent la définition des éléments sur lesquels reposent l'efficacité d'un système de tarification, et donnent les mesures applicables dans le contexte d'un système bonus-malus. Pour ce faire, nous utiliserons le processus de surplus (Ut)tE N dont voici la définition rigoureuse. Définition 8 (Surplus dans un systèil.e bonus-illalus) Soit X t + le montant des réclamations dans la période [t, t + ], r ( Ct) la prime chargée en début de période pour la classe Ct et u le niveau de réserve initial. Avec le niveau de surplus U t +, évalué en fin de période, nous définissons le processus de surplus (Ut)tE N par Ut + t+l u+ ~r(cs) - ~Xs s=o s=l t t+ u+ ~r(u(cs-,ys)) - ~Xs. s=o 8= Sans perte de généralité, nous supposerons que la prime de base est de et que le montant des réclamations est mis à une échelle unitaire. Ceci permet de focaliser l'analyse sur l'impact des niveaux de primes {b j } propre aux systèmes bonus-malus. l ~ q~~~bj. j=l,vt E N. Remarque 9 Voici un bref aperçu de la procédure qui même à la calibration d'un système bonus-malus. Dans une première étape les (b j )j=l"" l sont déterminées à l'aide de données et d'outils statistiques. Ensuite, u et (b j ) j=l,..,l sont choisies afin d'atteindre un équilibre entre les critères d'efficacité donnés à la définition (7). L'atteinte de l'équilibre entre les critères peut éventuellement demander un rajustement des (b j ) j = l,..,z. En [29j, Lemaire dresse un bon exposé de cette démarche. L'exemple détaillé de Denuit, [4j, éclaire aussi par son aspect très concret et orienté vers la pratique Stabilité financière Un bon système de tarification doit induire une structure de primes qui apporte une stabilité financière à l'assureur. Les bonus attribués par le système ne doivent pas ultimement causer une insuffisance des tarifs.

SOMMAIRES D OUVRAGES PARUS

SOMMAIRES D OUVRAGES PARUS SOMMAIRES D OUVRAGES PARUS TITRE : MÉTHODES ACTUARIELLES DE L'ASSURANCE VIE (cours et exercices corrigés) AUTEUR : Christian HESS ÉDITEUR : ÉCONOMICA, PARIS DATE DE PARUTION : NOVEMBRE 2000 357 pages prix

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus.

Processus de comptage, Poisson mélange, fonction de perte exponentielle, système bonus-malus. JF WALHIN* J PARIS* * Université Catholique de Louvain, Belgique Le Mans Assurances, Belgique RÉSUMÉ Nous proposons une méthodologie générale pour construire un système bonus-malus équilibré basé sur une

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Théorie de la crédibilité

Théorie de la crédibilité ISFA - Année 2008-2009 Théorie de la crédibilité Chapitre 2 : Prime de Bayes Pierre-E. Thérond Email, Page web, Ressources actuarielles Langage bayesien (1/2) Considérons une hypothèse H et un événement

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Fondements de Finance

Fondements de Finance Programme Grande Ecole Fondements de Finance Chapitre 7. : Risque, rentabilité et diversification Cours proposé par Fahmi Ben Abdelkader Version Etudiants Mars 2012 Préambule Fig. 10.1 (p.294) : Evolution

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

Tutorat 3 de Mathématiques (2ème année)

Tutorat 3 de Mathématiques (2ème année) Tutorat 3 de Mathématiques (2ème année) Marches aléatoires et marchés financiers Groupe 4 tuteur : J. Bouttier 8 février 2010 Résumé Depuis la thèse de Bachelier, les marchés nanciers ont constitué un

Plus en détail

CHAPITRE 2 LA MESURE ET L ANALYSE DU RISQUE D EXPLOITATION

CHAPITRE 2 LA MESURE ET L ANALYSE DU RISQUE D EXPLOITATION CHAPITRE 2 LA MESURE ET L ANALYSE DU RISQUE D EXPLOITATION 42 NOTES DE COURS CHAPITRE 2 43 1. INTRODUCTION Au premier chapitre, nous avons étudié le rendement de l exploitation. Nous avons également introduit

Plus en détail

Mémoire d Actuariat Tarification de la branche d assurance des accidents du travail Aymeric Souleau aymeric.souleau@axa.com 3 Septembre 2010 Plan 1 Introduction Les accidents du travail L assurance des

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

OPTIMISATION À UNE VARIABLE

OPTIMISATION À UNE VARIABLE OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Chapitre 1 L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de :

Chapitre 1 L intérêt. 2. Concept d intérêt. 1. Mise en situation. Au terme de ce chapitre, vous serez en mesure de : Chapitre 1 L intérêt Au terme de ce chapitre, vous serez en mesure de : 1. Comprendre la notion générale d intérêt. 2. Distinguer la capitalisation à intérêt simple et à intérêt composé. 3. Calculer la

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

véhicules de 3,5 % et une augmentation de 1 % du nombre de véhicules assurés. La Régie a trouvé ces hypothèses raisonnables.

véhicules de 3,5 % et une augmentation de 1 % du nombre de véhicules assurés. La Régie a trouvé ces hypothèses raisonnables. Sommaire Le 18 juin 2003, la Société d'assurance publique du Manitoba («la SAPM») a déposé auprès de la Régie des services publics («la Régie») une demande d'approbation des primes d'assurance-automobile

Plus en détail

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton 3. Evaluer la valeur d une option 1. Arbres binomiaux. Modèle de Black, choles et Merton 1 Les arbres binomiaux ; évaluation des options sur actions Cox, Ross, Rubinstein 1979 Hypothèse absence opportunité

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

PARTIE 3 Impact total sur le capital des modifications proposées inclues dans l ébauche de la ligne directrice sur le TCM

PARTIE 3 Impact total sur le capital des modifications proposées inclues dans l ébauche de la ligne directrice sur le TCM Résumé de l impact sur le capital des modifications que l on propose d apporter au cadre de capital réglementaire 2015 des sociétés d assurances multirisques Le présent rapport, qui expose l impact total

Plus en détail

Chapitre 4. Fondements économiques de la demande d'assurance

Chapitre 4. Fondements économiques de la demande d'assurance Chapitre 4. Fondements économiques de la demande d'assurance Laurent Denant Boemont octobre 2008 Chapitre 4. Fondements économiques de la demande d'assurance 2 J. Hamburg (2005) Along came Polly 1 Introduction

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

Gestion du niveau de la franchise d un contrat avec bonus-malus. Pierre THEROND & Stéphane BONCHE

Gestion du niveau de la franchise d un contrat avec bonus-malus. Pierre THEROND & Stéphane BONCHE Gestion du niveau de la franchise d un contrat avec bonus-malus Pierre THEROND & Stéphane BONCHE SOMMAIRE 1. Réduction de franchise en l absence de système bonus-malus A - Bonnes propriétés du modèle collectif

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

rv de septembre - 09/09/2008 - XC

rv de septembre - 09/09/2008 - XC rv de septembre - 09/09/2008 - XC Rendez-vous de septembre 9 septembre 2008 - Monte Carlo LE TRANSFERT DE RISQUES DANS SOLVABILITÉ II Xavier Cognat Fédération Française des Sociétés d Assurances rv de

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.

Plus en détail

TD 3 : suites réelles : application économique et nancière

TD 3 : suites réelles : application économique et nancière Mathématiques Appliquées Cours-TD : K. Abdi, M. Huaulmé, B. de Loynes et S. Pommier Université de Rennes 1 - L1 AES - 009-010 TD 3 : suites réelles : application économique et nancière Exercice 1 Calculer

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE.

LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE. LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE. Synthèse des travaux réalisés 1. Problématique La question D7 du plan d exécution du Programme National de Recherches

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Notes techniques relatives aux dépôts des taux d assurance-automobile et des systèmes de classification des risques

Notes techniques relatives aux dépôts des taux d assurance-automobile et des systèmes de classification des risques Notes techniques relatives aux dépôts des taux d assurance-automobile et des systèmes de classification des risques Publiées avec le Bulletin No. A-12/01 de la Commission des services financiers de l Ontario

Plus en détail

Choix de Portefeuille

Choix de Portefeuille Année 2007-2008 Choix de Portefeuille Christophe Boucher Chapitre 1. Théorie de la décision en avenir incertain Critère d espérance d utilité L attitude vis-à-vis du risque Chapitre 2. Rendements et critères

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

pour la soumission de demandes d approbation d adaptations tarifaires en assurance-maladie complémentaire

pour la soumission de demandes d approbation d adaptations tarifaires en assurance-maladie complémentaire GUIDE PRATIQUE pour la soumission de demandes d approbation d adaptations tarifaires en assurance-maladie complémentaire Edition du 18 juin 2015 But Le présent guide pratique est un simple instrument de

Plus en détail

THEORIE FINANCIERE Préparation à l'examen

THEORIE FINANCIERE Préparation à l'examen THEORIE FINANCIERE Préparation à l'examen N.B. : Il faut toujours justifier sa réponse. 1. Qu'est-ce que l'axiomatique de Von Neumann et Morgenstern? La représentation des préférences des investisseurs

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

COURS 9 : TARIFICATION Aspects mathématiques

COURS 9 : TARIFICATION Aspects mathématiques COURS 9 : TARIFICATION Aspects mathématiques 9.1 RAPPEL Prime théorique = Fréquence X gravité + Frais La gravité est souvent appelée «sévérité» (anglicisme commode) Certains facteurs influencent la fréquence

Plus en détail

Qu'est-ce que le paramètre du portefeuille actuel et quelle est son influence sur le plan?

Qu'est-ce que le paramètre du portefeuille actuel et quelle est son influence sur le plan? FONCTIONS PRÉSENTÉES DANS LE PRÉSENT DOCUMENT : Qu'est-ce que le paramètre du portefeuille actuel et quelle est son influence sur le plan? Section Gestion du plan catégorie Hypothèses onglet Paramètre

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

Choix en situations de risque et d incertitude. Choix inter-temporels de consommation

Choix en situations de risque et d incertitude. Choix inter-temporels de consommation THEME 7 Choix en situations de risque et d incertitude. Choix inter-temporels de consommation Concepts et définitions essentiels Risque et incertitude Théorie de l utilité espérée Aversion au risque Loterie

Plus en détail

10/04/2001 1- INTRODUCTION. Vivien BRUNEL

10/04/2001 1- INTRODUCTION. Vivien BRUNEL Vivien BRUNEL LE RISQUE OPERATIONNEL - INTRODUCTION Le risque opérationnel est un concept mal défini ; dans le cas d une institution financière, il est même défini par une non-définition : il se réfère

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Projetde SériesTemporelles

Projetde SériesTemporelles COMMUNAUTE ECONOMIQU E ET MONETAIRE DE L AFRIQUE CENTRALE (CEMAC) INSTITUT SOUS REGIONAL DE STATISTIQUES ET D ECONOMIE APPLIQUEE (ISSEA) Projetde SériesTemporelles MODELISATION DE LA RENTABILITE DE L INDICE

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Cours orienté vers la pratique Finances et placements

Cours orienté vers la pratique Finances et placements Cours orienté vers la pratique Finances et placements La présente note vise à donner aux candidats des détails sur l approche suivie dans la section du Cours orienté vers la pratique (COP) portant sur

Plus en détail

Chapitre 2/ La fonction de consommation et la fonction d épargne

Chapitre 2/ La fonction de consommation et la fonction d épargne hapitre 2/ La fonction de consommation et la fonction d épargne I : La fonction de consommation keynésienne II : Validations et limites de la fonction de consommation keynésienne III : Le choix de consommation

Plus en détail

Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme

Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme TFE Ingénieur Civil Mathématiques Appliquées 24 juin 2010 Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme Auteur Christophe Pochet Promoteur Pierre Devolder Comment garantir la

Plus en détail

TD 2 Exercice 1. Un bûcheron a 100 hectares de bois de feuillus. Couper un hectare de bois et laisser la zone se régénérer naturellement coûte 10 kf par hectares, et rapporte 50 kf. Alternativement, couper

Plus en détail

Lagrange, où λ 1 est pour la contrainte sur µ p ).

Lagrange, où λ 1 est pour la contrainte sur µ p ). Chapitre 1 Exercice 1 : Portefeuilles financiers Considérons trois types d actions qui sont négociées à la bourse et dont les rentabilités r 1, r 2 et r 3 sont des variables aléatoires d espérances µ i

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

Les déterminants de la demande de travail et de l investissement dans les entreprises privées québécoises.

Les déterminants de la demande de travail et de l investissement dans les entreprises privées québécoises. Université de Montréal Les déterminants de la demande de travail et de l investissement dans les entreprises privées québécoises. Par Faoziat Akanni Sous la direction de M. Yves Richelle et M. Abraham

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Gestion du niveau de la franchise d'un contrat avec bonus-malus

Gestion du niveau de la franchise d'un contrat avec bonus-malus Gestion du niveau de la franchise d'un contrat avec bonus-malus Pierre Thérond Stéphane Bonche Résumé Réduire la franchise d'un contrat d'assurance permet d'améliorer la qualité du contrat du point de

Plus en détail

Gestion scientifique des stocks

Gestion scientifique des stocks Gestion scientifique des stocks Boualem RABTA Université de Béjaia (Algérie) 13/03/2007 Table des matières 1 Gestion des stocks 2 1.1 Définition...................................... 2 1.2 La fonction

Plus en détail

Le taux d'actualisation en assurance

Le taux d'actualisation en assurance The Geneva Papers on Risk and Insurance, 13 (No 48, July 88), 265-272 Le taux d'actualisation en assurance par Pierre Devolder* Introduction Le taux d'actualisation joue un role determinant dans Ia vie

Plus en détail

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Application des réseaux de neurones au plan de répartition des risques 5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Copyright c

Plus en détail

Orientations sur le traitement des entreprises liées, y compris des participations

Orientations sur le traitement des entreprises liées, y compris des participations EIOPA-BoS-14/170 FR Orientations sur le traitement des entreprises liées, y compris des participations EIOPA Westhafen Tower, Westhafenplatz 1-60327 Frankfurt Germany - Tel. + 49 69-951119-20; Fax. + 49

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Réglementation parasismique: intérêts pour l assureur

Réglementation parasismique: intérêts pour l assureur Réglementation parasismique: intérêts pour l assureur CFMS, demi-journée technique du 4 octobre 2006 (14h-18h30) ENPC rue des Saints Pères (Amphi Caquot) Guillaume Pousse Assurer contre une catastrophe

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

11. Evaluation de la qualité des essais

11. Evaluation de la qualité des essais 11. Evaluation de la qualité des essais L évaluation de la qualité méthodologique d un essai thérapeutique est une tâche difficile [117]. L essai thérapeutique contrôlé randomisé est considéré comme étant

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Chapitre 2: Prévisions des ventes

Chapitre 2: Prévisions des ventes Chapitre 2: Prévisions des ventes AVIS IMPORTANT : Ces notes sont basées sur le livre de Steven Nahmias : Production et Operations Analysis, 4 ième édition, McGraw-Hill Irwin 200. Les figures sont issues

Plus en détail

Exposé assurance : prime de risque

Exposé assurance : prime de risque Exposé assurance : prime de risque Introduction L'assurance est un mécanisme financier permettant de répondre aux exigences de protection des patrimoines contre les risques de perte de toute nature. Elle

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France 1 1 IRMA, Université de Strasbourg Strasbourg, France Master 2ème Année 12-10-2011 Ce chapitre s appuie essentiellement sur deux ouvrages : «Les sondages : Principes et méthodes» de Anne-Marie Dussaix

Plus en détail

Modélisation du risque opérationnel dans le secteur de l assurance

Modélisation du risque opérationnel dans le secteur de l assurance Avril 2011 N 14 Modélisation du risque opérationnel dans le secteur de l assurance Par Julie Gamonet Centre d études actuarielles Lauréate du prix du jeune actuaire 2010 Un texte paraissant dans SCOR Papers

Plus en détail

Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident?

Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Nathalie LEPINE GREMAQ, Université de Toulouse1, 31042 Toulouse, France GRAPE, Université Montesquieu-Bordeaux

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST

pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST GUIDE PRATIQUE pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST Edition du 16 décembre 2011 But Le présent guide pratique s entend comme une aide pour

Plus en détail

Politique de capitalisation du Fonds d assurance automobile du Québec DATE DE MISE À JOUR 2015-03-19

Politique de capitalisation du Fonds d assurance automobile du Québec DATE DE MISE À JOUR 2015-03-19 Page 1 de 12 Politique de capitalisation du Fonds d assurance automobile du Québec DATE DE MISE À JOUR 2015-03-19 RÉSUMÉ La présente politique définit les caractéristiques de la politique de capitalisation

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ARTHUR CHARPENTIER 1 Soit X la variable aléatoire continue de fonction de densité : { (1.4)e 2x + (0.9)e 3x pour x > 0 f X (x) = 0 sinon. Trouver E[X]. A) 9 20 B)

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail