Chaînes de Markov (version 0)

Dimension: px
Commencer à balayer dès la page:

Download "Chaînes de Markov (version 0)"

Transcription

1 Chaînes de Markov (version 0) Yan Doumerc ECS1, lycée Gaston Berger, Lille 15 Mai 2014 Résumé Ce document accompagne une séance de formation destinée aux professeurs de classe préparatoire EC. Il s agit de présenter les fondamentaux des chaînes de Markov, thème qui fait son appartition dans les nouveaux programmes. L objectif est de donner les résultats théoriques majeurs ainsi que quelques preuves significatives, de présenter un panorama assez vaste d exemples qui peuvent servir d inspiration et de détailler les possibilités qu offre Scilab sur ce thème. Le contenu de ce document va au delà de ce qui est présentable à nos étudiants mais nous espérons qu il aidera ses lecteurs à avoir un bagage confortable et un recul suffisant pour enseigner le sujet. Table des matières 1 Introduction Motivations Les questions qui se posent Liste de notations Généralités Définitions Propriété de Markov En Scilab Structure linéaire 6 4 Structure topologique Communications entre états et classes Période Classification des états Transience, récurrence positive et récurrence nulle En Scilab Mesure invariante Définition, existence, unicité En Scilab Asymptotique Loi des grands nombres Convergence en loi de (X n ) Aspects matriciels dans le cas E fini 14 9 Analyse à un pas Temps d atteinte Probabilités et temps d absorption

2 10 Exemples La chaîne à deux états Bonus-malus en assurance Mobilité sociale Score au tennis Mots de taille 2 dans un pile ou face Ascension et rechutes Retenues lorsque l on pose une addition Collectionneur de coupons Sisyphe et les matrices compagnons Processus de vie et de mort et marches aléatoires Sur N Sur Z Sur [[0, s]. Ruine du joueur Marche aléatoire sur un graphe. Pagerank de Google. Cavalier sur un échiquier Marche aléatoire sur un groupe Urne d Ehrenfest Modèle de Wright-Fisher Processus de Galton-Watson Files d attente Un exemple non-homogène : urne de Polya Quelques preuves 30 1 Introduction 1.1 Motivations 1. Dans les nouveaux programmes, les chaînes de Markov constituent le thème 3 en ECS2 (6h) et ECT2 (4h), le thème 4 en ECE2 (6h). Elles mobilisent les compétences C2 (modéliser et simuler des phénomènes aléatoires ou déterministes et les traduire en langage mathématique) et C4 (représenter et interpréter les différentes convergences). 2. Les familles (X n ) n N de variables aléatoires indépendantes sont des objets fondamentaux en probabilités mais souvent trop «naïfs» pour décrire en pratique des phénomènes aléatoires. Les chaînes de Markov constituent un exemple fondamental de familles (X n ) de variables exhibant une dépendance suffisamment riche pour être pertinente et suffisamment simple pour se prêter à une étude détaillée. 3. Les chaînes de Markov sont le pendant aléatoire des suites récurrentes x n+1 = f(x n ). 4. Certains phénomènes se présentent spontanément comme des chaînes de Markov. Ce sont souvent des hypothèses d indépendance inhérentes au phénomène qui se transforment en propriété de Markov. Cf 10.5, 10.7, On peut aussi fabriquer une structure markovienne pour s adapter au plus près à la modélisation d une situation réelle. A ce titre, les chaînes de Markov constituent des approximations de la réalité dont il convient de mesurer ensuite la pertinence (notamment en termes de prédictions). Cf 10.3, 10.16, 10.15, 10.14, Notons que la structure markovienne à choisir peut être subtile : certains phénomènes ne sont pas directement markoviens en eux-mêmes mais proviennent d un processus markovien sous-jacent (chaîne de Markov cachée). 6. Enfin, les chaînes de Markov peuvent être utilisées comme outils dans des problèmes qui n ont a priori rien de markovien. Par exemple, les bonnes propriétés asymptotiques des chaînes de Markov peuvent permettre la simulation exacte ou approchée d une loi de probailité (algorithmes de Metropolis-Hastings et de Propp-Wilson) ou le calcul approché d une espérance sous cette loi (méthodes dites MCMC pour Monte Carlo Markov Chains). Elles peuvent aussi servir dans des problèmes d optimisation (algorithme de recuit simulé). 7. Pédagogiquement, les chaînes de Markov permettent de nouer un lien fort entre probabilités et algèbre linéaire. 2

3 8. Scilab a des commandes prévues pour les chaînes de Markov. Pour les comprendre, il faut avoir quelques connaissances mathématiques sur le sujet. 9. Ce document comporte quelques preuves que nous avons jugé utiles et significatives. Nous renvoyons à l abondante littérature sur le sujet. Notre bibliographie cîte des ouvrages et des articles publiés mais il existe aussi des cours très complets disponibles sur internet (il suffit de googliser «chaînes de Markov» ou «Markov chains» pour obtenir de nombreux cours de type L3 ou M1) 1.2 Les questions qui se posent En tant que généralisation des suites récurrentes x n+1 = f(x n ) et des suites de variables aléatoires indépendantes et de même loi, les chaînes de Markov soulèvent des questions naturelles. 1. Quels états la chaîne peut-elle visiter? Combien de fois la chaîne visite-t-elle ces états? 2. Existe-t-il des régions pièges telles que si la chaîne y entre, elle y reste? 3. Existence et unicité d un équilibre (analogue à un point fixe de f pour une suite x n+1 = f(x n ))? 4. Comportement asymptotique quand n + : loi des grands nombres pour f(x 1) + + f(x n ), n convergence de X n? 1.3 Liste de notations 1. L(Y )= loi de la variable aléatoire Y. 2. CM : chaîne de Markov. 3. CM(E, µ, Q) : chaîne de Markov à valeurs dans E, de loi initiale µ et de «matrice» de transition Q. On utilisera CM(E), CM(Q) ou CM(µ, Q) selon les situations. 4. P µ = loi de la chaîne X lorsque µ = L(X 0 ), P x = loi de la chaîne X lorsque X 0 = x, L µ (Y ) = loi de la variable aléatoire Y lorsque µ = L(X 0 ). 5. Si n N, X n+ = (X n+k ) k N = chaîne translatée de n. 6. Si A E, τ A = inf{n 0 X n A} = temps d atteinte de A, T A = inf{n > 0 X n A} temps positif d atteinte de A, τ x = τ {x}, T x = T {x}. 7. ρ xy = P x ( n N, X n = y) = P x (T y < + ) 8. N A = + n=0 1 X n A = nombre de passages de X en A. 3

4 2 Généralités 2.1 Définitions 1. X = (X n ) n N suite de variables aléatoires à valeurs dans E (espace d états, fini ou dénombrable). X est une CM lorsque n N, (x 0,..., x n+1 ) E n+2, P (X n+1 = x n+1 (X 0,..., X n ) = (x 0,..., x n )) = P (X n+1 = x n+1 X n = x n ). 2. Une CM X est homogène lorsque P (X n+1 = y X n = x) ne dépend pas de n. On note Q xy := P (X n+1 = y X n = x) = P (X 1 = y X 0 = x) = probabilité de transition de x à y. 3. Q = (Q xy ) (x,y) E 2 := «matrice» de transition indicée par E 2 (Q xy 0, y E Q xy = 1). 4. Si µ = L(X 0 ) (loi de X 0 i.e. µ x = P (X 0 = x)) alors la loi de la chaîne X est entièrement déterminée par µ = L(X 0 ) et Q : P (X 0 = x 0, X 1 = x 1,..., X n = x n ) = µ x0 Q x0x 1 Q x1x 2 Q xn 1x n. 5. CM = suite récurrente aléatoire. Si (U n ) n N est une suite de variables aléatoires indépendantes et de même loi, indépendantes de X 0 et X n+1 = f(x n, U n+1 ) alors X est une CM de transitions données par Q xy = P (f(x, U) = y). Réciproquement, toute CM peut être réalisée ainsi. 2.2 Propriété de Markov 1. Propriété de Markov faible : conditionnellement à {X n = x}, la suite X n+ est une CM(δ x, Q) indépendante de (X 0,..., X n 1 ) i.e. n, A E n, B E N (B mesurable pour la tribu produit), P µ (X n+ B (X 0,..., X n 1 ) A, X n = x) = P x (X B). 2. La propriété de Markov forte permet de remplacer le n fixé de la propriété précédente par un temps T aléatoire lorsque c est un temps d arrêt i.e. lorsque, pour tout k N, {T = k} est dans la tribu F k engendrée par X 0,..., X k. On note alors F T = {A k N, A {T = k} F k } et la propriété de Markov forte dit alors que, conditionnellement à {T < + } {X T = x}, la suite X T + est une CM(δ x, Q) indépendante de F T. Cette formulation est très pratique mais nécessite des préalables (tribu engendrée par X 0,..., X k, temps d arrêt, tribu F T ) qu il me semble déraisonnable de présenter à nos étudiants de voie EC. Ainsi, je n utiliserai pas cette formulation. 2.3 En Scilab 1. La commande X=grand(n,"markov",Q,x0) renvoie une trajectoire X 1,..., X n de longueur n de la CM de matrice de transition Q de taille N, d espace d états [[1, N ] et d état initial x0 [[1, N ] 2. On peut simuler simultanément par la même commande m trajectoires de la chaîne en prenant pour x0 un vecteur de longueur m : Y est alors une matrice à m lignes et n colonnes, la i-ième ligne de cette matrice représentant une trajectoire de la chaîne issue de x0(i). 3. La commande Q=genmarkov(N,0) génère une matrice de transition aléatoire (irréductible, cf 4.1) de taille N. Cette commande admet d autres options (cf 5). -->Q=genmarkov(3,0) Q = >X=grand(10,"markov",Q,2) X =

5 -->X=grand(10,"markov",Q,ones(1,4)) X = La commande X=grand(n, markov,q,x0) ne fonctionne que pour un espace d état fini. Une autre méthode est d utiliser une formule X n+1 = f(x n, U n+1 ) qui, modulo une boucle, réduit le problème à la simulation de variables aléatoires indépendantes et de même loi U n. 5. Parfois, les commandes matricielles de Scilab permettent d éviter une boucle et d écrire des codes très rapides (cf 10.12). 5

6 3 Structure linéaire 1. Une mesure (positive) µ sur E est vue comme un vecteur ligne (µ x ) x E indicé par E (à composantes 0). 2. Une fonction f sur E est vue comme un vecteur colonne (f(x)) x E indicé par E. 3. Lemme général de probabilités. Soit X, Y deux variables aléatoires à valeurs dans E, L(X), L(Y ) vecteurs lignes des lois de X et Y. On pose Q xy = P (Y = y X = x) et Q = (Q xy ) (x,y) E 2 matrice indicée par E 2. Alors Formule de transfert : E(f(X)) = L(X).f Formule des probabilités totales : L(Y ) = L(X).Q, où l on utilise les produits «matriciels» usuels (µ.q) y = x E µ xq xy, (Q.f) x = y E Q xyf(y). 4. Application à X CM(Q) : L(X n+1 ) = L(X n ).Q, L(X n ) = L(X 0 ).Q n E µ (f(x n )) = µ.q n.f, P x (X n = y) = Q n xy 5. En Scilab, on peut donc utiliser le produit matriciel pour calculer Q n, L(X 0 ).Q n ou µ.q n.f. A titre d exemple, si X est une CM([[1, N ], Q, ν) où N,Q sont connues et ν = U([[1, N ]), on peut calculer ainsi la loi de X 10 ou sa variance : L=(ones(1,N)/N)*Q^10 V=L*([1:N].^2)-(L*[1:N])^2 //renvoie vecteur ligne égal à la loi de X_10 //renvoie Var(X_10) 6. En Scilab, une façon rapide de stimuler l intérêt pour le comportement asymptotique d une CM est la séquence suivante : -->Q=genmarkov(5,0) Q = >Q^3 ans = >Q^100 ans = Pourquoi les lignes de Q n sont-elles égales? Cf 7.2 pour une réponse. 6

7 4 Structure topologique 4.1 Communications entre états et classes 1. Graphe orienté G associé à une CM(E, Q) : sommets = états ( E), arêtes : x y ssi Q xy > Si (x, y) E 2, les propriétés suivantes sont équivalentes : (a) P x ( n N, X n = y) > 0 (b) n N tel que Q n xy = P x (X n = y) > 0 (c) n N, x 1,..., x n 1 E tels que x x 1 x n 1 y i.e. Q xx1 Q x1x 2 Q xn 1y > 0 i.e. x, y sont reliés par un chemin dans le graphe orienté G. Si c est le cas, on dit que x mène à y et on note x y. C est une relation réflexive, transitive mais non-symétrique. 3. Lorsque x y et y x, on dit que x communique avec y et on note x y. est une relation d équivalence dont les classes d équivalence sont appelées simplement classes. 4. Une CM est irréductible si elle n a qu une seule classe i.e. si (x, y) E 2, x y. 5. Une partie F E est dite close si x F, y / F, Q xy = 0, ce qui équivaut à x F, P x ( n N, X n F ) = Un état x est absorbant lorsque {x} est close i.e. Q xx = Une classe n est pas toujours close : il peut exister des transitions entre deux classes mais uniquement dans un sens (sinon elles ne feraient qu une seule classe). 4.2 Période 1. Si x E, D x := {n N Q n xx > 0} et d x := pgcd D x = période de x (si D x ). 2. Si D x, on prouve que D x et d x N ne diffèrent que par un ensemble fini (utiliser Bezout et la stabilité de D x par somme). 3. Les états d une classe ont même période. 4. x est apériodique si d x = 1. Ceci équivaut à : k x N, n k x, Q n xx > 0. Une chaîne est apériodique si tous ses états le sont. 5. Une chaîne est irréductible et apériodique ssi (x, y) E 2, k xy N, n k xy, Q n xy > Ainsi, si E est fini, une CM(E, Q) est irréductible et apériodique ssi il existe k N tel que Q k ait tous ses coefficients positifs. 7. Si X CM(E, Q) est irréductible et de période d, il existe une partition E = E 0 E d 1 telle que (a) P (X n+k E i+k X n E i ) = 1 (avec E i+dj = E i ). (b) Q d a d classes E 0,..., E d 1 qui sont closes et apériodiques (pour Q d ). E 0,..., E d 1 sont les composantes cycliques de la chaîne CM(Q) et celle-ci les traverse successivement et de façon cyclique. 7

8 --]-i L--i - t_ I il --- i. L: =rl l =' :: 1- I tl 'i ri =- tl i -f-=r.-.i: F]_

9 5 Classification des états. 5.1 Transience, récurrence positive et récurrence nulle 1. Rappel : N x = n=0 1 {Xn=x}, ρ xy = P x ( n > 0, X n = y) = P x (T y < + ). 2. Un état x E vérifie soit les propriétés équivalentes du 2a, soit celles du 2b. (a) ρ xx = 1 P x (N x = + ) = 1 n Qn xx = + : x est alors dit récurrent ; (b) ρ xx < 1 k 1, P x (N x = k) = (1 ρ xx )ρ k 1 xx n Qn xx < + : x est alors dit transient. 3. Un état récurrent x est dit récurrent positif si E x (T x ) < + et récurrent nul si E x (T x ) = La récurrence est contagieuse : si x récurrent et x y alors y récurrent et ρ xy = ρ yx = 1. Ainsi, si x y et y x alors x est transient. 5. Transience, récurrence positive et récurrence nulle sont des propriétés de classe. 6. Toute classe récurrente est close. 7. Une CM(E) a au moins un état récurrent si E est fini. 8. Une classe récurrente finie est récurrente positive. 9. E est l union disjointe de classes ((RP i ) i I, (RN j ) j J, (T k ) i K ), I, J ou K pouvant être vides. Les RP i, RN j sont closes, les RN j sont infinies, les T k peuvent être infinies ou non, closes ou non. Mais si la chaîne sort d une T k, elle n y reviendra plus jamais. Si une T k est finie, la chaîne ne la visitera qu un nombre fini de fois. Il n y a qu un seul ordre dans lequel les T k peuvent être visitées. 10. Si E est fini, E est l union disjointe de classes ((RP i ) i I, (T k ) i K ), I. Les RP i sont closes. Les T k ne seront visitées qu un nombre fini de fois. La chaîne finira toujours par être absorbée par une des classes récurrentes. 11. Ainsi, si E est fini, on peut réordonner ses éléments de telle manière que la matrice de transition s écrive par blocs sous sa forme canonique : M M.. 2. Q = , (1) 0 0 M r 0 B 1 B r Q où les M 1,..., M r correspondent aux r classes récurrentes et la ligne B 1 B r Q correspond aux transitions démarrant dans l ensemble T des points transients. 5.2 En Scilab 1. La commande genmarkov([n1,n2,...,nr],nt) renvoie une matrice de transition écrite sous forme canonique (1) ayant r classes récurrentes de cardinaux respectifs n1,..., nr et une classe transiente contenant nt états. 2. La commande genmarkov([n1,n2,...,nr],nt, perm ) permute les états de manière que Q n apparaisse plus sous forme fondamentale. 3. La commande [perm,rec,tr,indsrec,indst]=classmarkov(q) permet de trouver le nombre d états transients (tr), les tailles des classes récurrentes (rec), les indices des états récurrents (indsrec) et transients (indst) ainsi qu une permutation (perm) de ces indices permettant de mettre la matrice de transition Q sous forme canonique. D où la session suivante : -->Q=genmarkov([2,1,1],2, perm ) Q =

10 >[perm,rec,tr,indsrec,indst]=classmarkov(q) indst = indsrec = tr = 2. rec = perm = >Q(perm,perm) ans = Pédagogiquement, si l on veut que les étudiants puissent générer une matrice de transition et s entraîner eux-mêmes à trouver les classes, la commande genmarkov([n1,n2,...,nr],nt, perm ) leur donne déjà les cardinaux des classes. On peut bricoler un générateur de matrices markoviennes avec des zéros en normalisant les lignes d une matrice d entiers aléatoires : function q=gene_mat_trans_avec_zer(n,p) // renvoie une matrice markovienne de taille n // p dans [0,1], proche de 1 pour qu il y ait beaucoup de 0 aux=0 while aux==0 // sert à ne pas diviser par 0 M=grand(n,n,"geom",p)-1 S=sum(M, c ) // sommes cumulées de M par lignes aux=prod(s) // produit des éléments de S end q=diag((1./s))*m // divise chaque ligne de M par sa somme endfunction Bien sûr, ce générateur a très peu d intérêt pour n = 2 ou 3. Exercice : on note Z le nombre de zéros dans la matrice ainsi générée et C le nombre de passages dans la boucle while. Quelles sont les lois de Z et C? Quel est le nombre moyen de zéros dans la matrice générée? Quel est le nombre moyen de zéros de passages dans la boucle? Quelle est la probabilité de passer plus d une fois dans la boucle? 9

11 6 Mesure invariante 6.1 Définition, existence, unicité 1. Une mesure µ sur E est invariante pour une CM(E, Q) lorsque µq = µ i.e. y E, µ x Q xy = µ y. x E Comme µ = 0 est toujours invariante, on sous-entendra dans la suite mesure non-nulle. 2. Interprétation probabiliste : soit µ une loi (i.e. une mesure de probabilté). Alors µ invariante n N, L µ (X n ) = µ n N, L µ (X) = L µ (X n+ ). 3. Une mesure invariante est un vecteur propre à gauche à composantes 0 de la matrice Q associé à la valeur propre Une mesure µ est réversible lorsque (x, y) E 2, µ x Q xy = µ y Q yx. Une mesure réversible est invariante (il n y a qu à sommer sur x E). 5. Une «matrice» de transition Q est bistochastique lorsque outre y E, x E Q xy = 1. Ceci signifie exactement que la mesure «constante» (µ x = 1 pour tout x E) est invariante. 6. Toute chaîne ayant au moins un état récurrent a au moins une mesure invariante. 7. Si µ est une mesure finie, invariante et si x un état transient alors µ x = Les mesures invariantes d une CM X irréductible et récurrente sont toutes proportionnelles. Elles vérifiet toutes µ y > 0 pour tout y E et on a la dichotomie suivante : (a) X est récurrente positive et toutes les mesures µ invariantes vérifient µ(e) < +. X possède alors une unique loi invariante donnée par x E, µ x = (E x (T x )) 1 > 0. (b) X est récurrente nulle et toutes les mesures invariantes vérifient µ(e) = +. X ne possède alors pas de loi invariante. 9. Ainsi, une chaîne admet une unique loi invariante ssi elle est irréductible, récurrente positive. 6.2 En Scilab 1. La fonction eigenmarkov(q) renvoie l unique loi stationnaire d une chaîne de Markov irréductible de matrice de transition Q. -->Q=[ ; ] Q = >eigenmarkov(q) ans = Si la chaîne comporte m classes récurrentes, eigenmarkov(q) renvoie une matrice à m lignes dont la i-ième ligne est la loi stationnaire correspondant à la i-ième classe récurrente. -->Q=[genmarkov(2,0) zeros(2,2); zeros(2,2) genmarkov(2,0)] Q =

12 >eigenmarkov(q) ans =

13 7 Asymptotique 7.1 Loi des grands nombres 1. Notons N n y = n k=1 1 X k =y le nombre de passages en y entre les instants 1 et n. Alors, pour tout chaîne X irréductible et toute loi initiale, y E, Ny n lim n + n = (E y(t y )) 1 presque-sûrement (avec (+ ) 1 = 0). (2) 2. Soit X une CM irréductible, récurrente nulle. Alors, pour toute loi initiale et toute fonction f intégrable par rapport à «la» mesure invariante, on a f(x 1 ) + + f(x n ) lim = 0 presque-sûrement. (3) n + n 3. Soit X une CM irréductible, récurrente positive. On note µ son unique loi invariante (µ x = (E x (T x )) 1 ) et on suppose que la fonction f est µ-intégrable. Alors, pour toute loi initiale, on a f(x 1 ) + + f(x n ) lim = µ.f presque-sûrement. (4) n + n 4. En Scilab, il suffit de simuler une seule trajectoire pour illustrer ces convergences car elles ont lieu avec probabilité un, quelle que soit la mesure initiale. A titre d exemple, si X CM(Q) est irréductible, récurrente positive de loi invariante µ, on pourra regarder les estimateurs ˆµ (n) N n x n (n) et ˆQ xy = 1 Nx n x = n 1 1 Xk =x,x k+1 =y. On pourra prouver qu ils convergent avec probabilité un k=0 respectivement vers µ x et Q xy (utiliser le fait que (X n, X n+1 ) est une CM irréductible, récurrente positive et de mesure invariante λ (x,y) = µ x Q xy ). On pourra les tester sur un exemple généré par genmarkov puis grand. 7.2 Convergence en loi de (X n ) 1. Pour une chaîne X irréductible, le théorème de convergence dominée permet de passer à l espérance sous P x dans (2) pour avoir x E, lim n + n k=1 Qk xy n = (E y (T y )) 1. (5) Ainsi la suite (P x (X n = y) = Q n xy) converge au sens de Césaro. Converge-t-elle au sens usuel? 2. Si y est transient ou récurrent nul, on a P x (X n = y) = Q n xy 0. n + ( ) Il existe des cas où la suite (P x (X n = y) = Q n xy) n a pas de limite (ex : Q =, Q 1 0 2n = I 2, Q 2n+1 = Q). C est un phénomène de périodicité qui fait obstacle à la convergence. 4. Soit X une CM irréductible, récurrente positive et apériodique. X a une unique loi invariante µ. Alors, pour toute loi initiale ν, la suite (X n ) converge en loi vers une variable aléatoire de loi µ : A E, lim P ν(x n A) = µ(a) et, en particulier, lim n + n + Qn xy = µ y = (E y (T y )) 1. (6) 5. En Scilab, pour illustrer ces convergences en loi, une seule trajectoire ne suffit plus. On peut fixer un n grand, simuler k trajectoires, obtenir des copies indépendantes Xn, 1..., Xn k et regarder la loi empirique associée µ k = 1 k δ k X i n qui approxime la loi de X n et donc la loi µ. La comparaison i=1 entre µ k et µ peut se faire à travers leurs histogramme ou à travers leurs fonctions de répartition si E R (F k (t) = 1 k 1 k X i n t d un côté et F (t) = µ(], t]) de l autre). i=1 12

14 6. En Scilab, une autre illustration possible est de calculer νq n par produit matriciel puis la distance en variation totale d V T (νq n, µ) = x E νqn (x) µ(x) et de représenter graphiquement d V T (νq n, µ) en fonction de n. 7. Supposons X CM(Q) irréductible, récurrente positive, de loi invariante µ, de période d et de composantes cycliques E 0,..., E d 1. Alors, pour tout 0 i d 1, µ(e i ) = 1/d et la chaîne (X nd+i ) n N converge en loi : A E, lim P d 1 ν(x nd+i A) = d ν(e j )µ(a E i+j ) n + et, en particulier pour (x, y) E j E i+j, j=0 lim n + Qnd+i xy = dµ y. 13

15 8 Aspects matriciels dans le cas E fini Soit X une CM(E, Q) avec E fini. Rappelons que, pour toute matrice, les valeurs propres à gauche et les valeurs propres à droite sont les mêmes avec même multiplicité algébrique (i.e. dans le polynôme caractéristique) et géométrique (i.e. dimension du sous-espace propre). On pourra donc parler des valeurs propres sans précision. 1. Les valeurs propres de Q sont toutes de module 1 et 1 est valeur propre. M M Si l on prend la forme canonique Q = , les valeurs propres sont celles 0 0 M r 0 B 1 B r Q de M 1,..., M r, Q. Chaque M i possède 1 comme valeur propre de multiplicité géométrique égale à 1. Les valeurs propres de Q sont de module < Ainsi, la dimension du sous-espace propre associé à 1 est égale au nombre de classes récurrentes. 4. Soit d k la période de M k. Les valeurs propres de module 1 de M k sont les racines d k -èmes de l unité. 5. Ainsi, si Q est irréductible et récurrente, elle est apériodique ssi 1 est la seule valeur propre de module Une loi invariante est un vecteur propre à gauche à composantes 0 et de somme 1. Chaque M k possède une unique loi invariante µ k et les lois invariantes sont toutes de la forme µ = r k=1 a kµ k où a k 0 et r k=1 a k = Si Q est irréductible (donc récurrente) et apériodique, la matrice Q n converge vers la matrice dont toutes les lignes sont égales à µ (l unique loi invariante). C est une matrice de projecteur de rang Soit Q de taille N = E irréductible dont l unique loi invariante est µ. On peut munir R E (ensemble des fonctions de E dans R vues comme vecteurs colonnes) du produit scalaire f, g = x E µ(x)f(x)g(x). On note 1 R E la fonction constante 1 si bien que µ.f = x µ(x)f(x) = f, 1. On confond Q avec l endomorphisme qu il induit canoniquement sur R E. Q est alors symétrique ssi µ est réversible. Dans ce cas, Q est diagonalisable dans une base orthonormée f 1,..., f N avec valeurs propres 1 = λ 1 > λ 2 λ N 1. L irréductibilité de Q se traduit par le fait que λ 1 = 1 soit valeur propre simple. Q est apériodique ssi λ N > 1. Ainsi, pour tout f R E N N N Q n f = f, f i Q n f i = f, f i λ n i f i = µ.f + f, f i λ n i f i. i=1 i=1 En notant c(x) = Q 2 xx/µ x et ρ = max(λ 2, λ N ) < 1, on peut prouver dans le cas apériodique que E x (f(x n )) µ.f 2 c(x)ρ 2n 2 f µ.f 2 et P x (X n A) µ(a) c(x)ρ2n 2, ce qui reprouve la convergence en loi de (X n ) et donne une vitesse de convergence. i=2 14

16 9 Analyse à un pas 9.1 Temps d atteinte 1. Rappel : si A E, τ A = inf{n 0 X n A} = temps d atteinte de A. 2. Posons φ A (x) = P x (τ A < + ). φ A est la solution minimale des équations suivantes : x A, φ A (x) = 1, x / A, φ A (x) = y E Q xy φ A (y). (7) 3. Si A B =, posons φ A,B (x) = P x (τ A < τ B ) pour tout x E. ψ est la solution minimale des équations suivantes : x A, φ A,B (x) = 1, x B, φ A,B (x) = 0, x / A B, φ A,B (x) = y A Q xy φ A,B (y). (8) 4. Posons ψ A (x) = E x (τ A ) pour tout x E. Alors ψ A est la solution minimale de l équation suivante : x A, ψ A (x) = 0, x / A, ψ A (x) = 1 + y / A Q xy ψ A (y). (9) Ainsi, en notant Q la matrice obtenue en supprimant les lignes et colonnes d indices dans A et en 1 introduisant les vecteurs colonnes de même taille ψ A = (ψ A (x)) x / A et J =., on a donc 1 ψ A = J + Qψ A i.e. (I Q)ψ A = J. (10) 9.2 Probabilités et temps d absorption M M Si E est fini, reprenons la forme canonique de Q = correspondant 0 0 M r 0 B 1 B r Q aux classes récurrentes (C 1,..., C r ) et à l ensemble T des points transients. Notons τ j le temps d atteinte de C j, τ = inf j τ j le temps d absorption dans une des classes récurrentes. On sait que τ est fini avec probabilité un et admet une espérance. Pour 1 j r et (x, y) T 2, les quantités d intérêt sont (a) E x (N y ) le nombre moyen de visites en y partant de x, (b) ψ(x) = E x (τ) le temps moyen d absorption partant de x, (c) φ j (x) = P x (τ j < + ) = P x (X τ C j ) la probabilité d être absorbée par C j partant de x. Introduisons les vecteurs colonnes ψ = (ψ(x)) x T, φ j = (φ j (x)) x T, J = t (1,..., 1) M T,1 (R) et J j = t (1,..., 1) M Cj,1(R). Posons aussi φ = (φ 1,..., φ r ) et B = (B 1 J 1,..., B r J r ) dans M T,r (R). Alors, on prouve que, on a I t Q est inversible et, si F = (I t Q) 1, on a : E x (N y ) = F xy, ψ = F J, φ = F B. (11) 2. Si E est fini, une CM(E, Q) est dite absorbante lorsque les classes récurrentes sont des singletons i.e. les états récurrents sont absorbants. Les calculs précédents sont alors tous valables. On a M 11 = = M rr = J 1 = = J r = 1, les B i sont des vecteurs colonnes et B = (B 1,..., B r ). 3. En Scilab, la commande [M,S]=eigenmarkov(Q) renvoie, en plus de la matrice M contenant dans sa j-ème ligne la loi invariante portée par C j, la matrice S est φ = F B i.e. S(x,j) est la probabilité de terminer dans la j-ième classe en démarrant en l état x. Cf 10.4 pour un exemple. 15

17 10 Exemples 10.1 La chaîne à deux états ( 1 a a 1. Si E = {0, 1}, la matrice de transition est Q = b 1 b t (a, b).( 1, 1), rg(m) = 1. ) ( a a = I 2 +M où M = b b ) = 2. Le calcul de Q n est entièrement explicite et peut se faire dès la 1ère année de filière EC : soit par récurrence, soit par la formule du binôme en utilisant M k = ( a b) k 1 M pour k 1. En 2ème année, on peut faire ce calcul par diagonalisation explicite de M (facile car rg(m) = 1) puis de Q. La limite quand n + peut s étudier directement dans ce cas particulier. 3. La chaîne est irréductible ssi ab 0. Dans ce cas, elle est apériodique ssi a + b < 2. Le cas a = b = 1 est l archétype d une chaîne de période 2 qui donne si, par exemple, X n = 0 alors X 2n = 0 et X 2n+1 = 1 donc X n ne converge pas en loi Bonus-malus en assurance 1. E= ensemble des classes de tarifications = {1 (fort bonus), 2, 3, 4, 5, 6 (fort malus)}. 2. Evolution : si on n a aucun accident dans l année, on gagne en bonus (si possible) ; si on a au moins un accident dans l année, on passe à 6 (malus maximal). 3. p = probabilité de ne pas avoir d accident dans l année, q = 1 p. p q p q 4. Q = 0 p q 0 0 p 0 0 q p 0 q p q 5. Q est irréductible, récurrente positive et apériodique. En résolvant le système µq = Q, on voit que son unique loi invariante est µ = (p 5, qp 4, qp 3, qp 2, qp, q). D après 7.2.4, (X n ) converge en loi vers une variable aléatoire de loi µ. 6. Si le coût annuel de l assurance en classe i vaut f(i) alors le coût total pour un assuré sur n années vaut C n = f(x 1 ) + + f(x n ) et vérifie C n n( 6 x=1 f(x)µ(x)) avec probabilité un quand n Nous renvoyons à [L] ainsi qu à la page web http ://blogperso.univ-rennes1.fr/arthur.charpentier. 8. Voici une fonction qui simule une trajectoire de cette chaîne avec boucle for function x=simu_bonus_boucle(n,p) //simule trajectoire de longueur n de la chaîne bonus, p = proba de zéro accident x=ones(1,n) for i=2:n u=rand() x(i)=6+(max([1,x(i-1)-1])-6)*(u<p)// 6 si u>p et max(1,x(i-1)-1) si u<p end endfunction 9. Voici une fonction qui fabrique la matrice de cette chaîne. function m=mat_bonus(p) //calcule la mat de transition du bonus avec proba p de zéro accident q=1-p n=p*eye(5,5) n=[zeros(1,5);n] m=[n, q*ones(6,1)] 16

18 m(1,1)=p endfunction 10. Voici un code qui dessine plusieurs trajectoires de la chaîne. clf() n=input("longueur des trajectoires : ") k=input("nombre de trajectoires : ") p=input("proba de ne pas avoir d accident : ") y=grand(n, markov,mat_bonus(p),ones(1,k)) //y a k lignes contenant des trajectoires de longueur n y=[ones(1,k) y] //on ajoute les points de départ : y a k lignes et n+1 colonnes m=ones(k,1)*[1:n+1]-1//matrice à k lignes égales toutes à 0,1,2,...,n plot2d(m,y ) n1=string(n);p1=string(p);k1=string(k); xtitle([k1 trajectoires de longueur n1 de l évolution du bonus avec proba de ne pas avoir d accident p1], temps, états,boxed=1) 11. Voici un code qui dessine plusieurs trajectoires des moyennes empiriques des bonus. clf n=input("longueur des trajectoires : ") k=input("nombre de trajectoires : ") p=input("proba de ne pas avoir d accident : ") y=grand(n-1, markov,mat_bonus(p),ones(1,k)) //y a k lignes contenant des traj. de longueur n-1 y=[ones(1,k) y]//on ajoute les points de départ : y a k lignes et n colonnes y=cumsum(y, c )//on fait les sommes cumulées des trajectoires m=ones(k,1)*[1:n]//matrice à k lignes égales toutes à 1,2,...,n y=y./m// matrice à k lignes égales toutes à S_0/1, S_1/2, S_2/3,..., S_{n-1}/n mat=m-1// matrice à k lignes égales toutes à 0,1,2,...,n plot2d(mat,y ) n1=string(n);p1=string(p);k1=string(k); xtitle([ evolution des moy empiriques du bonus sur k1 trajectoires de longueur n1 avec proba de pas d accident p1], temps, moy empirique,boxed=1) 12. Voici un code qui représente les fréquences empiriques de visite des états sur une trajectoire et les compare à la loi invariante. clf n=input("longueur de la trajectoire : ") p=input("proba de ne pas avoir d accident : ") Q=mat_bonus(p) y=grand(n-1,"markov",q,1) //y =vecteur ligne contenant des trajectoires de longueur n-1 y=[1 y]//on ajoute les points de départ : y a 1 ligne et n colonnes histplot([0.5:6.5],y,style=5) plot2d([1:6],eigenmarkov(q),style=-5) n1=string(n);p1=string(p); 17

19 xtitle([ Fréquence empirique de visite des états sur une trajectoire de longueur n1 avec proba de ne pas avoir d accident p1], états, fréq empirique,boxed=1) 13. Voici un code qui représente l a loi empirique de X n calculée sur plusieurs trajectoires. clf n=input("valeur de n : ") k=input("nombre de simulations : ") p=input("proba de ne pas avoir d accident : ") Q=mat_bonus(p) y=grand(n,"markov",q,ones(1,k)) //y a k lignes contenant des trajectoires de longueur n histplot([0.5:6.5],y(:,n),style=5) plot2d([1:6],eigenmarkov(q),style=-5) n1=string(n);p1=string(p);k1=string(k); xtitle([ Loi empirique de X_n calculée sur k1 simulations avec n= n1 et proba de ne pas avoir d accident p1], etats, freq empiriques,boxed=1) 10.3 Mobilité sociale 1. E= ensemble des catégories socio-professionnelles (CSP). 2. Supposons que la CSP évolue au fil des générations comme une chaîne de Markov homogène. Dans ce cas, les transitions Q xy = P (CSP du fils = y CSP du père = x) ne sont pas données a priori, elles doivet être évaluées par l observation. Sur une population donnée de taille N, on regarde n xy = nombre d individus de CSP y et dont le père est de CSP x, n x = y E n xy = nombre total d individus dont le père est de CSP x et on pose Q xy = n xy n x. Par construction, Q est une matrice de transition. 3. En pratique, Q est à coefficients strictement positifs donc irréductible et apériodique. La chaîne associée converge donc en loi vers son unique loi invariante. Cette loi représente l état d équilibre d une population dont la mobilité sociale a une structure correspondant à la matrice Q. 4. Bien sûr, l hypothèse d une évolution markovienne homogène est peu réaliste et doit être nuancée. Nous renvoyons à l article [T] pour une étude approfondie Score au tennis 1. E= ensemble des scores possibles dans un jeu au tennis opposant les joueurs A et B ( E = 18). 2. Evolution : on suppose les points indépendants les uns des autres et qu à chaque point A gagne avec probabilité a et perd avec probabilité b = 1 a. 3. La site (X n ) des scores est une CM. Les deux classes récurrentes sont les singletons absorbants {A gagne}, {B gagne}. {(40, 30), (40, 40), (30, 40)} est une classe transiente et les 13 autres classes transientes sont les singletons restants. 4. Voici une fonction qui génère la matrice de transition function m=mat_tennis(a) //calcule la mat de transition du tennis avec joueurs A et B // // a= proba que A gagne un point, 1-a = proba que B gagne un point //les états sont (score de A, score de B) et numérotés ainsi 1 : 0-0, // 2 : 0-15, 3 : 15-0, 4 : 30-0, 5 : 15-15, 6 : 0-30, 7 : 0-40, //8 : 15-30, 9 : 30-15, 10 : 40-0, 11 : : 30-30, 13 : 15-40, 18

20

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun

L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun 9 L E Ç O N Marches aléatoires Niveau : Terminale S Prérequis : aucun 1 Chaînes de Markov Définition 9.1 Chaîne de Markov I Une chaîne de Markov est une suite de variables aléatoires (X n, n N) qui permet

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

http://cermics.enpc.fr/scilab

http://cermics.enpc.fr/scilab scilab à l École des Ponts ParisTech http://cermics.enpc.fr/scilab Introduction à Scilab Graphiques, fonctions Scilab, programmation, saisie de données Jean-Philippe Chancelier & Michel De Lara cermics,

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Introduction au Calcul des Probabilités

Introduction au Calcul des Probabilités Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail