Infographie Plan du cours

Dimension: px
Commencer à balayer dès la page:

Download "Infographie Plan du cours"

Transcription

1 Plan du cours Introduction Images et techniques d'affichage Bases Correction gamma Aliasing et techniques pour y remédier Stockage 1

2 Plan du cours Perspective 3D & transformations 2D / 3D Passer d'un espace 3D vers un dispositif d'affichage 2D Deux paradigmes de génération d'images Représentation de courbes et surfaces Splines & co. Rendu réaliste (Ray tracing) Concepts et bases théoriques 2

3 Plan du cours Eclairage Lois de réflexion etc...textures Colorimétrie Espaces de couleur Métamères Pipeline graphique et OpenGL Primitives Discrétisation (Rasterization) Faces cachées Animations 3

4 Surfaces Surfaces paramétriques Interpolation : Patch de Coons Approximation : surfaces B-splines Surfaces de subdivision 4

5 Surfaces paramétriques 5

6 Surfaces paramétriques Patches de Coons Surfaces «produit tensoriel» Triangle de Bézier 6

7 Patches de Coons Patch de Coons bilinéaire Steven Anson Coons (travaux publiés en 1967 mais issus de travaux durant WWII dans l'aéronautique) Soit 4 courbes paramétrées (Bézier ou B-Splines ou autres) se rencontrant en 4 points (A,B,C,D) : P1(u), P2(u), Q1(v), Q2(v) tels que P1(0)=A=Q1(0) P1(1)=B=Q2(0) Q2(1)=C=P2(1) Q1(1)=D=P2(0) La surface S(u,v) est portée par ces 4 courbes P2 D S(u,v) Q1 A P1 C Q2 B 7

8 Patches de Coons On définit 3 surfaces réglées par interpolation linéaire: S 1 u, v = 1 v P 1 u vp 2 u S 2 u, v = 1 u Q1 v uq 2 v S 3 u, v = 1 u 1 v A u 1 v B v 1 u D uvc S 2 u, v S 1 u, v S 3 u, v 8

9 Patches de Coons Le patch bilinéaire de Coons est défini par : S u, v =S 1 u, v S 2 u, v S 3 u, v Pourquoi? S1 interpole A,B,C,D S2 aussi S1+S2 ne peut donc interpoler A,B,C,D que si l'on y retire un terme dépendant uniquement de A,B,C,D et linéaire sur chaque bord. S u, v 9

10 Patches de Coons Caractéristiques du patch de Coons bilinéaire Facile à construire Basé sur des courbes frontières quelconques Pas de contrôle de la forme intérieure de la surface Impossible d'imposer une continuité C1 entre deux patches voisins sans contraintes sur les courbes frontières 10

11 Patches de Coons Il existe un patch de Coons bicubique Interpolation de Hermite 4 positions aux coins 8 dérivées normales le long des bords 4 vecteurs torsion aux coins S(u,v) Permet d'imposer la continuité de la dérivée le long des bords des patches. (cf. splines ) Non développé ici. 11

12 Surfaces B-Splines 12

13 Surfaces B-Splines Surfaces B-Splines Définition comme produit tensoriel : n m S u, v = N ip u N qj v P ij i=0 j=0 Chaque direction u et v impose un degré (p et q) et une séquence nodale U et V : U ={0,,0, u p 1,, u r p 1,1,,1 } r 1 noeuds p 1 p 1 V ={0,, 0, v q 1,, v s q 1,1,,1 } q 1 s 1 noeuds q 1 On a une grille de points de contrôles Pij (il y en a (n+1)(m+1) On a les relations suivantes : r=n p 1 s=m q 1 13

14 Surfaces B-Splines Exemple de fonctions de formes U ={0, 0, 0,0,1/4,1/ 2, 3/ 4,1,1,1,1} p=3 V ={0, 0, 0,1/5, 2/5, 3/5, 3/5, 4/5,1,1,1} q=2 N 24 v N 22 v N 34 u N 34 u N 24 v fonction de forme associée à P 44 N 34 u L. Piegl «The NURBS Book» N 34 u N 22 v fonction de forme associée à P 42 14

15 Surfaces B-Splines Propriétés des fonctions de forme de surface Conséquences des propriétés des FF linéiques Non-négativité N ip u N qj v 0 i, j, p, q, u, v Partition de l'unité n m p q N u N i j v =1 u, v [u min, u max ] [v min, v max ] i=0 j=0 Support compact N ip u N qj v =0 u, v [ ui, ui p 1 [ [ v j, u j q 1 [ Il y a au plus (p+1)(q+1) FF non nulles dans un intervalle donné [ ui, ui 1 [ [ v j, u j 1 [. En particulier N ip u N qj v 0 i 0 p i i 0 j 0 q j j

16 Surfaces B-Splines Propriétés des fonctions de forme de surface Extrêma p q N u N Si p>0 et q>0, i j v a un maximum unique. Continuité À l'intérieur des rectangles formés par les nœuds ui et vj, les FF sont infiniment dérivables. p q À un noeud ui (resp. vj), N i u N j v est (p-k) (resp. (qk) ) fois dérivables, k étant la multiplicité du noeud ui (resp. vj) La continuité selon u (resp. v) est uniquement dépendante de la séquence nodale U (resp. V). 16

17 Surfaces B-Splines N 32 u N 22 v N 34 u N 24 v U ={0, 0, 0,0,1, 2, 2, 2, 2} p=3 U ={0, 0, 0,0,1, 2, 3, 4, 5,6,6,6,6} V ={0, 0, 0,1, 2,3, 3, 3} p=2 V ={0, 0, 0,1, 2, 3, 4,5,6, 7, 7, 7} 17

18 Surfaces B-Splines N 30 u N 28 v N 31 u N 27 v N 38 u N 28 v N 30 u N 28 v N 37 u N 27 v N 31 u N 27 v N 38 u N 20 v N 37 u N 21 v U ={0, 0, 0,0,1, 2, 3, 4, 5,6,6,6,6} p=3 V ={0, 0, 0,1, 2, 3, 4,5,6, 7, 7, 7} q=2 18

19 Surfaces B-Splines Calcul d'un point d'une surface 1 Trouver l'intervalle nodal dans lequel se trouve u u [ u i, u i 1 [ 2 Calculer les fonctions de formes non nulles p p N i u,, N p i u 3 Trouver l'intervalle nodal dans lequel se trouve v v [ v j, u j 1 [ 4 Calculer les fonctions de formes non nulles N qj q v,, N qj v 5 Multiplier les valeurs des ff non nulles avec les points de contrôle correspondants S u, v = N kp u P kl N lq v i p k i, j q l j k l 19

20 Surfaces B-Splines Point de contrôle Position correspondante à un couple (ui,vj) V ={0,0,0,1, 2,3,3, 3} p=2 U ={0, 0, 0, 0,1, 2,3,3,3, 3} p=3 Chaque carreau coloré a une expression polynomiale indépendante 20

21 Surfaces B-Splines U ={0, 0, 0,0,1, 2, 2, 2, 2} p=3 V ={0, 0, 0,1, 2,3, 3, 3} p=2 21

22 Surfaces B-Splines Répétitions dans la séquence nodale U ou V Discontinuités dans les iso-v ou les iso-u U ={0, 0, 0,0, 2, 2, 2, 4, 4, 4, 4} p=3 V ={0, 0, 0,1.5,1.5, 3, 3,3} p=2 22

23 Surfaces B-Splines Propriétés de la surface B-Spline Interpole les 4 coins si les séquences nodales sont de la forme U ={0,, 0, u p 1,, ur p 1,1,,1 } p 1 p 1 V ={0,, 0, v q 1,, v s q 1,1,,1 } q 1 q 1 Si les séquences nodales correspondent à des courbes de Bézier : U ={0,, 0,1,,1 } 0,1,,1 } V ={0,, p 1 p 1 q 1 q 1 Alors la surface est une carreau de Bézier 23

24 Surfaces B-Splines Propriétés de la surface B-Spline La surface est pourvue de la propriété d'invariance affine (invariance par translation en particulier) L'enveloppe convexe du polyèdre de contrôle contient la surface. Dans chaque intervalle u, v [ ui, u i 1 [ [ v j, u j 1 [, la portion de courbe est dans l'enveloppe convexe des points de contrôle P ij, i, j tq i 0 p i i 0 j 0 q j j Chaque point de contrôle a un contrôle local Il n'y a pas de propriété de variation décroissante globale (contrairement aux courbes B-Spline) 24

25 Surfaces B-Splines Isoparamétriques Obtention d'isoparamétriques aisée : Posons u=u0 n m C u v =S u 0, v = N i u 0 N j v P ij 0 i=0 j=0 m q j j=0 p q n m i=0 j=0 = N v N ip u0 P ij = N qj v Q j u0 n avec Q j u 0 = N ip u 0 P ij i=0 Idem avec v=v0 n C v u =S u, v 0 = N ip u Qi v 0 0 i=0 m avec Q i v0 = N qj v 0 P 25 ij j=0

26 Surfaces B-Splines Surfaces périodiques Tout comme les courbes, possibilité de refermer une surface B-Spline en transformant la séquence nodale Selon une direction (u ou v) Surfaces cylindriques Un seule séquence nodale périodique «doublement» des noeuds de part et d'autre de la couture Selon les deux directions (u et v) Surfaces toriques Deux séquences nodales périodiques Certains noeuds sont répétés 4 fois! 26

27 Surfaces B-Splines v u v u Tuyau Ruban de Moëbius 27

28 Surfaces B-Splines U ={ 3, 2, 1,0,1, 2,3, 4,5, 6,7,8, 9,10,11,12,13,14,15} p=3 28 V ={0, 0, 0,1, 2,3, 4,5,6,7,7, 7} p=2

29 Surfaces B-Splines U ={ 3, 2, 1,0,1, 2,3, 4,5, 6,7,8, 9,10,11,12,13,14,15} p=3 29 V ={0, 0, 0,1, 2,3, 4,5,6,7,7, 7} p=2

30 Surfaces B-Splines v u v u Tore Tore vrillé... 30

31 Surfaces B-Splines 31

32 Surfaces B-Splines 32

33 Surfaces B-Splines U ={ 3, 2, 1,0,1, 2,3, 4,5, 6,7,8, 9,10,11,12,13,14,15} p=3 33 V ={ 2, 1, 0, 1, 2, 3, 4,5, 6, 7, 8,9} p=2

34 Surfaces B-Splines v u Bouteille de Klein 34

35 Triangle de Bézier 35

36 Triangle de Bézier Besoin de surfaces de topologie particulière «Coin de valise» S. Hahmann 36

37 Triangle de Bézier Il existe plusieurs techniques pour modéliser les coins de valises C'est un problème difficile... Prendre un carreau à 4 cotés et la «limiter» par un triangle dans l'espace paramétrique Pb : la surface en question n'est pas construite avec les pts de contrôle des autres surfaces v u 37

38 Triangle de Bézier B-splines triangulaires 1992 : travaux de Dahmen, Micchelli et Seidel W. Dahmen, C.A. Micchelli and H.P. Seidel, Blossoming begets BSplines built better by B-patches, Mathematics of Computation, 59 (199), pp , 1992 Extension de la définition des B-Splines sur des surfaces triangulées de topologie quelconque Réseau de points de contrôle «Maillage» de noeuds non structuré en place du réseau structuré des B-splines de type produit tensoriel Complexe et pas implémenté dans les logiciels de CAO actuels 38

39 Triangle de Bézier Surfaces de bézier triangulaires Exemple : surface d'ordre 3 39

40 Triangle de Bézier a Coordonnées barycentriques p=u a v b w c u v w=1 b Invariance affine 0 u, v, w 1 p est dans le triangle u= p c aire p,b, c aire p, c, a aire p, a, b v= w= aire a, b, c aire a, b, c aire a, b, c 40

41 Triangle de Bézier Coordonnées barycentriques a w v w u b w v p u u v c 41

42 Triangle de Bézier Décomposition du triangle de Bézier Définie par les points de contrôle Pi,j,k Degré d : i+j+k=d Exemple avec d=3 k=d i j P0,3,0 P0,2,1 P1,2,0 P0,1,2 P1,1,1 P2,1,0 P0,0,3 P1,0,2 P2,0,1 P3,0,0 P0,3,0 P0,0,3 En tout, d 2 d 1 points de contrôle. 2 P1,2,0 P3,0,0 42

43 Triangle de Bézier Algorithme de de Casteljau sur le triangle Les Pi,j,k sont donnés On veut P(u,v,w) avec u+v+w=1 On calcule la séquence suivante : r r 1 r 1 r 1 P i, j, k u, v, w =u P i 1, j, k v P i, j 1, k w P i, j, k 1 pour r de 1 à d et pour i+j+k=d-r P 0i, j, k u, v, w = P i, j, k Le point recherché est le dernier point calculé : d P u, v, w = P 0,0,0 u, v, w 43

44 Triangle de Bézier Algorithme de de Casteljau sur le triangle d P 0,0,0 u, v, w 44

45 Triangle de Bézier Caractéristiques Invariance affine Courbe contenue dans l'enveloppe convexe Interpolation des sommets Bords du triangle formé de courbes de Bézier Forme algébrique : autre forme des polynômes de Bernstein P u, v, w = B id, j, k u, v, w P i, j, k i j k =d d! B u, v, w = ui v j w k i! j!k! avec (récurrence) d 1 d 1 d 1 B id, j, k u, v, w =ub i 1, vb wb j,k i, j 1, k i, j, k 1 d i, j,k B 00,0,0 u, v, w =1 45

46 Triangle de Bézier Caractéristiques (suite) Contrairement aux surfaces obtenues par produit tensoriel, le triangle de Bézier est une surface à variation décroissante. 46

47 Surfaces de subdivision 47

48 Surfaces de subdivision Surfaces paramétriques : représentation explicite Représentation légère Algorithmes de discrétisation non triviaux... mais discrétisation nécessaire pour l'affichage et l'utilisation en infographie En général, ces surfaces sont utilisées pour une représentation géométrique précise en vue d'opérations de modélisation ultérieures (intersections, calculs géométriques précis, etc...) Opérations de modélisation non triviaux Pour l'infographie, une telle précision n'est en général pas indispensable 48

49 Surfaces de subdivision Surfaces de subdivision Base de la représentation = maillage élémentaire Par itérations successives, ce maillage est raffiné jusqu'à la précision souhaitée Il s'agit d'une représentation algorithmique plutôt que algébrique, car c'est l'algorithme utilisé pour subdiviser qui détermine la forme finale et les propriétés de la surface Certaines de ces surfaces sont équivalentes à des surfaces paramétriques «habituelles». 49

50 Surfaces de subdivision Historique 1974 George Chaikin An algorithm for high speed curve generation 1978 Daniel Doo & Malcolm Sabin (D) A subdivision algorithm for smoothing irregularly shaped polyhedrons (D&S) Behaviour of recursive division surfaces near extraordinary points Edwin Catmull & Jim Clark Recursively generated B-Spline surfaces on arbitrary topological meshes 1987 Charles Loop Smooth subdivision surfaces based on triangles 2000 Leif Kobbelt 3 subdivision (schéma interpolant) 50

51 Surfaces de subdivision Algorithme de Chaikin George Chaikin, An algorithm for high speed curve generation, Computer graphics and Image Processing 3 (1974),

52 Surfaces de subdivision Algorithme de Chaikin Ou «Corner-cutting» 52

53 Surfaces de subdivision Algorithme de Chaikin L'idée de Chaikin est simple : répéter l'opération, à la limite on obtient une courbe lisse. 53

54 Surfaces de subdivision Algorithme de Chaikin Partant d'un polygone à n points {P0,P1, Pn-1}, on construit le polygone formé de 2n points {Q0,R0,Q1,R1, Qn-1,Rn-1}. Ce polygone sert de base pour une étape supplémentaire de l'algorithme : {P'0,P'1, P'2n-1} 3 1 Les nouveaux points sont les suivants : Qi = P i P i Ri = P i P i 1 P1 4 4 R0 Q0 P0 Q1 Pn R1 Rn-1 Qn-1 Pn-1 54

55 Surfaces de subdivision Algorithme de Chaikin Riesenfeld (1978) a montré que cet algorithme génère en fait une Bspline quadratique uniforme, pour laquelle la continuité est C1. P0 Q0 R0 3 1 Q i = P i P i Ri = P i P i P1 Q1 Pn R1 Rn-1 Qn-1 Pn-1 55

56 Surfaces de subdivision Démonstration de l'équivalence entre le schéma de Chaikin et les courbes B-Splines uniformes quadratiques La courbe B-Spline quadratique est définie n par : P u = P i N 2i u i=0 u u i u i 3 u 1 1 N u = N i u N i 1 u u i 2 u i u i 3 u i 1 2 i 1 N i u = 0 N i u = u u i u i 2 u 0 0 N i u N i 1 u u i 1 u i u i 2 u i 1 { 1 si 0 sinon ui u u i 1 U ={u 0,, u n 2 }, u i 1 u i =1, i=0 n 1 56

57 Surfaces de subdivision On peut mettre sous forme monomiale : n 2 i n 2 «Morceau» de courbe P u = P i N u = P k u i=0 k =0 [ ] Pk avec P k u =[1 u u ] M k P k 1 P k 2 2 La matrice Mk dépend de la séquence nodale P1 P3 P4 P2(u) P0(u) P0 P1(u) P2 57

58 Surfaces de subdivision Calcul des fonctions de forme de degré d 2 pour 0 u 1 U ={u 0 = 2, u 1 = 1, u 2 =0,u 3 =1,u 4 =2, u 5=3} 0 N 0= N =0 0 N 1 =0 0 N 2 =1 N 30=0 N =1 u N =u N =0 N 04 =0 Cas général : M k = 1 u k 3 u k 2 avec : =u k 3 u k 1 =u k 4 u k 2 [ 2 u k 3 u 2 k N 20 = 1 2 u u N 12 = 1 2 u 2 u N 22 = u D'où M 0 = u k 3 u k 1 u k 4 u k 2 u k 2 u k 3 u k 1 u k 4 u k 2 u 2 k ] [ ] 58

59 Surfaces de subdivision Subdivision binaire d'une courbe B-Spline 0 u 1 Consiste en l'expression des P.C. correspondant à chaque moitié de la courbe On va poser ici n=2 (nombre de P.C.) [] P0 P u =[1 u u ] M P 1 P2 2 On veut exprimer P[0,1 /2] u et P[1 /2,1] u de telle façon que sur chaque subdivision le paramètre u soit compris entre 0 et 1. P0 [ M = ] P1 P[0,1 /2] u P[1 /2,1] u P2 59

60 Surfaces de subdivision Cas de P[0,1 /2] u [] ] [] P0 P[0,1 /2] u = P u/ 2 =[1 u /2 u /4] M P 1 P2 2 [ P =[1 u u ] 0 1/2 0 M P /4 P2 2 [ ] [] [] [] [ P =[1 u u ] M M 0 1/ 2 0 M P /4 P2 2 1 Q0 =[1 u u ] M Q 1 Q2 2 avec ] [] Q0 P Q1 =M 0 1/ 2 0 M P / 4 Q2 P2 S [0,1 /2] 60

61 Surfaces de subdivision Cas de P[1 /2,1] u [] P0 P[1 /2,1] u = P 1 u / 2 =[1 1 u /2 1 u / 4] M P 1 P2 2 [ ] [] [ ] [] [] [] [ P0 1 1/2 1/4 =[1 u u ] 0 1/2 1/2 M P /4 P2 2 P0 1 1/ 2 1/ 4 =[1 u u ] M M 0 1/ 2 1/ 2 M P / 4 P2 2 1 R0 =[1 u u ] M R 1 R2 2 avec ] [] R0 P0 1 1/ 2 1/4 1 R 1 =M 0 1/ 2 1/2 M P /4 R2 P2 S [1/ 2,1] 61

62 Surfaces de subdivision Au final, [] [] [] [] [ [ ] [ ] [] [ ] ] [ ] [] [ ] Q0 P0 Q1 =S [ 0,1/2] P 1 Q2 P S [0,1/ 2]=M 0 1/2 0 M = / Q0 3 P 0 P 1 1 Q 1 = P 0 3 P 1 4 Q2 3 P 1 P 2 R0 P0 R 1 =S [1/ 2,1] P 1 R2 P2 1 1/ 2 1/ S [1/ 2,1]=M 0 1/ 2 1/ 2 M = / R0 P 3 P R 1 = 3 P 1 P 2 4 R2 P 1 3 P P1 Q1 = R 0 Q2= R1 Q0 P0 On retrouve les coefficients du schéma de Chaikin... (aux indices près) R2 P[0,1 /2] u P[1 /2,1] u P2 3 1 Qi = P i P i Ri = P i P i

63 Surfaces de subdivision Extension aux B-Splines cubiques Continuité C2 1 1 E i = P i P i V i = P i P i 1 P i P1 P0 E0 V0 E1 Pn V1 En-1 Pn-1 63

64 Surfaces de subdivision Schéma de Doo-Sabin Extension du schéma de Chaikin pour une surface B-Spline biquadratique uniforme Construction par la détermination des nouveaux points de contrôle de la subdivision du patch en 4 nouveaux patches. P02 P00 S1(u,v) S (u,v) 3 S2(u,v) P20 S4(u,v) P22 64

65 Surfaces de subdivision Expression du patch bi-quadratique sous forme monomiale pour 0 u 1 et 0 v 1: N t = 1 2 t t S u, v = N i u N j v P ij 1 i=0 j=0 (avec t = u ou t = v ) N 21 t = 1 2 t 2t 2 2 U =V ={ 2, 1,0,1,2,3} 1 N 22 t = t 2 2 P 0 v P02 2 P00 S u, v =[1 u u ] M P 1 v v P 2 v u P 00 P 01 P 02 1 T S u, v =[1 u u ] M P 10 P 11 P 12 M v v2 P 20 P 21 P 22 2 P20 [ ] [ ] [] P22 [ On retrouve M = ] 65

66 Surfaces de subdivision Subdivision - patch S1(u,v) P 00 P 01 P 02 P= P 10 P 11 P 12 P 20 P 21 P 22 1 S 1 u, v =S u/ 2, v/ 2 =[1 u u ] C M P M C v v C= 0 1/ / 4 T 2 P02 P00 S1(u,v) P22 T [ T [] [] ] ] 1 =[1 u u ] M M C M P M C M M v v T T =[1 u u ] M M C M P M C M M v v2 1 2 T =[1 u u ] M P ' M v P ' =S P S T S =M 1 C M v P20 [ [ ] [] 1 S 1 u, v =S u/ 2, v/ 2 =[1 u /2 u /4] M P M v /2 v 2 /4 2 T 1 [] T 1 T T

67 Surfaces de subdivision P02 P00 Au final P ' =S P S T P'00 [ ] ][ ] S =M C M = [ ][ P 00 P 01 P P'= P 10 P 11 P P 20 P 21 P P'20 P'02 S1(u,v) P'22 P20 [ 3 3 P 00 P 10 3 P 01 P 11 3 P 00 P P 01 P P 01 P 11 3 P 02 P 12 1 P'= 3 P 00 3 P 10 P 01 3 P 11 P 00 3 P 10 3 P 01 3 P 11 3 P 01 3 P 11 P 02 3 P P 10 P 20 3 P 11 P 21 3 P 10 P P 11 P P 11 P 21 3 P 12 P 22 P22 ] 67

68 Surfaces de subdivision Extension aux maillages de topologie arbitraire P00 P20 P02 P22 On constate que les nouveaux points de contrôle sont obtenus par la moyenne simple entre 3 catégories de points : Les anciens points de contrôles Les points sur les arêtes (situés au barycentre des extrémités de l'arête) Les points sur les faces (situés au barycentre des sommets de la face) 68

69 Surfaces de subdivision Extension aux maillages de topologie arbitraire 1 Calcul des points P' (pour chaque sommet P, faire la moyenne de P, des points situés sur les faces et des points situés sur les arêtes adjacentes 69

70 Surfaces de subdivision Extension aux maillages de topologie arbitraire 2 Pour chaque face, relier les points P' créés à partir des sommets de la face 70

71 Surfaces de subdivision Extension aux maillages de topologie arbitraire 3 Pour chaque ancien point de contrôle, connecter les nouveaux points créés pour toutes les faces adjacentes à cet ancien PC. 71

72 Surfaces de subdivision Présence de points «extraordinaires» sur la surface limite Correspondent à des P.C. dont la valence est 4 Partout la continuité de la surface limite est C1 ; sauf aux points extraordinaires, où elle est C0. Image : wikipedia 72

73 Surfaces de subdivision Schéma de Catmull-Clark Idée similaire, pour des surfaces B-Spline bicubiques. P00 P03 P30 P33 73

74 Surfaces de subdivision Trois types de points - Les points «face» sont positionnés au barycentre des sommets de la face : P f =Q - Les points «arête» sont positionnés au barycentre entre les extrémités de l'arête et les deux points «face» des faces adjacentes : Q R P e= 2 - Les points «sommets» sont positionnés ainsi : Q 2 R n 3 S Pv= n Q = moyenne des barycentres des faces incidentes R = moyenne des barycentres des arêtes incidentes S = Sommet original n = nombre d'arêtes incidentes à S. Points «face» Points «arête» Points «sommet» 74

75 Surfaces de subdivision Reconnexion des nouveaux points de contrôle 1 Connecter les points «face» aux points «edge» des arêtes communes 2 Connecter les points «sommets» aux points «edges» des arêtes incidentes Images : Ken Joy - UCLA 75

76 Surfaces de subdivision Comme pour les surfaces de Doo-Sabin, la contiunité est dégradée pour quelques points «extraordinaires». Les surfaces sont bicubiques donc : Continuité C2 partout sauf aux points extraordinaires : C1. Images : Imorasa Suzuki 76

77 Surfaces de subdivision Schéma de Loop Permet la subdivision de surfaces triangulées Surface limite C2, sauf aux points de valence <>6, C1. Le principe est le découpage de triangles en 4 triangles. Des points-sommets sont créés, ainsi que des points-arrêtes (rouges) V E V 1= 10 V +Q 1+Q 2 +Q3 +Q 4 +Q 5 +Q = V+ Q 8 8 E 1= 6 V 1 +6 V 2 +2 F F

78 Surfaces de subdivision Ne fonctionne ici que pour des sommets de valence 6 On peut étendre à des sommets de valence quelconque, à condition de modifier la formule. Telle quelle, elle mène à des surfaces limites non lisses. On pose V 1 =α nv +(1 α n )Q avec 3 1 3π 2 3 α n = + cos n 8 n est ici la valence du sommet original. ( ) Cas des frontières : les sommets ne doivent pas rentrer dans la surface mais se déplacer le long de la frontière. On retombe sur le cas d'une B-Spline cubique ( cf. slide 63) E 1= 11 1 E V V 1 +V 2 2 * 1 Q +Q 6 V 1= V * 2 (seulement les sommets voisins sur la frontière) 78

79 Schéma sqrt(3) de Kobbelt CF papier sur le site web du cours Pour un même niveau de raffinement, moins de triangles sont générés que le schéma de Loop 79

80 Catia en architecture 80

81 Applications architecturales Catia en architecture Frank O. Gehry (Fish sculpture, Barcelona,1992) 81

82 Applications architecturales Catia en architecture Frank O. Gehry (Guggenheim museum, Bilbao,1997) 82

83 Applications architecturales Catia en architecture Frank O. Gehry (Guggenheim museum, Bilbao,1997) 83

84 Applications architecturales Catia en architecture Frank O. Gehry (Walt Disney concert hall, Los Angeles,2003) Carol M. Highsmith 84

85 Lancer de rayon «ray tracing» 85

86 Lancer de rayon Principes du lancer de rayon Intersection d'un rayon provenant de l'oeil avec les objets de la scène Sources de lumière illum on d e Point visible on Ray inati Observateur visio n Objets dans la scène 86

87 Lancer de rayon Algorithme Pour chaque pixel { calculer le rayon de vue intersecter le rayon avec la scène calculer l'illumination au point visible afficher la couleur obtenue } Plan de vue (écran) nx*ny pixels 87

88 Lancer de rayon Calcul des rayons Projection perspective Point de vue Plan de vue (écran) Rayon de vision Projection orthographique Position du pixel Plan de vue (écran) Position du pixel Rayon de vision 88

89 Lancer de rayon Calcul des rayons - projection orthographique On doit calculer la position de p dans le plan de l'écran, ainsi que le vecteur v d Plan de vue (écran) p On utilise une équation paramétrique r t =p t d Mais ou se situe le plan de l'écran dans l'espace 3D? 89

90 Lancer de rayon Calcul des rayons - projection orthographique Détermination du plan de vue On établit un repère lié à la caméra : (e,u,v,w) Le plan de vue est dans le plan u-v; celui ci est spécifié par les valeurs l,r,t,b (cf cours coord. homogènes) Le rayon s'exprime alors, en fonction des coordonées (u,v) du pixel p=e u u v v d= w r t =p t d v w u=r u=l e u v= t v= b 90

91 Lancer de rayon Calcul des rayons - projection perspective e=p d=s-e s Rayon de vision r t =p t d 91

92 Lancer de rayon Calcul des rayons - projection perspective Détermination du plan de vue Les coordonnées de s sont (u,v,-d) Le rayon s'exprime alors, en fonction des coordonées (u,v,w) du pixel s s=e u u v v d w p=e d=s e r t =p t d v e w u=r u=l v= t d v= u b 92

93 Lancer de rayon Du pixel vers l'image j = 3.5 j = -0.5 v=t (0,1) (1,1) (0,0) (1,0) (2,0) v=b i = -0.5 i = 3.5 u=l r l i 0.5 nx u=l v=b t b j 0.5 ny u=r 93

94 Lancer de rayon Calculs d'intersection Les rayons intersectent les objets de la scène 94

95 Lancer de rayon Le rayon a une équation paramétrique r t =p t d On impose t>0 pour former une demi-droite Un rayon est donc directionnel 95

96 Lancer de rayon Intersection rayon sphère Condition 1 : être le long du rayon r t =p t d Condition 2 : être sur la surface de la sphère 2 x =1 x =1 Forme implicite f x =x x 1=0 On substitue et on reporte p t d p t d 1=0 Équation quadratique en t 96

97 Lancer de rayon Intersection rayon sphère SolutionS pour t : d p± d p d d p p 1 t= d d 2 t = d p± d p p p 1 si d est unitaire 2 Prendre la plus proche (tmin) des solutions situées du bon coté (t > 0) 97

98 Lancer de rayon Intersection rayon boîte On pourrait faire les intersections avec les 6 faces individuellement Il est plus simple de faire avec les intersections avec les trois «tranches» 98

99 Lancer de rayon Intersection rayon tranche { r x t = p x t d x r t =p t d r y t = p y t d y t ymax p x t xmin d x = x min t xmin = x min p x / d x t xmax = x max p x / d x p y t ymin d y = y min t ymin = y min p y / d y t ymax = y max p y / d y t xmax y max t xmin y min t ymin x min x max 99

100 Lancer de rayon On a les intersections avec les tranches. Comment obtenir les intersections avec la boîte? Combiner judicieusement les résultats obtenus... Le point de sortie du rayon est le plus petit t * max Le point d'entrée du rayon est le plus grand t * min t xmax t ymax t max =min t xmax,t ymax t min =max t xmax, t ymax Il faut encore vérifier que t max t min t xmin t ymin 100

101 Lancer de rayon Intersection rayon triangle Condition 1 : être sur le rayon r t =p t d Condition 2 : être dans le plan du triangle x a n=0 Condition 3 : être à l'intérieur du triangle n a On résoud 1&2 p t d a n=0 (a p) n t= d n 101

102 Lancer de rayon Intérieur du triangle (orienté...) Intersection de trois demi plans On vérifie que l'on est dans chaque demi-plan b a x a n 0 c b x b n 0 a c x c n 0 ou avec le produit mixte : a c b b a, x a, n 0 c b, x b, n 0 a c, x c, n 0 102

103 Lancer de rayon Intersection rayon triangle Doit être rapide Doit être robuste Il existe un certain nombre d'algorithmes efficaces Cf site du cours pour des pdfs: T. Möller and B. Trumbore. Fast, Minimum Storage Ray-Triangle Intersection. Journal of Graphic Tools, 2(1), 21 28, E. Galin, S. Akkouche, Fast processing of triangle meshes using triangle fans, Intl Conf. On Shape Modeling and Applications, 2005 M. Shevtsov, A. Soupikov and A. Kapustin, Ray-Triangle Intersection Algorithm for Modern CPU Architectures, GraphiCon International Conference on Computer graphics & Vision,

104 Lancer de rayon Bases du raytracing : Soit S est une sphère(o,r) Pour chaque pixel de l'ecran i,j { rayon r=camera.calcule_rayon(i,j) S.intersecte(r,0,+infini,test_intersecte,t) si (test_intersecte) est vrai colorie le pixel i,j en blanc } 104

105 Lancer de rayon Intersection avec de nombreuses primitives Pour une direction donnée, on veut l'intersection la plus proche de l'observateur... l'idée est la suivante: groupe.intersecte(r,tmin,tmax, tbest,surface_proche) { initialiser tbest à +infini initialiser surface_proche à «rien» Pour chaque primitive s { calculer l'intersection de s avec le rayon r intersection = s.intersecte(r,tmin,tbest) si (intersection) tbest = t ; surface_proche = s } } Cet algorithme est linéaire en fonction du nombre de primitives (il existe des méthodes meilleures cf suite) 105

106 Lancer de rayon Modification du ray-tracer et image obtenue Soit S une scène Pour chaque pixel de l'ecran i,j { rayon r=camera.calcule_rayon(i,j) c=s.trace(r,0,+inf) colorie le pixel i,j de la couleur c } Scene.trace(r,tmin,tmax) { groupe.intersecte(r,tmin,tmax,surf,t) si (surf non vide) retourne la couleur de la surface sinon retourne la couleur noire } 106

107 Lancer de rayon Ombrages On doit tenir compte d'un éclairement des surfaces par une ou plusieurs lumières La couleur renvoyée vers l'observateur dépend : de la surface (matière, couleur) de l'angle de vue de l'angle de la source de lumière de la normale de la surface. v n l Ces paramètres sont associés à un modèle permettant de calculer la couleur perçue par l'observateur Ce modèle peut être empirique ou basé sur des considération physiques 107

108 Lancer de rayon Grandeurs physiques associé à la la propagation de la lumière 108

109 Lancer de rayon Quelle est la grandeur adéquate pour représenter une couleur ou une intensité lumineuse? Puissance (W)? Radiosité ( W m 2 )? Intensité radiante ( W sr 1 )? Radiance ( W m 2 sr 1 )? Toutes ces unités supposent une indépendance de la sensibilité de l'œil avec la longueur d'onde. Ce n'est évidemment pas vrai! Note : Angle solide d'un cône quelconque mesuré en stéradians: c'est la mesure de la surface interceptée par une sphère de rayon unitaire centrée sur le sommet du cône. 109

110 Lancer de rayon On préfère utiliser une autre unité de base qui est le candela, ou lumen par stéradian ; 1 lm = f(spectre d'émission) * 1 W, c'est une unité SI reliée au watt par un facteur multiplicatif dépendant de l'observateur standard Flux lumineux (Lumen = lm) 1 Intensité lumineuse ( lm sr =cd ) Illuminance ( lm m ) Luminance ( lm m 2 sr 1) 2 110

111 Lancer de rayon Radiance / Radiométrie W m 2 sr 1 ou W m 2 sr 1 (nm) 1 Mesure physique de l'énergie électromagnétique unité basée sur le watt SI Lois de conservation de l'énergie Luminance / Colorimétrie lm m 2 sr 1=cd m 2 Mesure perceptuelle de la quantité de lumière à différentes longueurs d'onde Unité basée sur le lumen SI Lois de conservation si pas de phénomènes de fluorescence (changement de longueur d'onde de la lumière) 111

112 Lancer de rayon Lampe incandescente de 100 W 1500 lumens ou encore environ 120 candelas si elle émet de façon uniforme dans toutes les directions. Seule une partie de l'énergie lumineuse est émise dans les fréquences visibles (le reste est dans l'infrarouge) Une lampe fluocompacte de 21W Environ 1500 lumens aussi! Presque toute l'énergie est émise dans certaines fréquences visibles Rapport entre intensité physique et perceptive I v = I y d lm 0 lm / W W nm 1 112

113 Lancer de rayon La luminance (radiance) est la puissance par surface unitaire orientée perpendiculairement au rayon; par unité d'angle solide Lumens ou watts d2φ d2φ L( x, ω)= = d ω n da d ω cos θ da d stéradians m2 d n n da θ da 113

114 Lancer de rayon Si la surface émet uniformément (L constante) une puissance dq, cette relation est vérifiée : dq= d 2 Φ= L d ω cos θ da π 2 2π dq= L cos θ sin θ d ϕ d θ da 0 d 0 π 2 dq=2 π L sin θ cos θ d θ da=π L da 0 d n n da θ da 114

115 Lancer de rayon Quiz : La radiance/luminance augmente-t-elle si l'on concentre les rayons du soleil avec une loupe? La radiance/luminance d'une surface éclairante dépend-elle de son aire visible (distance d'observation)? 115

116 Lancer de rayon Lois de conservation pour la luminance Expérience sur la perception de la lumière r a Capteur Signal en Volts U=g.Pc A diaphragmes Émet uniformément de la lumière dans toutes les directions P (lumens) L= 2 S (m ) π (sr) 116

117 Lancer de rayon Lois de conservation pour la luminance r a Angle solide du capteur vu de la surface = da A a r2 Puissance lumineuse arrivant sur le capteur dp c = da L 2 P c = da L= A L= r L Géométrie du capteur A = a L Le résultat ne dépend pas de la distance! La luminance (ou la radiance) se conservent 117

118 Lancer de rayon Lois de conservation pour la luminance r a ' da' A' Si on intercale une lentille parfaite : A ' =k A '= k Puissance lumineuse arrivant sur le capteur P c ' = ' A' L= A L= P c Le résultat ne dépend pas du chemin optique! 118

119 Lancer de rayon Quelques valeurs caractéristiques de la luminance Surface du Soleil : à midi, atmosphère claire 9 2 Lν ~ lm m sr 1 ( hors de l'atmosphère : Lν ~ 2 10 lm m sr 1 ) Pleine lune, minuit Lm ~ 4000 lm m 2 sr 1 Écran de TV, ordinateur etc L TV =50 ~ 500 lm m sr Projecteur multimédia 2000 lumens, écran de projection 2m*1.5m, parfaitement réfléchissant (albédo=1), diffusant la lumière selon la loi de lambert 2000 L p= ~ 200 lm m 2 sr π Luminance d'une feuille de papier blanche A4 (albédo = 0.6) parfaitement réfléchissante exposée au soleil ( Ων ~ sr ) L f ~ 0.6 ~ lm m sr π 119

120 Lancer de rayon Lors de la restitution (affichage), on transforme un signal U en Volts en une intensité lumineuse. Pixel de surface s U P e = g ' (U ) Puissance émise (Lumens ou watts) gain, dépend des propriétés physiques Supposons l'émission de lumière uniforme dans toutes les directions, on a donc une luminance P e g ' (U ) L= = = g ' ' (U ) s π s π Dépend uniquement des caractéristiques géométriques 120 et physiques du «pixel»

121 Lancer de rayon Conclusion : La luminance est la bonne grandeur à «afficher» pour rendre compte fidèlement de la réalité Lors du lancer de rayon, c'est cette grandeur qui est associée à un rayon, et qui est calculée / transportée. 121

122 Lancer de rayon Quelques lois de réflexion de la lumière 122

123 Lancer de rayon Lumière incidente Loi de Lambert (Jean-Henri Lambert ) l n La face supérieure reçoit une certaine quantité de lumière La face supérieure reçoit une fraction de la quantité de lumière émise En fait, la face supérieure reçoit une quantité de lumière proportionnelle à cos =l n Dans tous les cas, la lumière incidente est rediffusée dans toute les directions avec la même intensité 123

124 Lancer de rayon Modèle de surface parfaitement diffuse Appelée aussi surface lambertienne Elle renvoie la lumière «équitablement» dans toutes les directions L'apparence (luminance) ne dépend pas de la position de l'observateur v n l 124

125 Lancer de rayon Modèle de surface lambertienne Quantité de lumière reçue par élément de surface ds d ε= 2 d dq= L i d ε cos θ ds (Lumens) v Celle ci est réémise avec une luminance qui est uniforme dq dε Ld = = Li cos θ π =cos θ I i ds π dε ds I = L i π = Li 2 πd Surface ds d n l d ds est l'illumination incidente. 125

126 Lancer de rayon Modèle de surface Lambertienne Cette surface est pourvue d'une couleur et d'un coefficient d'albédo* Coefficient lié à l'albédo Lumière (luminance) diffusée vers l'observateur Illumination incidente (lm/m2) v n l L d = A I max n l, 0 L d =k d I * l'albédo est le rapport entre la quantité d'énergie incidente et la quantité réfléchie (compris entre 0 et 1) 126

127 Lancer de rayon Surface Lambertienne : Physique Surface rugueuse (pas d'effet miroir) Pénétration des rayons lumineux diffusion par des particules ( ce sont les particules et la matrice qui donnent la couleur! ) Une fraction des rayons lumineux réussit à sortir (paramètre A du modèle de Lambert) Tout se passe à très fine échelle Les rayons lumineux sortants peuvent être considérés comme provenant du point d'entrée ~ 10 m 127

128 Lancer de rayon Limites du modèle lambertien Ne pas être dans les conditions de la lumière rasante Le modèle lambertien tend vers une réflexion nulle... Cf image de la lune : les bords ne tendent pas vers une intensité nulle! (pleine lune) Surfaces non conductrices (pas de métaux) Plâtre «rugueux», céramique dépolie, etc., bitume, béton «rugeux», verre opaque et dépoli 128

129 Lancer de rayon Surface lambertienne : apparence matte La luminance renvoyée ne dépend que de la position de la source. v A=0.4 A=0.6 l A=0.8 A=

130 Lancer de rayon Autres modèles de réflexion diffuse Modèle de Oren-Nayar Inclut l'inter-réflexion sur les irrégularités de la surface... ajoute un paramètre de rugosité. 130

131 Lancer de rayon Surface lambertienne : couleur Coefficient d'albédo différent pour les trois couleurs primaires En pratique, on fixe un coefficient unique (A) à multiplier par un coefficient dépendant de chaque couleur (précisément le triplet représentant la couleur de la matière) R Ld C R I R G G G L d = A C I max n l, 0 B B B C I Ld ~ Couleur de la matière ~ Couleur de la lumière incidente 131

132 Lancer de rayon Image obtenue avec ombrage lambertien Scene.trace(r,tmin,tmax) { groupe.intersecte(r,tmin,tmax,surf,t) si (surf non vide) { point = r.evalue(t) normale=surf.donne_normale(point) retourne surf.ombrage(r,point,normale,lampe) } sinon retourne la couleur de fond } surface.ombrage(rayon,point,normale,lampe) { v = -normalise(rayon.direction) l = normalise(lampe.position-point) // calcule l'ombrage lambertien retourne la couleur } 132

133 Lancer de rayon Références J. H. Lambert. Photometria sive de mensure de gratibus luminis, colorum umbrae. Eberhard Klett, 1760 P. Kubelka and F. Lunk. Ein Beitrag zur Optik der Farbanstriche. Z. Techn. Physik, 12: , 1931 S. Orchard. Reflection and transmission of light by diffusing suspensions. J. Opt. Soc. Am., 59: , 1969 J. Reichmann. Determination of absorption and scattering coefficients for non homogeneous media. Applied Optics, 12: , M. Oren and S. K. Nayar Generalization of Lambert s reflectance model, ACM SIGGRAPH 1994 Proceeding. 133

134 Lancer de rayon Ombres portées... Les surfaces ne sont éclairées que si rien ne bloque la lumière issue de la lampe On dispose de tout de ce qu'il faut pour tester cela! Construire un rayon provenant de la lampe et passant par le point courant sur la surface et vérifier qu'il n'intersecte rien 134

135 Lancer de rayon Ombrage lambertien + ombres portées surface.ombrage(rayon,point,normale,lampe) { rayon_ombre = rayon(point, lampe.position point) groupe.intersecte(rayon_ombre,tmin,tmax,t,surf) si surf est vide { v = -normalise(rayon.direction) l = normalise(lampe.position-point) calculer l'ombrage lambertien retourne la couleur obtenue } sinon retourne couleur noire } 135

136 Lancer de rayon Ombres portées Attention lors de la recherche d'intersection du rayon provenant de la source de lumière Le point d'intersection calculé avec le rayon en provenance de l'observateur est il situé numériquement exactement sur la surface? Si il est un peu à «l'extérieur», alors tout se passe comme prévu Si il est un peu à «l'intérieur», alors on trouvera une intersection pour le rayon provenant de la lampe... Solution : faire en sorte que le rayon utilisé pour le calcul des ombres portées commence à une petite distance de la surface (vers l'extérieur) 136

137 Lancer de rayon Ombres portées traitement correct! rayon_ombre = rayon(point+normale*epsilon, lampe.position point) 137

138 Lancer de rayon Sources lumineuses multiples Important pour «déboucher» les ombres Implémentation très simple : pour chaque lumière, ajouter la contribution correspondante Ombrage ambiant Une ombre parfaitement noire est peu réaliste Solution 1 : placer une faible source de lumière juste à coté de la caméra Solution 2 : ajouter une contribution constante à l'ombrage calculé par ailleurs L a =k a I a Lumière ambiante coefficient ambiant réfléchie Lumière ambiante 138

139 Lancer de rayon Sources lumineuses multiples surface.ombrage(rayon,point,normale,lampes) { couleur= ambiant // eventuellement noir! pour chaque lampe dans lampes { si pas dans ombre (cf plus avant) { v = -normalise(rayon.direction) l = normalise(lampe.position-point) calculer l'ombrage lambertien couleur = couleur + ombrage calculé } } retourne couleur } 139

140 Lancer de rayon Réflexion spéculaire Lumière directement réfléchie par la surface (ne pénètre pas dans la matière) Concerne les surfaces relativement lisses Ces surfaces réfléchissent préférentiellement la lumière dans une direction n v ' l La direction préférentielle est la configuration du miroir : = ' 140

141 Lancer de rayon Réflexion spéculaire : physique La surface est parfaitement lisse : miroir Toute la lumière en provenance de la source est réfléchie dans une seule direction cas particulier (cf suite du cours) Certains matériaux ont une réflexion sous forme de tache diffuse Même pour une source lumineuse ponctuelle! Il y a dispersion de l'orientation de la lumière réfléchie (de part et d'autre de l'angle de réflexion miroir théorique) Ceci est du à la présence de microfacettes à la surface du solide La répartition statistique de l'orientation des microfacettes donne la taille de la tache spéculaire pour une source lumineuse ponctuelle 141

142 Lancer de rayon Réflexion spéculaire : physique La couleur réfléchie est dominée par la couleur de la lumière incidente La couleur d'un objet provient majoritairement de l'absorption partielle des rayons transmis dans le milieu (plastiques, etc...) Toutefois, les coefficients de réflexion sont dépendants de la longueur d'onde dans le visible pour certains matériaux Cuivre, or... visible 142

INFORMATIQUE GRAPHIQUE

INFORMATIQUE GRAPHIQUE INFORMATIQUE GRAPHIQUE Christian Jacquemin (Université Paris 11 et LIMSI-CNRS) COURBES PARAMÉTRIQUES : PRINCIPES Les courbes paramétriques vues comme des trajectoires http://perso.limsi.fr/jacquemi/ Courbes

Plus en détail

Aujourd hui. Synthèse d Images. De la réalité à l ordinateur. De la réalité à l ordinateur. Triangle Mesh: Possibilités: Cours plus tard

Aujourd hui. Synthèse d Images. De la réalité à l ordinateur. De la réalité à l ordinateur. Triangle Mesh: Possibilités: Cours plus tard Aujourd hui Comment créer un modèle sur l ordi? Synthèse d Images Elmar Eisemann Elmar.Eisemann@inrialpes.fr Basé sur les cours de E. Boyer, H. Briceno, N. Holzschuch Qu est-ce l éclairage? Comment simuler

Plus en détail

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La Synthèse d'images I Venceslas BIRI IGM Université de Marne La La synthèse d'images II. Rendu & Affichage 1. Introduction Venceslas BIRI IGM Université de Marne La Introduction Objectif Réaliser une image

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

Chapitre 4 : Modélisation 3D

Chapitre 4 : Modélisation 3D Chapitre 4 : Modélisation 3D Modélisation 3D et Synthèse Fabrice Aubert fabrice.aubert@lifl.fr Master Informatique 2014-2015 F. Aubert (MS2) M3DS/ 4 - Modélisation 3D 2014-2015 1 / 44 1 Introduction F.

Plus en détail

Chapitre 5. Transfert chaleur par rayonnement

Chapitre 5. Transfert chaleur par rayonnement Chapitre 5 Transfert chaleur par rayonnement 1 Sommaire : 1 - Nature du rayonnement 2 - Caractéristiques ristiques Energétiques 3 - Corps noir 4 - Flux solaire intercepté par la planète Terre 5 - Equilibre

Plus en détail

Introduction à la notion Pipeline Graphique (initiation)

Introduction à la notion Pipeline Graphique (initiation) DENNE Introduction à la notion Pipeline Graphique (initiation) Année universitaire 2004-2005 Pascal Mignot Pascal.Mignot@univ-reims.fr DENNE Objectifs préparation au cours: d OpenGL (initiation) de DirectX

Plus en détail

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PARTIE THEORIQUE A - RESEAUX 1 - Définition On appelle réseau plan le système constitué par un grand nombre de fentes fines, parallèles, égales

Plus en détail

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20 Sources de lumière Sources naturelles Soleil Étoiles Sources artificielles Bougie Ampoule MR, 2007 Optique 1/20 Origine de la lumière Incandescence La lumière provient d un corps chauffé à température

Plus en détail

TP MSO Synthèse d images: Lancé de rayons CPE

TP MSO Synthèse d images: Lancé de rayons CPE TP MSO Synthèse d images: Lancé de rayons CPE durée-4h 2011 FIGURE 1 Étapes de l algorithme de lancé de rayons. De gauche à droite : équation du calcul d intersection; image des intersections; ordonnancement

Plus en détail

Localisation s y s - 8 4 4 m o d u l e 7. Méthodes passives. Plan du module. Méthodes passives. Objectifs d un système de vision numérique

Localisation s y s - 8 4 4 m o d u l e 7. Méthodes passives. Plan du module. Méthodes passives. Objectifs d un système de vision numérique Objectifs d un système de vision numérique Localisation s y s - 8 4 4 m o d u l e 7 Identifier Localiser Méthodes passives Plan du module Stéréoscopie Gradient d éclairement Méthodes actives Temps de vol

Plus en détail

Lentilles Détermination de distances focales

Lentilles Détermination de distances focales Lentilles Détermination de distances focales Résumé Les lentilles sont capables de faire converger ou diverger un faisceau lumineux. La distance focale f d une lentille caractérise cette convergence ou

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

o Introduction o Modèle versus représentations

o Introduction o Modèle versus représentations Plan de la présentation MGA 802 Programmation des systèmes de CAO pour l aéronautique La modélisation et les représentations géométriques Le cœur des systèmes de CAO o o Modèles versus représentations

Plus en détail

LO12. Chap 1 1. 1. Introduction UTC A2006. 1.1 Présentation de l'uv. Bases de l infographie et Images de synthèse. Objectifs

LO12. Chap 1 1. 1. Introduction UTC A2006. 1.1 Présentation de l'uv. Bases de l infographie et Images de synthèse. Objectifs UTC A2006 1. Introduction 1.1 Présentation de l'uv Objectifs Bases de l infographie et Images de synthèse savoir se repérer dans l espace, comprendre les principaux algorithmes d infographie (leur puissance

Plus en détail

5/ Fonctionnement du laser

5/ Fonctionnement du laser 5/ Fonctionnement du laser La longueur d onde du laser est de 532 nanomètres (532x10-9 m) soit dans le vert. Le choix de cette longueur d onde n est pas fait au hasard car la matière va interagir avec

Plus en détail

NORMES DE TRANSPORT CANADA SUR LES MODULES DE SIGNALISATION A DIODES ELECTROLUMINESCENTES (DEL) DE PASSAGES A NIVEAU RAIL-ROUTE NORMES

NORMES DE TRANSPORT CANADA SUR LES MODULES DE SIGNALISATION A DIODES ELECTROLUMINESCENTES (DEL) DE PASSAGES A NIVEAU RAIL-ROUTE NORMES NORMES DE TRANSPORT CANADA SUR LES MODULES DE SIGNALISATION A DIODES ELECTROLUMINESCENTES (DEL) DE PASSAGES A NIVEAU RAIL-ROUTE NORMES TC E-14 Norme approuvé le 10 octobre 2003 {R-14-2} TABLE DES MATIÈRES

Plus en détail

Fente Lumière blanche. Fente Laser rouge. 2 Prisme

Fente Lumière blanche. Fente Laser rouge. 2 Prisme 1L : Représentation visuelle du monde Activité.4 : Lumières colorées I. Décomposition de la lumière blanche Newton (dès 1766) a décomposé la lumière solaire avec un prisme. 1. Expériences au bureau : 1

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

Imagerie 3D et mathématiques

Imagerie 3D et mathématiques Imagerie 3D et mathématiques Jacques-Olivier Lachaud Laboratoire de Mathématiques CNRS / Université de Savoie Fête de la Science, 13/10/2013 Galerie Eurêka Image et perception Synthèse d image 3D Imagerie

Plus en détail

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION - 1 - Expérience no 21 1. INTRODUCTION ELEMENTS D OPTIQUE Dans cette expérience les principes de l optique géométrique sont applicables car les obstacles traversés par la lumière sont beaucoup plus grands

Plus en détail

INFOGRAPHIE. Rapport du Projet de dessin 2D et 3D

INFOGRAPHIE. Rapport du Projet de dessin 2D et 3D Institut Galilée INFO 1 : Yohan ROUSSET Stéphane FOURNIER INFOGRAPHIE Rapport du Projet de dessin 2D et 3D Superviseur : R. MALGOUYRES Année 2008-2009 2 Table des matières I. Introduction... 4 II. Dessin

Plus en détail

5ETI Synthese d images: Modélisation 3D

5ETI Synthese d images: Modélisation 3D Synthèse d images : Domaines d applications 5ETI Synthese d images: Loisir, Graphique (Entertainment) : Cinéma, Jeux vidéos, Communication,.... Calcul : Engineering, médical,... CAO (CAD) : Conception,

Plus en détail

VI. Amélioration du rendu

VI. Amélioration du rendu VI. Amélioration du rendu On parle de rendu réaliste lorsqu'une image contient la plupart des effets de lumière en interaction avec des objets physiques réels. Les travaux de recherche en ce domaine sont

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

Feuille d'exercices : optique géométrique

Feuille d'exercices : optique géométrique Feuille d'exercices : optique géométrique P Colin 2015/2016 Formulaire : Rappel des relations de conjugaison pour une lentille mince L de centre O, de foyer objet F, de foyer image F et de distance focale

Plus en détail

pour la Réalité Augmentée

pour la Réalité Augmentée Analyse d Image 3D pour la Réalité Augmentée Jean-Marc Vezien vezien@limsi.fr Master Recherche RV&A Janvier 2011 La 3D comment? Les capteurs et les techniques pour l acquisition de la 3D Capteurs actifs

Plus en détail

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière.

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière. 31 O1 OPTIQUE GEOMETRIQUE I.- INTRODUCTION L optique est une partie de la physique qui étudie la propagation de la lumière. La lumière visible est une onde électromagnétique (EM) dans le domaine de longueur

Plus en détail

Shadows. gael.guennebaud@inria.fr

Shadows. gael.guennebaud@inria.fr Shadows gael.guennebaud@inria.fr Simulation de l'éclairage Simule la façon dont un objet reflète la lumière Propriétés de la surface Propriétés des sources lumineuses Propriétés de l'environnement Problématique

Plus en détail

Affichage rapide de scènes 3D

Affichage rapide de scènes 3D ÉPREUVE COMMUNE DE TIPE 2010 - Partie D TITRE : Affichage rapide de scènes 3D Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Entretien avec les examinateurs

Plus en détail

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction Au programme Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal

Plus en détail

Vision par ordinateur: Formation d image et Photographie

Vision par ordinateur: Formation d image et Photographie Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal Hiver 2007

Plus en détail

Visibilité polygone à polygone :

Visibilité polygone à polygone : Introduction Visibilité polygone à polygone : calcul, représentation, applications Frédéric Mora Université de Poitiers - Laboratoire SIC 10 juillet 2006 1 La visibilité Introduction Contexte L espace

Plus en détail

TP2 Opérations et filtres

TP2 Opérations et filtres TP2 Opérations et filtres 1. Opérations arithmétiques Mettre en place les fonctions Min et Max sur 2 images en niveaux de gris. Min() conserve entre 2 images les pixels de luminance minimum, Max() conserve

Plus en détail

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident OPTIQUE Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident AIR rayon réfléchi EAU rayon réfracté A l'interface entre les deux milieux, une partie

Plus en détail

Fiche 8 (Analyse): Unités

Fiche 8 (Analyse): Unités Fiche 8 (Analyse): Unités Le rayonnement lumineux visible est un rayonnement électromagnétique de longueur d'onde compris entre 400 et 760 nanomètres, entre l'ultraviolet (

Plus en détail

Cours S6. Formation d une image

Cours S6. Formation d une image Cours S6 Formation d une image David Malka MPSI 2015-2016 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Le miroir plan 1 1.1 Le miroir plan...............................................

Plus en détail

Pipeline Graphique. Transforma)ons de modélisa)on. Illumina)on (Shading) Transforma)ons d affichage. Clipping. Transforma)on écran (Projec)on)

Pipeline Graphique. Transforma)ons de modélisa)on. Illumina)on (Shading) Transforma)ons d affichage. Clipping. Transforma)on écran (Projec)on) Pipeline Graphique Pipeline Graphique de Modèle de la scène Image 3D Transformations de modélisation de Application des transformations de composition de scène : Passage du système de coordonnées local

Plus en détail

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière Physique 51421 Module 3 Lumière et optique géométrique Rappel : les ondes Il existe deux types d ondes : Ondes transversale : les déformations sont perpendiculaire au déplacement de l onde. (ex : lumière)

Plus en détail

Introduction au maillage pour le calcul scientifique

Introduction au maillage pour le calcul scientifique Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel franck.ledoux@cea.fr Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,

Plus en détail

Chapitre 18 : Transmettre et stocker de l information

Chapitre 18 : Transmettre et stocker de l information Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Repère : SESSION 2008 Durée : 3 H Page : 0/7 Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Page : 1/7 Coefficient : 2

Plus en détail

Visualisation 3D sur un Smartphone

Visualisation 3D sur un Smartphone Visualisation 3D sur un Smartphone Réalisé par: Bouhajja Lamia Daikhi Rahma Encadré par : Madame Ben Azouz Zouhour SOMMAIRE : I. Introduction Générale générale II. Objectif du projet III. Rendu 3D IV.

Plus en détail

INTERFÉROMÈTRE DE MICHELSON

INTERFÉROMÈTRE DE MICHELSON INTERFÉROMÈTRE DE MICHELSON ATTENTION! LASER ET LAMPE À MERCURE : DANGER! - Ne jamais regarder directement le faisceau Laser, sous peine de brûlures irréversibles de la rétine. - Ne jamais regarder directement

Plus en détail

Codage Couleurs. E. Jeandel. Emmanuel.Jeandel at lif.univ-mrs.fr. E. Jeandel, Lif CodageCouleurs 1/1

Codage Couleurs. E. Jeandel. Emmanuel.Jeandel at lif.univ-mrs.fr. E. Jeandel, Lif CodageCouleurs 1/1 Codage Couleurs E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CodageCouleurs 1/1 La lumière La lumière est une onde. Cette lumière peut se décomposer en plusieurs composantes (son spectre)

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

PLAN DE COURS Automne 2015

PLAN DE COURS Automne 2015 PLAN DE COURS Automne 2015 Infographie (6GEN715) Département des Sciences Appliquées Module d ingénierie Professeur Daniel Audet, ing. Ph.D. Bureau : P4-3010-6 Tél. : (418) 545-5011 poste 5639 Courriel

Plus en détail

UE3 Analyse des Images Optique : géométrie et formation d'image

UE3 Analyse des Images Optique : géométrie et formation d'image UE3 Analyse des Images Optique : géométrie et formation d'image Plan du cours 1 Optique géométrique principes, loi de Snell Descartes stigmatisme, image réelle et virtuelle 2 Formation d'une image formation

Plus en détail

Chapitre «Couleur des objets»

Chapitre «Couleur des objets» Lycée Joliot Curie à 7 PHYSIQUE - Chapitre II Classe de 1 ère S Chapitre «Couleur des objets» La sensation de couleur que nous avons en regardant un objet dépend de nombreux paramètres. Elle dépend, entre

Plus en détail

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation Photométrie d un rétroprojecteur Doc. OPT-TP-02A (14.0) Date : 13 octobre 2014 TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur 1 But de l expérience Le but de ce TP est de : 1. comprendre le

Plus en détail

FORMATION LES SCANNERS

FORMATION LES SCANNERS FORMATION LES SCANNERS Généralités Les scanners à plat modernes sont constitués d'éléments CCD, une technologie initialement développée pour les techniques satellites et de télévision. Les CCD transforment

Plus en détail

BTS MÉTIERS DE L'AUDIOVISUEL SCIENCES PHYSIQUES - U. 3 OPTION MÉTIERS DU SON

BTS MÉTIERS DE L'AUDIOVISUEL SCIENCES PHYSIQUES - U. 3 OPTION MÉTIERS DU SON BTS MÉTIERS DE L'AUDIOVISUEL SCIENCES PHYSIQUES - U. 3 OPTION MÉTIERS DU SON SESSION 20 Durée: 3 heures Coefficient: 2 Matériel autorisé: Toutes les calculatrices de poche y compris les calculatrices programmables

Plus en détail

PHY 1982 PROBLÈMES ET EXERCICES SUGGÉRÉS RÉFLEXIONS SUR LA MÉTHODE SCIENTIFIQUE

PHY 1982 PROBLÈMES ET EXERCICES SUGGÉRÉS RÉFLEXIONS SUR LA MÉTHODE SCIENTIFIQUE PHY 1982 PROBLÈMES ET EXERCICES SUGGÉRÉS RÉFLEXIONS SUR LA MÉTHODE SCIENTIFIQUE 1. La croyance aux visiteurs extra-terrestres est largement fondée sur l interprétation d observations optiques (visuelles,

Plus en détail

Comment peut-on bloquer les réflexions de la lumière sur la surface de l eau pour mieux voir ce qu il y a sur le fond de la mer?

Comment peut-on bloquer les réflexions de la lumière sur la surface de l eau pour mieux voir ce qu il y a sur le fond de la mer? Comment peut-on bloquer les réflexions de la lumière sur la surface de l eau pour mieux voir ce qu il y a sur le fond de la mer? www.digital-photography-tips.net/stay_focussed-newsletter-march-2013.html

Plus en détail

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique.

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique. OPTIQUE GEOMETRIQUE Définitions : L optique est la science qui décrit les propriétés de la propagation de la lumière. La lumière est un concept extrêmement compliqué et dont la réalité physique n est pas

Plus en détail

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON 1. Les objectifs 1.1. La mise en évidence du phénomène d`interférence pour obtenir des

Plus en détail

Cours 1 - Premiers pas en 3D. Xavier Décoret - INF583 École Polytechnique

Cours 1 - Premiers pas en 3D. Xavier Décoret - INF583 École Polytechnique Cours 1 - Premiers pas en 3D Xavier Décoret - INF583 École Polytechnique Disclaimer Attention, c est le cours le plus difficile le plus important Il y a beaucoup de on verra plus tard C est le canvas sur

Plus en détail

Un corps noir chauffé à une température T émet une puissance rayonnante P en W.m -2 telle que : C1 = 2c 2 h

Un corps noir chauffé à une température T émet une puissance rayonnante P en W.m -2 telle que : C1 = 2c 2 h 2 FORMATION de l'image 2.1 ENERGIE LUMINEUSE Une Image, au sens optique du terme, est une certaine quantité d'informations véhiculée par des ondes électromagnétiques caractérisées par leur longueur d'onde

Plus en détail

MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE

MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE MESURE DE L INDICE DE REFRACTION D UN MILIEU EN FONCTION DE LA LONGUEUR D ONDE Licence de Physique 2000-2001 Université F. Rabelais UFR Sciences & Techniques P. Drevet 1 A1 - GONIOMETRE DE BABINET I. PRINCIPE

Plus en détail

Capsule théorique sur l optique géométrique (destinée au personnel)

Capsule théorique sur l optique géométrique (destinée au personnel) Capsule théorique sur l optique géométrique (destinée au personnel) Octobre 2014 Table des matières Spectre électromagnétique... 3 Rayons lumineux... 3 Réflexion... 3 Réfraction... 3 Lentilles convergentes...

Plus en détail

Chapitre 2 : La couleur des objets (p. 29)

Chapitre 2 : La couleur des objets (p. 29) PRTIE 1 - OSERVER : OULEURS ET IMGES hapitre 2 : La couleur des objets (p. 29) onnaissances : Phénomènes d absorption, de diffusion et de transmission. Savoir-faire : Utiliser les notions de couleur blanche

Plus en détail

TUTORAT UE 3 2015-2016 Biophysique Colle n 1

TUTORAT UE 3 2015-2016 Biophysique Colle n 1 TUTORAT UE 3 2015-2016 Biophysique Colle n 1 Données : Champ de pesanteur terrestre : g = 9,81 N.kg -1 Constante de Planck : h = 6,62.10-34 SI Masse de l électron : m e- = 9,1.10-31 kg Charge élémentaire

Plus en détail

Communication graphique

Communication graphique Introduction générale Partie I. La projection parallèle 1. Le dessin multivue 2. La méthode de Monge 3. L axonométrie 4. Courbes de Bézier 5. La projection cotée (topographie) Projection cotée Méthode

Plus en détail

SP4 Formation des images & Approximation de Gauss

SP4 Formation des images & Approximation de Gauss SP4 Formation des images & Approximation de Gauss Objectifs de cette leçon : Définitions d un objet, d une image et d un système optique. Notions d objets et d images étendues Notions d objets et d images

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Optique : applications Introduction

Optique : applications Introduction Optique : applications Introduction I. Introduction Au premier semestre nous avons abordés l'optique géométrique, nous avons vu les lois de Snell Descartes qui décrivent comment la lumière est réfléchie

Plus en détail

NOM : PRÉ-TEST 2 PHY NYC GROUPES 1315 et 1316 09/04/08

NOM : PRÉ-TEST 2 PHY NYC GROUPES 1315 et 1316 09/04/08 Règlements : NOM : PRÉ-TEST 2 PHY NYC GROUPES 1315 et 1316 09/04/08 Professeur : Pierre Noël de Tilly Tout plagiat entraîne la note zéro. Seuls calculatrice, règle, rapporteur d'angle, gomme à effacer,

Plus en détail

Métiers de la 3D et du multimédia

Métiers de la 3D et du multimédia K2 Formation Métiers de la 3D et du multimédia 201 CINEMA-4D-Semaine-1 CINEMA 4D - Semaine 1 Cette formation se déroulera sur 2 semaines voir contenu semaine 1 et 2, elle a pour objectif de vous faire

Plus en détail

Mesure de Température par Caméra Infrarouge

Mesure de Température par Caméra Infrarouge Mesure de Température par Caméra Infrarouge INTRODUCTION La caméra infrarouge capte au travers d un milieu transmetteur (ex : l atmosphère) les rayonnements émis par une scène thermique. Le système radiométrique

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Formation et Analyse d'images. Lumière, Couleur et Modèles de Réflections

Formation et Analyse d'images. Lumière, Couleur et Modèles de Réflections Formation et Analyse d'images James L. Crowley ENSIMAG 3 Premier Bimestre 2003/2004 Séance 3 23 Octobre 2003 Lumière, Couleur et Modèles de Réflections Plan de la Séance : La Lumiére...2 La Spectre...2

Plus en détail

GÉOMÉTRIE GRAPHIQUE ET NUMÉRIQUE

GÉOMÉTRIE GRAPHIQUE ET NUMÉRIQUE GÉOMÉTRIE GRAPHIQUE ET NUMÉRIQUE Modélisation de formes 3D Introduction Marie Samozino INRIA - Équipe GÉ GÉOMETRICA 2 1 Motivations Médical Histoire de l'art Jeu Motivations Ingé Ingénierie Données brutes

Plus en détail

A propos de la sonde Rosetta. Corrigé de l'épreuve

A propos de la sonde Rosetta. Corrigé de l'épreuve Concours EPITA IPSA Épreuve de physique A propos de la sonde Rosetta Corrigé de l'épreuve A Navigation spatiale Questions préliminaires 1 Compte-tenu des symétries, on détermine l'expression du champ de

Plus en détail

Domaine d'étude 2: Emetteur et récepteur

Domaine d'étude 2: Emetteur et récepteur Etude du niveau sonore Domaine d'étude 2: Emetteur et récepteur Mots clés : Enceintes acoustiques, auditorium, Sommaiire Principe : --------------------------------------------------------------1 1. Atténuation

Plus en détail

Optique : Interféromètre de Michelson Obtention du contact optique & Premières mesures

Optique : Interféromètre de Michelson Obtention du contact optique & Premières mesures Travaux pratiques Série 2 Optique : Interféromètre de Michelson Obtention du contact optique & Premières mesures Objectifs du TP : Se familiariser avec l utilisation d un interféromètre d apparence complexe.

Plus en détail

D où viennent les couleurs de l arc en ciel?

D où viennent les couleurs de l arc en ciel? Matériel : Lampe lumière blanche, prisme, lentille convergente, moteur, disque de Newton. Playmobil de différentes couleurs, lampe et filtres colorés. D où viennent les couleurs de l arc en ciel? 1. Observations

Plus en détail

Procédé de détection de gaz par imagerie infrarouge

Procédé de détection de gaz par imagerie infrarouge Procédé de détection de gaz par imagerie infrarouge Après les détecteurs de gaz ponctuels et linéaires, voici un procédé de détection qui donne enfin une image du nuage. 1 Introduction L actualité récente

Plus en détail

Théorie et Historique du rendu 3D. Faculté d Architecture La Cambre - Horta de l ULB Option AIM du labo AlICe Iris Pissens / 2012

Théorie et Historique du rendu 3D. Faculté d Architecture La Cambre - Horta de l ULB Option AIM du labo AlICe Iris Pissens / 2012 Théorie et Historique du rendu 3D Faculté d Architecture La Cambre - Horta de l ULB Option AIM du labo AlICe Iris Pissens / 2012 Programme Cours 1 Physique de la lumière // La lumière en architecture

Plus en détail

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices

Plus en détail

La thermographie infrarouge

La thermographie infrarouge La thermographie infrarouge Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et Technique de la Construction Définition 1 Le rayonnement électromagnétique

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

La couleur Christian RONSE Icube mél cronse@unistra.fr tél 03 68 85 45 00

La couleur Christian RONSE Icube mél cronse@unistra.fr tél 03 68 85 45 00 La couleur Christian RONSE Icube mél cronse@unistra.fr tél 03 68 85 45 00 Les couleurs : dans les objets ou dans nos têtes? A gauche : le dessin originel. Au milieu : ce dessin reproduit par un «daltonien»

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Freestyle : Sculpting Meshes with Self-Adaptive Topology

Freestyle : Sculpting Meshes with Self-Adaptive Topology Freestyle : Sculpting Meshes with Self-Adaptive Topology Rapport Recette Étudiants : Charles Garibal, Maxime Robinot, Mathieu Dachy Tuteur : Loïc Barthe 20/02/2015 1 I) Introduction Rappel : Objectif du

Plus en détail

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002 Séance de TP 4 Lentilles minces Romain BEL 3 janvier 2002 1 Table des matières 1 Lentilles minces, stigmatisme, relations de conjugaison 3 1.1 Lentilles minces............................. 3 1.2 L'approximation

Plus en détail

Les sources de lumière.

Les sources de lumière. Les sources de lumière. 1. La lumière. La lumière fait partie des ondes électromagnétiques qui vont des rayons cosmiques aux ondes radar. Ces ondes se différencient par leur longueur d onde et par l énergie

Plus en détail

Chapitre 5 : Les lentilles et les instruments d optique

Chapitre 5 : Les lentilles et les instruments d optique Exercices Chapitre 5 : Les lentilles et les instruments d optique E. (a) On a 33, 2 0cm et 20 cm. En utilisant l équation 5.2, on obtient 33 0 cm 33 20 cm 858 cm Le chat voit le poisson à 858 cm derrière

Plus en détail

1 Introduction générale

1 Introduction générale Expérience n 10 Éléments d optique Domaine: Optique, ondes électromagnétiques Lien avec le cours de Physique Générale: Cette expérience est liée aux chapitres suivants du cours de Physique Générale: -

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Le mystère de la grenadine et la perception des couleurs

Le mystère de la grenadine et la perception des couleurs 17 POLYNÉSIE FRANÇAISE JUIN 2006 PARTIE I 13 POINTS Le mystère de la grenadine et la perception des couleurs Document 1 Les tribulations d un sirop Trois phénomènes se combinent pour expliquer la couleur

Plus en détail

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière Physique - Optique et applications pour la Synthèse d Images IUT StDié Cours niveau Licence Optique v.2005-10-05 Stéphane Gobron Plan Introduction 2. Image, réflexion et réfraction 4. Interférences et

Plus en détail

LA THERMOGRAPHIE INFRAROUGE

LA THERMOGRAPHIE INFRAROUGE LA THERMOGRAPHIE INFRAROUGE 1 EMISSION THERMIQUE DE LA MATIERE 2 1.1 LE RAYONNEMENT ELECTROMAGNETIQUE 2 1.2 LES CORPS NOIRS 2 1.3 LES CORPS GRIS 3 2 APPLICATION A LA THERMOGRAPHIE INFRAROUGE 4 2.1 DISPOSITIF

Plus en détail

ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE

ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE BAZEILLE Stéphane MOUGEL Baptiste IUP3 ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE EN Année 2003/2004 1 TABLE DES MATIERES Home... 3 Introduction.... 3 Marching Square... 4 Algorithme....4 Programmation...4

Plus en détail

Introduction au Dessin Vectoriel

Introduction au Dessin Vectoriel Introduction au Dessin Vectoriel Introduction Lorsque l'on affiche une image sur l'écran d'un ordinateur, ce que l'on voit n'est qu'une succession de points. Il existe pourtant deux manières différentes

Plus en détail

fig 1 - télescope Schmitt-Cassegrain

fig 1 - télescope Schmitt-Cassegrain OPTIQUE GEOMETRIQUE 1 Pour former l'image de la réalité, on utilise un système optique, généralement constitué d'un objectif (système réfractant). Le système optique complet est plus complexe pour certaines

Plus en détail

Phénomènes vibratoires et optique

Phénomènes vibratoires et optique Travaux dirigés Phénomènes vibratoires et optique K. F. Ren L3 IUP ME 2015 1 Oscillations 1.1 Etude d un oscillateur harmonique Un oscillateur harmonique est décrit par l équation : u(t) = 0, 4 cos(5πt

Plus en détail

Introduction à la modélisation et à l animation 3D

Introduction à la modélisation et à l animation 3D Introduction à la modélisation et à l animation 3D Frank Singhoff Bureau C-203 Université de Brest, France LISyC/EA 3883 singhoff@univ-brest.fr UE multimédias et animation, Université de Brest Page 1/16

Plus en détail