Infographie Plan du cours

Dimension: px
Commencer à balayer dès la page:

Download "Infographie Plan du cours"

Transcription

1 Plan du cours Introduction Images et techniques d'affichage Bases Correction gamma Aliasing et techniques pour y remédier Stockage 1

2 Plan du cours Perspective 3D & transformations 2D / 3D Passer d'un espace 3D vers un dispositif d'affichage 2D Deux paradigmes de génération d'images Représentation de courbes et surfaces Splines & co. Rendu réaliste (Ray tracing) Concepts et bases théoriques 2

3 Plan du cours Eclairage Lois de réflexion etc...textures Colorimétrie Espaces de couleur Métamères Pipeline graphique et OpenGL Primitives Discrétisation (Rasterization) Faces cachées Animations 3

4 Surfaces Surfaces paramétriques Interpolation : Patch de Coons Approximation : surfaces B-splines Surfaces de subdivision 4

5 Surfaces paramétriques 5

6 Surfaces paramétriques Patches de Coons Surfaces «produit tensoriel» Triangle de Bézier 6

7 Patches de Coons Patch de Coons bilinéaire Steven Anson Coons (travaux publiés en 1967 mais issus de travaux durant WWII dans l'aéronautique) Soit 4 courbes paramétrées (Bézier ou B-Splines ou autres) se rencontrant en 4 points (A,B,C,D) : P1(u), P2(u), Q1(v), Q2(v) tels que P1(0)=A=Q1(0) P1(1)=B=Q2(0) Q2(1)=C=P2(1) Q1(1)=D=P2(0) La surface S(u,v) est portée par ces 4 courbes P2 D S(u,v) Q1 A P1 C Q2 B 7

8 Patches de Coons On définit 3 surfaces réglées par interpolation linéaire: S 1 u, v = 1 v P 1 u vp 2 u S 2 u, v = 1 u Q1 v uq 2 v S 3 u, v = 1 u 1 v A u 1 v B v 1 u D uvc S 2 u, v S 1 u, v S 3 u, v 8

9 Patches de Coons Le patch bilinéaire de Coons est défini par : S u, v =S 1 u, v S 2 u, v S 3 u, v Pourquoi? S1 interpole A,B,C,D S2 aussi S1+S2 ne peut donc interpoler A,B,C,D que si l'on y retire un terme dépendant uniquement de A,B,C,D et linéaire sur chaque bord. S u, v 9

10 Patches de Coons Caractéristiques du patch de Coons bilinéaire Facile à construire Basé sur des courbes frontières quelconques Pas de contrôle de la forme intérieure de la surface Impossible d'imposer une continuité C1 entre deux patches voisins sans contraintes sur les courbes frontières 10

11 Patches de Coons Il existe un patch de Coons bicubique Interpolation de Hermite 4 positions aux coins 8 dérivées normales le long des bords 4 vecteurs torsion aux coins S(u,v) Permet d'imposer la continuité de la dérivée le long des bords des patches. (cf. splines ) Non développé ici. 11

12 Surfaces B-Splines 12

13 Surfaces B-Splines Surfaces B-Splines Définition comme produit tensoriel : n m S u, v = N ip u N qj v P ij i=0 j=0 Chaque direction u et v impose un degré (p et q) et une séquence nodale U et V : U ={0,,0, u p 1,, u r p 1,1,,1 } r 1 noeuds p 1 p 1 V ={0,, 0, v q 1,, v s q 1,1,,1 } q 1 s 1 noeuds q 1 On a une grille de points de contrôles Pij (il y en a (n+1)(m+1) On a les relations suivantes : r=n p 1 s=m q 1 13

14 Surfaces B-Splines Exemple de fonctions de formes U ={0, 0, 0,0,1/4,1/ 2, 3/ 4,1,1,1,1} p=3 V ={0, 0, 0,1/5, 2/5, 3/5, 3/5, 4/5,1,1,1} q=2 N 24 v N 22 v N 34 u N 34 u N 24 v fonction de forme associée à P 44 N 34 u L. Piegl «The NURBS Book» N 34 u N 22 v fonction de forme associée à P 42 14

15 Surfaces B-Splines Propriétés des fonctions de forme de surface Conséquences des propriétés des FF linéiques Non-négativité N ip u N qj v 0 i, j, p, q, u, v Partition de l'unité n m p q N u N i j v =1 u, v [u min, u max ] [v min, v max ] i=0 j=0 Support compact N ip u N qj v =0 u, v [ ui, ui p 1 [ [ v j, u j q 1 [ Il y a au plus (p+1)(q+1) FF non nulles dans un intervalle donné [ ui, ui 1 [ [ v j, u j 1 [. En particulier N ip u N qj v 0 i 0 p i i 0 j 0 q j j

16 Surfaces B-Splines Propriétés des fonctions de forme de surface Extrêma p q N u N Si p>0 et q>0, i j v a un maximum unique. Continuité À l'intérieur des rectangles formés par les nœuds ui et vj, les FF sont infiniment dérivables. p q À un noeud ui (resp. vj), N i u N j v est (p-k) (resp. (qk) ) fois dérivables, k étant la multiplicité du noeud ui (resp. vj) La continuité selon u (resp. v) est uniquement dépendante de la séquence nodale U (resp. V). 16

17 Surfaces B-Splines N 32 u N 22 v N 34 u N 24 v U ={0, 0, 0,0,1, 2, 2, 2, 2} p=3 U ={0, 0, 0,0,1, 2, 3, 4, 5,6,6,6,6} V ={0, 0, 0,1, 2,3, 3, 3} p=2 V ={0, 0, 0,1, 2, 3, 4,5,6, 7, 7, 7} 17

18 Surfaces B-Splines N 30 u N 28 v N 31 u N 27 v N 38 u N 28 v N 30 u N 28 v N 37 u N 27 v N 31 u N 27 v N 38 u N 20 v N 37 u N 21 v U ={0, 0, 0,0,1, 2, 3, 4, 5,6,6,6,6} p=3 V ={0, 0, 0,1, 2, 3, 4,5,6, 7, 7, 7} q=2 18

19 Surfaces B-Splines Calcul d'un point d'une surface 1 Trouver l'intervalle nodal dans lequel se trouve u u [ u i, u i 1 [ 2 Calculer les fonctions de formes non nulles p p N i u,, N p i u 3 Trouver l'intervalle nodal dans lequel se trouve v v [ v j, u j 1 [ 4 Calculer les fonctions de formes non nulles N qj q v,, N qj v 5 Multiplier les valeurs des ff non nulles avec les points de contrôle correspondants S u, v = N kp u P kl N lq v i p k i, j q l j k l 19

20 Surfaces B-Splines Point de contrôle Position correspondante à un couple (ui,vj) V ={0,0,0,1, 2,3,3, 3} p=2 U ={0, 0, 0, 0,1, 2,3,3,3, 3} p=3 Chaque carreau coloré a une expression polynomiale indépendante 20

21 Surfaces B-Splines U ={0, 0, 0,0,1, 2, 2, 2, 2} p=3 V ={0, 0, 0,1, 2,3, 3, 3} p=2 21

22 Surfaces B-Splines Répétitions dans la séquence nodale U ou V Discontinuités dans les iso-v ou les iso-u U ={0, 0, 0,0, 2, 2, 2, 4, 4, 4, 4} p=3 V ={0, 0, 0,1.5,1.5, 3, 3,3} p=2 22

23 Surfaces B-Splines Propriétés de la surface B-Spline Interpole les 4 coins si les séquences nodales sont de la forme U ={0,, 0, u p 1,, ur p 1,1,,1 } p 1 p 1 V ={0,, 0, v q 1,, v s q 1,1,,1 } q 1 q 1 Si les séquences nodales correspondent à des courbes de Bézier : U ={0,, 0,1,,1 } 0,1,,1 } V ={0,, p 1 p 1 q 1 q 1 Alors la surface est une carreau de Bézier 23

24 Surfaces B-Splines Propriétés de la surface B-Spline La surface est pourvue de la propriété d'invariance affine (invariance par translation en particulier) L'enveloppe convexe du polyèdre de contrôle contient la surface. Dans chaque intervalle u, v [ ui, u i 1 [ [ v j, u j 1 [, la portion de courbe est dans l'enveloppe convexe des points de contrôle P ij, i, j tq i 0 p i i 0 j 0 q j j Chaque point de contrôle a un contrôle local Il n'y a pas de propriété de variation décroissante globale (contrairement aux courbes B-Spline) 24

25 Surfaces B-Splines Isoparamétriques Obtention d'isoparamétriques aisée : Posons u=u0 n m C u v =S u 0, v = N i u 0 N j v P ij 0 i=0 j=0 m q j j=0 p q n m i=0 j=0 = N v N ip u0 P ij = N qj v Q j u0 n avec Q j u 0 = N ip u 0 P ij i=0 Idem avec v=v0 n C v u =S u, v 0 = N ip u Qi v 0 0 i=0 m avec Q i v0 = N qj v 0 P 25 ij j=0

26 Surfaces B-Splines Surfaces périodiques Tout comme les courbes, possibilité de refermer une surface B-Spline en transformant la séquence nodale Selon une direction (u ou v) Surfaces cylindriques Un seule séquence nodale périodique «doublement» des noeuds de part et d'autre de la couture Selon les deux directions (u et v) Surfaces toriques Deux séquences nodales périodiques Certains noeuds sont répétés 4 fois! 26

27 Surfaces B-Splines v u v u Tuyau Ruban de Moëbius 27

28 Surfaces B-Splines U ={ 3, 2, 1,0,1, 2,3, 4,5, 6,7,8, 9,10,11,12,13,14,15} p=3 28 V ={0, 0, 0,1, 2,3, 4,5,6,7,7, 7} p=2

29 Surfaces B-Splines U ={ 3, 2, 1,0,1, 2,3, 4,5, 6,7,8, 9,10,11,12,13,14,15} p=3 29 V ={0, 0, 0,1, 2,3, 4,5,6,7,7, 7} p=2

30 Surfaces B-Splines v u v u Tore Tore vrillé... 30

31 Surfaces B-Splines 31

32 Surfaces B-Splines 32

33 Surfaces B-Splines U ={ 3, 2, 1,0,1, 2,3, 4,5, 6,7,8, 9,10,11,12,13,14,15} p=3 33 V ={ 2, 1, 0, 1, 2, 3, 4,5, 6, 7, 8,9} p=2

34 Surfaces B-Splines v u Bouteille de Klein 34

35 Triangle de Bézier 35

36 Triangle de Bézier Besoin de surfaces de topologie particulière «Coin de valise» S. Hahmann 36

37 Triangle de Bézier Il existe plusieurs techniques pour modéliser les coins de valises C'est un problème difficile... Prendre un carreau à 4 cotés et la «limiter» par un triangle dans l'espace paramétrique Pb : la surface en question n'est pas construite avec les pts de contrôle des autres surfaces v u 37

38 Triangle de Bézier B-splines triangulaires 1992 : travaux de Dahmen, Micchelli et Seidel W. Dahmen, C.A. Micchelli and H.P. Seidel, Blossoming begets BSplines built better by B-patches, Mathematics of Computation, 59 (199), pp , 1992 Extension de la définition des B-Splines sur des surfaces triangulées de topologie quelconque Réseau de points de contrôle «Maillage» de noeuds non structuré en place du réseau structuré des B-splines de type produit tensoriel Complexe et pas implémenté dans les logiciels de CAO actuels 38

39 Triangle de Bézier Surfaces de bézier triangulaires Exemple : surface d'ordre 3 39

40 Triangle de Bézier a Coordonnées barycentriques p=u a v b w c u v w=1 b Invariance affine 0 u, v, w 1 p est dans le triangle u= p c aire p,b, c aire p, c, a aire p, a, b v= w= aire a, b, c aire a, b, c aire a, b, c 40

41 Triangle de Bézier Coordonnées barycentriques a w v w u b w v p u u v c 41

42 Triangle de Bézier Décomposition du triangle de Bézier Définie par les points de contrôle Pi,j,k Degré d : i+j+k=d Exemple avec d=3 k=d i j P0,3,0 P0,2,1 P1,2,0 P0,1,2 P1,1,1 P2,1,0 P0,0,3 P1,0,2 P2,0,1 P3,0,0 P0,3,0 P0,0,3 En tout, d 2 d 1 points de contrôle. 2 P1,2,0 P3,0,0 42

43 Triangle de Bézier Algorithme de de Casteljau sur le triangle Les Pi,j,k sont donnés On veut P(u,v,w) avec u+v+w=1 On calcule la séquence suivante : r r 1 r 1 r 1 P i, j, k u, v, w =u P i 1, j, k v P i, j 1, k w P i, j, k 1 pour r de 1 à d et pour i+j+k=d-r P 0i, j, k u, v, w = P i, j, k Le point recherché est le dernier point calculé : d P u, v, w = P 0,0,0 u, v, w 43

44 Triangle de Bézier Algorithme de de Casteljau sur le triangle d P 0,0,0 u, v, w 44

45 Triangle de Bézier Caractéristiques Invariance affine Courbe contenue dans l'enveloppe convexe Interpolation des sommets Bords du triangle formé de courbes de Bézier Forme algébrique : autre forme des polynômes de Bernstein P u, v, w = B id, j, k u, v, w P i, j, k i j k =d d! B u, v, w = ui v j w k i! j!k! avec (récurrence) d 1 d 1 d 1 B id, j, k u, v, w =ub i 1, vb wb j,k i, j 1, k i, j, k 1 d i, j,k B 00,0,0 u, v, w =1 45

46 Triangle de Bézier Caractéristiques (suite) Contrairement aux surfaces obtenues par produit tensoriel, le triangle de Bézier est une surface à variation décroissante. 46

47 Surfaces de subdivision 47

48 Surfaces de subdivision Surfaces paramétriques : représentation explicite Représentation légère Algorithmes de discrétisation non triviaux... mais discrétisation nécessaire pour l'affichage et l'utilisation en infographie En général, ces surfaces sont utilisées pour une représentation géométrique précise en vue d'opérations de modélisation ultérieures (intersections, calculs géométriques précis, etc...) Opérations de modélisation non triviaux Pour l'infographie, une telle précision n'est en général pas indispensable 48

49 Surfaces de subdivision Surfaces de subdivision Base de la représentation = maillage élémentaire Par itérations successives, ce maillage est raffiné jusqu'à la précision souhaitée Il s'agit d'une représentation algorithmique plutôt que algébrique, car c'est l'algorithme utilisé pour subdiviser qui détermine la forme finale et les propriétés de la surface Certaines de ces surfaces sont équivalentes à des surfaces paramétriques «habituelles». 49

50 Surfaces de subdivision Historique 1974 George Chaikin An algorithm for high speed curve generation 1978 Daniel Doo & Malcolm Sabin (D) A subdivision algorithm for smoothing irregularly shaped polyhedrons (D&S) Behaviour of recursive division surfaces near extraordinary points Edwin Catmull & Jim Clark Recursively generated B-Spline surfaces on arbitrary topological meshes 1987 Charles Loop Smooth subdivision surfaces based on triangles 2000 Leif Kobbelt 3 subdivision (schéma interpolant) 50

51 Surfaces de subdivision Algorithme de Chaikin George Chaikin, An algorithm for high speed curve generation, Computer graphics and Image Processing 3 (1974),

52 Surfaces de subdivision Algorithme de Chaikin Ou «Corner-cutting» 52

53 Surfaces de subdivision Algorithme de Chaikin L'idée de Chaikin est simple : répéter l'opération, à la limite on obtient une courbe lisse. 53

54 Surfaces de subdivision Algorithme de Chaikin Partant d'un polygone à n points {P0,P1, Pn-1}, on construit le polygone formé de 2n points {Q0,R0,Q1,R1, Qn-1,Rn-1}. Ce polygone sert de base pour une étape supplémentaire de l'algorithme : {P'0,P'1, P'2n-1} 3 1 Les nouveaux points sont les suivants : Qi = P i P i Ri = P i P i 1 P1 4 4 R0 Q0 P0 Q1 Pn R1 Rn-1 Qn-1 Pn-1 54

55 Surfaces de subdivision Algorithme de Chaikin Riesenfeld (1978) a montré que cet algorithme génère en fait une Bspline quadratique uniforme, pour laquelle la continuité est C1. P0 Q0 R0 3 1 Q i = P i P i Ri = P i P i P1 Q1 Pn R1 Rn-1 Qn-1 Pn-1 55

56 Surfaces de subdivision Démonstration de l'équivalence entre le schéma de Chaikin et les courbes B-Splines uniformes quadratiques La courbe B-Spline quadratique est définie n par : P u = P i N 2i u i=0 u u i u i 3 u 1 1 N u = N i u N i 1 u u i 2 u i u i 3 u i 1 2 i 1 N i u = 0 N i u = u u i u i 2 u 0 0 N i u N i 1 u u i 1 u i u i 2 u i 1 { 1 si 0 sinon ui u u i 1 U ={u 0,, u n 2 }, u i 1 u i =1, i=0 n 1 56

57 Surfaces de subdivision On peut mettre sous forme monomiale : n 2 i n 2 «Morceau» de courbe P u = P i N u = P k u i=0 k =0 [ ] Pk avec P k u =[1 u u ] M k P k 1 P k 2 2 La matrice Mk dépend de la séquence nodale P1 P3 P4 P2(u) P0(u) P0 P1(u) P2 57

58 Surfaces de subdivision Calcul des fonctions de forme de degré d 2 pour 0 u 1 U ={u 0 = 2, u 1 = 1, u 2 =0,u 3 =1,u 4 =2, u 5=3} 0 N 0= N =0 0 N 1 =0 0 N 2 =1 N 30=0 N =1 u N =u N =0 N 04 =0 Cas général : M k = 1 u k 3 u k 2 avec : =u k 3 u k 1 =u k 4 u k 2 [ 2 u k 3 u 2 k N 20 = 1 2 u u N 12 = 1 2 u 2 u N 22 = u D'où M 0 = u k 3 u k 1 u k 4 u k 2 u k 2 u k 3 u k 1 u k 4 u k 2 u 2 k ] [ ] 58

59 Surfaces de subdivision Subdivision binaire d'une courbe B-Spline 0 u 1 Consiste en l'expression des P.C. correspondant à chaque moitié de la courbe On va poser ici n=2 (nombre de P.C.) [] P0 P u =[1 u u ] M P 1 P2 2 On veut exprimer P[0,1 /2] u et P[1 /2,1] u de telle façon que sur chaque subdivision le paramètre u soit compris entre 0 et 1. P0 [ M = ] P1 P[0,1 /2] u P[1 /2,1] u P2 59

60 Surfaces de subdivision Cas de P[0,1 /2] u [] ] [] P0 P[0,1 /2] u = P u/ 2 =[1 u /2 u /4] M P 1 P2 2 [ P =[1 u u ] 0 1/2 0 M P /4 P2 2 [ ] [] [] [] [ P =[1 u u ] M M 0 1/ 2 0 M P /4 P2 2 1 Q0 =[1 u u ] M Q 1 Q2 2 avec ] [] Q0 P Q1 =M 0 1/ 2 0 M P / 4 Q2 P2 S [0,1 /2] 60

61 Surfaces de subdivision Cas de P[1 /2,1] u [] P0 P[1 /2,1] u = P 1 u / 2 =[1 1 u /2 1 u / 4] M P 1 P2 2 [ ] [] [ ] [] [] [] [ P0 1 1/2 1/4 =[1 u u ] 0 1/2 1/2 M P /4 P2 2 P0 1 1/ 2 1/ 4 =[1 u u ] M M 0 1/ 2 1/ 2 M P / 4 P2 2 1 R0 =[1 u u ] M R 1 R2 2 avec ] [] R0 P0 1 1/ 2 1/4 1 R 1 =M 0 1/ 2 1/2 M P /4 R2 P2 S [1/ 2,1] 61

62 Surfaces de subdivision Au final, [] [] [] [] [ [ ] [ ] [] [ ] ] [ ] [] [ ] Q0 P0 Q1 =S [ 0,1/2] P 1 Q2 P S [0,1/ 2]=M 0 1/2 0 M = / Q0 3 P 0 P 1 1 Q 1 = P 0 3 P 1 4 Q2 3 P 1 P 2 R0 P0 R 1 =S [1/ 2,1] P 1 R2 P2 1 1/ 2 1/ S [1/ 2,1]=M 0 1/ 2 1/ 2 M = / R0 P 3 P R 1 = 3 P 1 P 2 4 R2 P 1 3 P P1 Q1 = R 0 Q2= R1 Q0 P0 On retrouve les coefficients du schéma de Chaikin... (aux indices près) R2 P[0,1 /2] u P[1 /2,1] u P2 3 1 Qi = P i P i Ri = P i P i

63 Surfaces de subdivision Extension aux B-Splines cubiques Continuité C2 1 1 E i = P i P i V i = P i P i 1 P i P1 P0 E0 V0 E1 Pn V1 En-1 Pn-1 63

64 Surfaces de subdivision Schéma de Doo-Sabin Extension du schéma de Chaikin pour une surface B-Spline biquadratique uniforme Construction par la détermination des nouveaux points de contrôle de la subdivision du patch en 4 nouveaux patches. P02 P00 S1(u,v) S (u,v) 3 S2(u,v) P20 S4(u,v) P22 64

65 Surfaces de subdivision Expression du patch bi-quadratique sous forme monomiale pour 0 u 1 et 0 v 1: N t = 1 2 t t S u, v = N i u N j v P ij 1 i=0 j=0 (avec t = u ou t = v ) N 21 t = 1 2 t 2t 2 2 U =V ={ 2, 1,0,1,2,3} 1 N 22 t = t 2 2 P 0 v P02 2 P00 S u, v =[1 u u ] M P 1 v v P 2 v u P 00 P 01 P 02 1 T S u, v =[1 u u ] M P 10 P 11 P 12 M v v2 P 20 P 21 P 22 2 P20 [ ] [ ] [] P22 [ On retrouve M = ] 65

66 Surfaces de subdivision Subdivision - patch S1(u,v) P 00 P 01 P 02 P= P 10 P 11 P 12 P 20 P 21 P 22 1 S 1 u, v =S u/ 2, v/ 2 =[1 u u ] C M P M C v v C= 0 1/ / 4 T 2 P02 P00 S1(u,v) P22 T [ T [] [] ] ] 1 =[1 u u ] M M C M P M C M M v v T T =[1 u u ] M M C M P M C M M v v2 1 2 T =[1 u u ] M P ' M v P ' =S P S T S =M 1 C M v P20 [ [ ] [] 1 S 1 u, v =S u/ 2, v/ 2 =[1 u /2 u /4] M P M v /2 v 2 /4 2 T 1 [] T 1 T T

67 Surfaces de subdivision P02 P00 Au final P ' =S P S T P'00 [ ] ][ ] S =M C M = [ ][ P 00 P 01 P P'= P 10 P 11 P P 20 P 21 P P'20 P'02 S1(u,v) P'22 P20 [ 3 3 P 00 P 10 3 P 01 P 11 3 P 00 P P 01 P P 01 P 11 3 P 02 P 12 1 P'= 3 P 00 3 P 10 P 01 3 P 11 P 00 3 P 10 3 P 01 3 P 11 3 P 01 3 P 11 P 02 3 P P 10 P 20 3 P 11 P 21 3 P 10 P P 11 P P 11 P 21 3 P 12 P 22 P22 ] 67

68 Surfaces de subdivision Extension aux maillages de topologie arbitraire P00 P20 P02 P22 On constate que les nouveaux points de contrôle sont obtenus par la moyenne simple entre 3 catégories de points : Les anciens points de contrôles Les points sur les arêtes (situés au barycentre des extrémités de l'arête) Les points sur les faces (situés au barycentre des sommets de la face) 68

69 Surfaces de subdivision Extension aux maillages de topologie arbitraire 1 Calcul des points P' (pour chaque sommet P, faire la moyenne de P, des points situés sur les faces et des points situés sur les arêtes adjacentes 69

70 Surfaces de subdivision Extension aux maillages de topologie arbitraire 2 Pour chaque face, relier les points P' créés à partir des sommets de la face 70

71 Surfaces de subdivision Extension aux maillages de topologie arbitraire 3 Pour chaque ancien point de contrôle, connecter les nouveaux points créés pour toutes les faces adjacentes à cet ancien PC. 71

72 Surfaces de subdivision Présence de points «extraordinaires» sur la surface limite Correspondent à des P.C. dont la valence est 4 Partout la continuité de la surface limite est C1 ; sauf aux points extraordinaires, où elle est C0. Image : wikipedia 72

73 Surfaces de subdivision Schéma de Catmull-Clark Idée similaire, pour des surfaces B-Spline bicubiques. P00 P03 P30 P33 73

74 Surfaces de subdivision Trois types de points - Les points «face» sont positionnés au barycentre des sommets de la face : P f =Q - Les points «arête» sont positionnés au barycentre entre les extrémités de l'arête et les deux points «face» des faces adjacentes : Q R P e= 2 - Les points «sommets» sont positionnés ainsi : Q 2 R n 3 S Pv= n Q = moyenne des barycentres des faces incidentes R = moyenne des barycentres des arêtes incidentes S = Sommet original n = nombre d'arêtes incidentes à S. Points «face» Points «arête» Points «sommet» 74

75 Surfaces de subdivision Reconnexion des nouveaux points de contrôle 1 Connecter les points «face» aux points «edge» des arêtes communes 2 Connecter les points «sommets» aux points «edges» des arêtes incidentes Images : Ken Joy - UCLA 75

76 Surfaces de subdivision Comme pour les surfaces de Doo-Sabin, la contiunité est dégradée pour quelques points «extraordinaires». Les surfaces sont bicubiques donc : Continuité C2 partout sauf aux points extraordinaires : C1. Images : Imorasa Suzuki 76

77 Surfaces de subdivision Schéma de Loop Permet la subdivision de surfaces triangulées Surface limite C2, sauf aux points de valence <>6, C1. Le principe est le découpage de triangles en 4 triangles. Des points-sommets sont créés, ainsi que des points-arrêtes (rouges) V E V 1= 10 V +Q 1+Q 2 +Q3 +Q 4 +Q 5 +Q = V+ Q 8 8 E 1= 6 V 1 +6 V 2 +2 F F

78 Surfaces de subdivision Ne fonctionne ici que pour des sommets de valence 6 On peut étendre à des sommets de valence quelconque, à condition de modifier la formule. Telle quelle, elle mène à des surfaces limites non lisses. On pose V 1 =α nv +(1 α n )Q avec 3 1 3π 2 3 α n = + cos n 8 n est ici la valence du sommet original. ( ) Cas des frontières : les sommets ne doivent pas rentrer dans la surface mais se déplacer le long de la frontière. On retombe sur le cas d'une B-Spline cubique ( cf. slide 63) E 1= 11 1 E V V 1 +V 2 2 * 1 Q +Q 6 V 1= V * 2 (seulement les sommets voisins sur la frontière) 78

79 Schéma sqrt(3) de Kobbelt CF papier sur le site web du cours Pour un même niveau de raffinement, moins de triangles sont générés que le schéma de Loop 79

80 Catia en architecture 80

81 Applications architecturales Catia en architecture Frank O. Gehry (Fish sculpture, Barcelona,1992) 81

82 Applications architecturales Catia en architecture Frank O. Gehry (Guggenheim museum, Bilbao,1997) 82

83 Applications architecturales Catia en architecture Frank O. Gehry (Guggenheim museum, Bilbao,1997) 83

84 Applications architecturales Catia en architecture Frank O. Gehry (Walt Disney concert hall, Los Angeles,2003) Carol M. Highsmith 84

85 Lancer de rayon «ray tracing» 85

86 Lancer de rayon Principes du lancer de rayon Intersection d'un rayon provenant de l'oeil avec les objets de la scène Sources de lumière illum on d e Point visible on Ray inati Observateur visio n Objets dans la scène 86

87 Lancer de rayon Algorithme Pour chaque pixel { calculer le rayon de vue intersecter le rayon avec la scène calculer l'illumination au point visible afficher la couleur obtenue } Plan de vue (écran) nx*ny pixels 87

88 Lancer de rayon Calcul des rayons Projection perspective Point de vue Plan de vue (écran) Rayon de vision Projection orthographique Position du pixel Plan de vue (écran) Position du pixel Rayon de vision 88

89 Lancer de rayon Calcul des rayons - projection orthographique On doit calculer la position de p dans le plan de l'écran, ainsi que le vecteur v d Plan de vue (écran) p On utilise une équation paramétrique r t =p t d Mais ou se situe le plan de l'écran dans l'espace 3D? 89

90 Lancer de rayon Calcul des rayons - projection orthographique Détermination du plan de vue On établit un repère lié à la caméra : (e,u,v,w) Le plan de vue est dans le plan u-v; celui ci est spécifié par les valeurs l,r,t,b (cf cours coord. homogènes) Le rayon s'exprime alors, en fonction des coordonées (u,v) du pixel p=e u u v v d= w r t =p t d v w u=r u=l e u v= t v= b 90

91 Lancer de rayon Calcul des rayons - projection perspective e=p d=s-e s Rayon de vision r t =p t d 91

92 Lancer de rayon Calcul des rayons - projection perspective Détermination du plan de vue Les coordonnées de s sont (u,v,-d) Le rayon s'exprime alors, en fonction des coordonées (u,v,w) du pixel s s=e u u v v d w p=e d=s e r t =p t d v e w u=r u=l v= t d v= u b 92

93 Lancer de rayon Du pixel vers l'image j = 3.5 j = -0.5 v=t (0,1) (1,1) (0,0) (1,0) (2,0) v=b i = -0.5 i = 3.5 u=l r l i 0.5 nx u=l v=b t b j 0.5 ny u=r 93

94 Lancer de rayon Calculs d'intersection Les rayons intersectent les objets de la scène 94

95 Lancer de rayon Le rayon a une équation paramétrique r t =p t d On impose t>0 pour former une demi-droite Un rayon est donc directionnel 95

96 Lancer de rayon Intersection rayon sphère Condition 1 : être le long du rayon r t =p t d Condition 2 : être sur la surface de la sphère 2 x =1 x =1 Forme implicite f x =x x 1=0 On substitue et on reporte p t d p t d 1=0 Équation quadratique en t 96

97 Lancer de rayon Intersection rayon sphère SolutionS pour t : d p± d p d d p p 1 t= d d 2 t = d p± d p p p 1 si d est unitaire 2 Prendre la plus proche (tmin) des solutions situées du bon coté (t > 0) 97

98 Lancer de rayon Intersection rayon boîte On pourrait faire les intersections avec les 6 faces individuellement Il est plus simple de faire avec les intersections avec les trois «tranches» 98

99 Lancer de rayon Intersection rayon tranche { r x t = p x t d x r t =p t d r y t = p y t d y t ymax p x t xmin d x = x min t xmin = x min p x / d x t xmax = x max p x / d x p y t ymin d y = y min t ymin = y min p y / d y t ymax = y max p y / d y t xmax y max t xmin y min t ymin x min x max 99

100 Lancer de rayon On a les intersections avec les tranches. Comment obtenir les intersections avec la boîte? Combiner judicieusement les résultats obtenus... Le point de sortie du rayon est le plus petit t * max Le point d'entrée du rayon est le plus grand t * min t xmax t ymax t max =min t xmax,t ymax t min =max t xmax, t ymax Il faut encore vérifier que t max t min t xmin t ymin 100

101 Lancer de rayon Intersection rayon triangle Condition 1 : être sur le rayon r t =p t d Condition 2 : être dans le plan du triangle x a n=0 Condition 3 : être à l'intérieur du triangle n a On résoud 1&2 p t d a n=0 (a p) n t= d n 101

102 Lancer de rayon Intérieur du triangle (orienté...) Intersection de trois demi plans On vérifie que l'on est dans chaque demi-plan b a x a n 0 c b x b n 0 a c x c n 0 ou avec le produit mixte : a c b b a, x a, n 0 c b, x b, n 0 a c, x c, n 0 102

103 Lancer de rayon Intersection rayon triangle Doit être rapide Doit être robuste Il existe un certain nombre d'algorithmes efficaces Cf site du cours pour des pdfs: T. Möller and B. Trumbore. Fast, Minimum Storage Ray-Triangle Intersection. Journal of Graphic Tools, 2(1), 21 28, E. Galin, S. Akkouche, Fast processing of triangle meshes using triangle fans, Intl Conf. On Shape Modeling and Applications, 2005 M. Shevtsov, A. Soupikov and A. Kapustin, Ray-Triangle Intersection Algorithm for Modern CPU Architectures, GraphiCon International Conference on Computer graphics & Vision,

104 Lancer de rayon Bases du raytracing : Soit S est une sphère(o,r) Pour chaque pixel de l'ecran i,j { rayon r=camera.calcule_rayon(i,j) S.intersecte(r,0,+infini,test_intersecte,t) si (test_intersecte) est vrai colorie le pixel i,j en blanc } 104

105 Lancer de rayon Intersection avec de nombreuses primitives Pour une direction donnée, on veut l'intersection la plus proche de l'observateur... l'idée est la suivante: groupe.intersecte(r,tmin,tmax, tbest,surface_proche) { initialiser tbest à +infini initialiser surface_proche à «rien» Pour chaque primitive s { calculer l'intersection de s avec le rayon r intersection = s.intersecte(r,tmin,tbest) si (intersection) tbest = t ; surface_proche = s } } Cet algorithme est linéaire en fonction du nombre de primitives (il existe des méthodes meilleures cf suite) 105

106 Lancer de rayon Modification du ray-tracer et image obtenue Soit S une scène Pour chaque pixel de l'ecran i,j { rayon r=camera.calcule_rayon(i,j) c=s.trace(r,0,+inf) colorie le pixel i,j de la couleur c } Scene.trace(r,tmin,tmax) { groupe.intersecte(r,tmin,tmax,surf,t) si (surf non vide) retourne la couleur de la surface sinon retourne la couleur noire } 106

107 Lancer de rayon Ombrages On doit tenir compte d'un éclairement des surfaces par une ou plusieurs lumières La couleur renvoyée vers l'observateur dépend : de la surface (matière, couleur) de l'angle de vue de l'angle de la source de lumière de la normale de la surface. v n l Ces paramètres sont associés à un modèle permettant de calculer la couleur perçue par l'observateur Ce modèle peut être empirique ou basé sur des considération physiques 107

108 Lancer de rayon Grandeurs physiques associé à la la propagation de la lumière 108

109 Lancer de rayon Quelle est la grandeur adéquate pour représenter une couleur ou une intensité lumineuse? Puissance (W)? Radiosité ( W m 2 )? Intensité radiante ( W sr 1 )? Radiance ( W m 2 sr 1 )? Toutes ces unités supposent une indépendance de la sensibilité de l'œil avec la longueur d'onde. Ce n'est évidemment pas vrai! Note : Angle solide d'un cône quelconque mesuré en stéradians: c'est la mesure de la surface interceptée par une sphère de rayon unitaire centrée sur le sommet du cône. 109

110 Lancer de rayon On préfère utiliser une autre unité de base qui est le candela, ou lumen par stéradian ; 1 lm = f(spectre d'émission) * 1 W, c'est une unité SI reliée au watt par un facteur multiplicatif dépendant de l'observateur standard Flux lumineux (Lumen = lm) 1 Intensité lumineuse ( lm sr =cd ) Illuminance ( lm m ) Luminance ( lm m 2 sr 1) 2 110

111 Lancer de rayon Radiance / Radiométrie W m 2 sr 1 ou W m 2 sr 1 (nm) 1 Mesure physique de l'énergie électromagnétique unité basée sur le watt SI Lois de conservation de l'énergie Luminance / Colorimétrie lm m 2 sr 1=cd m 2 Mesure perceptuelle de la quantité de lumière à différentes longueurs d'onde Unité basée sur le lumen SI Lois de conservation si pas de phénomènes de fluorescence (changement de longueur d'onde de la lumière) 111

112 Lancer de rayon Lampe incandescente de 100 W 1500 lumens ou encore environ 120 candelas si elle émet de façon uniforme dans toutes les directions. Seule une partie de l'énergie lumineuse est émise dans les fréquences visibles (le reste est dans l'infrarouge) Une lampe fluocompacte de 21W Environ 1500 lumens aussi! Presque toute l'énergie est émise dans certaines fréquences visibles Rapport entre intensité physique et perceptive I v = I y d lm 0 lm / W W nm 1 112

113 Lancer de rayon La luminance (radiance) est la puissance par surface unitaire orientée perpendiculairement au rayon; par unité d'angle solide Lumens ou watts d2φ d2φ L( x, ω)= = d ω n da d ω cos θ da d stéradians m2 d n n da θ da 113

114 Lancer de rayon Si la surface émet uniformément (L constante) une puissance dq, cette relation est vérifiée : dq= d 2 Φ= L d ω cos θ da π 2 2π dq= L cos θ sin θ d ϕ d θ da 0 d 0 π 2 dq=2 π L sin θ cos θ d θ da=π L da 0 d n n da θ da 114

115 Lancer de rayon Quiz : La radiance/luminance augmente-t-elle si l'on concentre les rayons du soleil avec une loupe? La radiance/luminance d'une surface éclairante dépend-elle de son aire visible (distance d'observation)? 115

116 Lancer de rayon Lois de conservation pour la luminance Expérience sur la perception de la lumière r a Capteur Signal en Volts U=g.Pc A diaphragmes Émet uniformément de la lumière dans toutes les directions P (lumens) L= 2 S (m ) π (sr) 116

117 Lancer de rayon Lois de conservation pour la luminance r a Angle solide du capteur vu de la surface = da A a r2 Puissance lumineuse arrivant sur le capteur dp c = da L 2 P c = da L= A L= r L Géométrie du capteur A = a L Le résultat ne dépend pas de la distance! La luminance (ou la radiance) se conservent 117

118 Lancer de rayon Lois de conservation pour la luminance r a ' da' A' Si on intercale une lentille parfaite : A ' =k A '= k Puissance lumineuse arrivant sur le capteur P c ' = ' A' L= A L= P c Le résultat ne dépend pas du chemin optique! 118

119 Lancer de rayon Quelques valeurs caractéristiques de la luminance Surface du Soleil : à midi, atmosphère claire 9 2 Lν ~ lm m sr 1 ( hors de l'atmosphère : Lν ~ 2 10 lm m sr 1 ) Pleine lune, minuit Lm ~ 4000 lm m 2 sr 1 Écran de TV, ordinateur etc L TV =50 ~ 500 lm m sr Projecteur multimédia 2000 lumens, écran de projection 2m*1.5m, parfaitement réfléchissant (albédo=1), diffusant la lumière selon la loi de lambert 2000 L p= ~ 200 lm m 2 sr π Luminance d'une feuille de papier blanche A4 (albédo = 0.6) parfaitement réfléchissante exposée au soleil ( Ων ~ sr ) L f ~ 0.6 ~ lm m sr π 119

120 Lancer de rayon Lors de la restitution (affichage), on transforme un signal U en Volts en une intensité lumineuse. Pixel de surface s U P e = g ' (U ) Puissance émise (Lumens ou watts) gain, dépend des propriétés physiques Supposons l'émission de lumière uniforme dans toutes les directions, on a donc une luminance P e g ' (U ) L= = = g ' ' (U ) s π s π Dépend uniquement des caractéristiques géométriques 120 et physiques du «pixel»

121 Lancer de rayon Conclusion : La luminance est la bonne grandeur à «afficher» pour rendre compte fidèlement de la réalité Lors du lancer de rayon, c'est cette grandeur qui est associée à un rayon, et qui est calculée / transportée. 121

122 Lancer de rayon Quelques lois de réflexion de la lumière 122

123 Lancer de rayon Lumière incidente Loi de Lambert (Jean-Henri Lambert ) l n La face supérieure reçoit une certaine quantité de lumière La face supérieure reçoit une fraction de la quantité de lumière émise En fait, la face supérieure reçoit une quantité de lumière proportionnelle à cos =l n Dans tous les cas, la lumière incidente est rediffusée dans toute les directions avec la même intensité 123

124 Lancer de rayon Modèle de surface parfaitement diffuse Appelée aussi surface lambertienne Elle renvoie la lumière «équitablement» dans toutes les directions L'apparence (luminance) ne dépend pas de la position de l'observateur v n l 124

125 Lancer de rayon Modèle de surface lambertienne Quantité de lumière reçue par élément de surface ds d ε= 2 d dq= L i d ε cos θ ds (Lumens) v Celle ci est réémise avec une luminance qui est uniforme dq dε Ld = = Li cos θ π =cos θ I i ds π dε ds I = L i π = Li 2 πd Surface ds d n l d ds est l'illumination incidente. 125

126 Lancer de rayon Modèle de surface Lambertienne Cette surface est pourvue d'une couleur et d'un coefficient d'albédo* Coefficient lié à l'albédo Lumière (luminance) diffusée vers l'observateur Illumination incidente (lm/m2) v n l L d = A I max n l, 0 L d =k d I * l'albédo est le rapport entre la quantité d'énergie incidente et la quantité réfléchie (compris entre 0 et 1) 126

127 Lancer de rayon Surface Lambertienne : Physique Surface rugueuse (pas d'effet miroir) Pénétration des rayons lumineux diffusion par des particules ( ce sont les particules et la matrice qui donnent la couleur! ) Une fraction des rayons lumineux réussit à sortir (paramètre A du modèle de Lambert) Tout se passe à très fine échelle Les rayons lumineux sortants peuvent être considérés comme provenant du point d'entrée ~ 10 m 127

128 Lancer de rayon Limites du modèle lambertien Ne pas être dans les conditions de la lumière rasante Le modèle lambertien tend vers une réflexion nulle... Cf image de la lune : les bords ne tendent pas vers une intensité nulle! (pleine lune) Surfaces non conductrices (pas de métaux) Plâtre «rugueux», céramique dépolie, etc., bitume, béton «rugeux», verre opaque et dépoli 128

129 Lancer de rayon Surface lambertienne : apparence matte La luminance renvoyée ne dépend que de la position de la source. v A=0.4 A=0.6 l A=0.8 A=

130 Lancer de rayon Autres modèles de réflexion diffuse Modèle de Oren-Nayar Inclut l'inter-réflexion sur les irrégularités de la surface... ajoute un paramètre de rugosité. 130

131 Lancer de rayon Surface lambertienne : couleur Coefficient d'albédo différent pour les trois couleurs primaires En pratique, on fixe un coefficient unique (A) à multiplier par un coefficient dépendant de chaque couleur (précisément le triplet représentant la couleur de la matière) R Ld C R I R G G G L d = A C I max n l, 0 B B B C I Ld ~ Couleur de la matière ~ Couleur de la lumière incidente 131

132 Lancer de rayon Image obtenue avec ombrage lambertien Scene.trace(r,tmin,tmax) { groupe.intersecte(r,tmin,tmax,surf,t) si (surf non vide) { point = r.evalue(t) normale=surf.donne_normale(point) retourne surf.ombrage(r,point,normale,lampe) } sinon retourne la couleur de fond } surface.ombrage(rayon,point,normale,lampe) { v = -normalise(rayon.direction) l = normalise(lampe.position-point) // calcule l'ombrage lambertien retourne la couleur } 132

133 Lancer de rayon Références J. H. Lambert. Photometria sive de mensure de gratibus luminis, colorum umbrae. Eberhard Klett, 1760 P. Kubelka and F. Lunk. Ein Beitrag zur Optik der Farbanstriche. Z. Techn. Physik, 12: , 1931 S. Orchard. Reflection and transmission of light by diffusing suspensions. J. Opt. Soc. Am., 59: , 1969 J. Reichmann. Determination of absorption and scattering coefficients for non homogeneous media. Applied Optics, 12: , M. Oren and S. K. Nayar Generalization of Lambert s reflectance model, ACM SIGGRAPH 1994 Proceeding. 133

134 Lancer de rayon Ombres portées... Les surfaces ne sont éclairées que si rien ne bloque la lumière issue de la lampe On dispose de tout de ce qu'il faut pour tester cela! Construire un rayon provenant de la lampe et passant par le point courant sur la surface et vérifier qu'il n'intersecte rien 134

135 Lancer de rayon Ombrage lambertien + ombres portées surface.ombrage(rayon,point,normale,lampe) { rayon_ombre = rayon(point, lampe.position point) groupe.intersecte(rayon_ombre,tmin,tmax,t,surf) si surf est vide { v = -normalise(rayon.direction) l = normalise(lampe.position-point) calculer l'ombrage lambertien retourne la couleur obtenue } sinon retourne couleur noire } 135

136 Lancer de rayon Ombres portées Attention lors de la recherche d'intersection du rayon provenant de la source de lumière Le point d'intersection calculé avec le rayon en provenance de l'observateur est il situé numériquement exactement sur la surface? Si il est un peu à «l'extérieur», alors tout se passe comme prévu Si il est un peu à «l'intérieur», alors on trouvera une intersection pour le rayon provenant de la lampe... Solution : faire en sorte que le rayon utilisé pour le calcul des ombres portées commence à une petite distance de la surface (vers l'extérieur) 136

137 Lancer de rayon Ombres portées traitement correct! rayon_ombre = rayon(point+normale*epsilon, lampe.position point) 137

138 Lancer de rayon Sources lumineuses multiples Important pour «déboucher» les ombres Implémentation très simple : pour chaque lumière, ajouter la contribution correspondante Ombrage ambiant Une ombre parfaitement noire est peu réaliste Solution 1 : placer une faible source de lumière juste à coté de la caméra Solution 2 : ajouter une contribution constante à l'ombrage calculé par ailleurs L a =k a I a Lumière ambiante coefficient ambiant réfléchie Lumière ambiante 138

139 Lancer de rayon Sources lumineuses multiples surface.ombrage(rayon,point,normale,lampes) { couleur= ambiant // eventuellement noir! pour chaque lampe dans lampes { si pas dans ombre (cf plus avant) { v = -normalise(rayon.direction) l = normalise(lampe.position-point) calculer l'ombrage lambertien couleur = couleur + ombrage calculé } } retourne couleur } 139

140 Lancer de rayon Réflexion spéculaire Lumière directement réfléchie par la surface (ne pénètre pas dans la matière) Concerne les surfaces relativement lisses Ces surfaces réfléchissent préférentiellement la lumière dans une direction n v ' l La direction préférentielle est la configuration du miroir : = ' 140

141 Lancer de rayon Réflexion spéculaire : physique La surface est parfaitement lisse : miroir Toute la lumière en provenance de la source est réfléchie dans une seule direction cas particulier (cf suite du cours) Certains matériaux ont une réflexion sous forme de tache diffuse Même pour une source lumineuse ponctuelle! Il y a dispersion de l'orientation de la lumière réfléchie (de part et d'autre de l'angle de réflexion miroir théorique) Ceci est du à la présence de microfacettes à la surface du solide La répartition statistique de l'orientation des microfacettes donne la taille de la tache spéculaire pour une source lumineuse ponctuelle 141

142 Lancer de rayon Réflexion spéculaire : physique La couleur réfléchie est dominée par la couleur de la lumière incidente La couleur d'un objet provient majoritairement de l'absorption partielle des rayons transmis dans le milieu (plastiques, etc...) Toutefois, les coefficients de réflexion sont dépendants de la longueur d'onde dans le visible pour certains matériaux Cuivre, or... visible 142

INFORMATIQUE GRAPHIQUE

INFORMATIQUE GRAPHIQUE INFORMATIQUE GRAPHIQUE Christian Jacquemin (Université Paris 11 et LIMSI-CNRS) COURBES PARAMÉTRIQUES : PRINCIPES Les courbes paramétriques vues comme des trajectoires http://perso.limsi.fr/jacquemi/ Courbes

Plus en détail

Aujourd hui. Synthèse d Images. De la réalité à l ordinateur. De la réalité à l ordinateur. Triangle Mesh: Possibilités: Cours plus tard

Aujourd hui. Synthèse d Images. De la réalité à l ordinateur. De la réalité à l ordinateur. Triangle Mesh: Possibilités: Cours plus tard Aujourd hui Comment créer un modèle sur l ordi? Synthèse d Images Elmar Eisemann Elmar.Eisemann@inrialpes.fr Basé sur les cours de E. Boyer, H. Briceno, N. Holzschuch Qu est-ce l éclairage? Comment simuler

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

Surfaces à subdivision. Surfaces à Subdivision. Subdivision en 3D. Types de Subdivision. L algorithme de Chaiken. But des surfaces à subdivision

Surfaces à subdivision. Surfaces à Subdivision. Subdivision en 3D. Types de Subdivision. L algorithme de Chaiken. But des surfaces à subdivision Surfaces à Subdivision Surfaces à subdivision Approximer la courbe limite, au travers d un processus itératif. Raffinement 1 Raffinement 2 Geri s Game (1998) : Pixar Animation Studios Raffinement! Master

Plus en détail

En pratique, la synthèse d'image 3D se décompose essentiellement en deux principales étapes, la modélisation et le rendu.

En pratique, la synthèse d'image 3D se décompose essentiellement en deux principales étapes, la modélisation et le rendu. Principe des logiciels de modélisation 3D Sources principales : http://fr.wikipedia.org/wiki/infographie_tridimensionnelle http://anim3dvideo.free.fr/mainmenue/index.php?option=com_content&view=article&id=68:definitioninfographie-3d&catid=35:definition-general&itemid=100

Plus en détail

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20 Sources de lumière Sources naturelles Soleil Étoiles Sources artificielles Bougie Ampoule MR, 2007 Optique 1/20 Origine de la lumière Incandescence La lumière provient d un corps chauffé à température

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière.

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière. 31 O1 OPTIQUE GEOMETRIQUE I.- INTRODUCTION L optique est une partie de la physique qui étudie la propagation de la lumière. La lumière visible est une onde électromagnétique (EM) dans le domaine de longueur

Plus en détail

Algorithmes de visualisation. Le calcul du rendu

Algorithmes de visualisation. Le calcul du rendu Algorithmes de visualisation Le calcul du rendu La modélisation de l'éclairement Objets mats et réflexion diffuse Un objet mat, comme par exemple un mur de plâtre, renvoie la lumière qu il reçoit de manière

Plus en détail

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La Synthèse d'images I Venceslas BIRI IGM Université de Marne La La synthèse d'images II. Rendu & Affichage 1. Introduction Venceslas BIRI IGM Université de Marne La Introduction Objectif Réaliser une image

Plus en détail

INFOGRAPHIE. Rapport du Projet de dessin 2D et 3D

INFOGRAPHIE. Rapport du Projet de dessin 2D et 3D Institut Galilée INFO 1 : Yohan ROUSSET Stéphane FOURNIER INFOGRAPHIE Rapport du Projet de dessin 2D et 3D Superviseur : R. MALGOUYRES Année 2008-2009 2 Table des matières I. Introduction... 4 II. Dessin

Plus en détail

1 Modèles polygonaux 2 1.1 Représentations internes... 4 1.2 Représentations externes... 6

1 Modèles polygonaux 2 1.1 Représentations internes... 4 1.2 Représentations externes... 6 Représentation des courbes et des surfaces Contenu 1 Modèles polygonaux 2 1.1 Représentations internes...................... 4 1.2 Représentations externes...................... 6 2 Courbes paramétriques

Plus en détail

Imagerie 3D et mathématiques

Imagerie 3D et mathématiques Imagerie 3D et mathématiques Jacques-Olivier Lachaud Laboratoire de Mathématiques CNRS / Université de Savoie Fête de la Science, 13/10/2013 Galerie Eurêka Image et perception Synthèse d image 3D Imagerie

Plus en détail

SOLENE UN OUTIL DE SIMULATION DES ECLAIREMENTS SOLAIRES ET LUMINEUX DANS LES PROJETS ARCHITECTURAUX ET URBAINS

SOLENE UN OUTIL DE SIMULATION DES ECLAIREMENTS SOLAIRES ET LUMINEUX DANS LES PROJETS ARCHITECTURAUX ET URBAINS SOLENE UN OUTIL DE SIMULATION DES ECLAIREMENTS SOLAIRES ET LUMINEUX DANS LES PROJETS ARCHITECTURAUX ET URBAINS Dominique GROLEAU Laboratoire CERMA, UMR CNRS 1563, Ecole d'architecture de Nantes rue Massenet,

Plus en détail

Fente Lumière blanche. Fente Laser rouge. 2 Prisme

Fente Lumière blanche. Fente Laser rouge. 2 Prisme 1L : Représentation visuelle du monde Activité.4 : Lumières colorées I. Décomposition de la lumière blanche Newton (dès 1766) a décomposé la lumière solaire avec un prisme. 1. Expériences au bureau : 1

Plus en détail

Localisation s y s - 8 4 4 m o d u l e 7. Méthodes passives. Plan du module. Méthodes passives. Objectifs d un système de vision numérique

Localisation s y s - 8 4 4 m o d u l e 7. Méthodes passives. Plan du module. Méthodes passives. Objectifs d un système de vision numérique Objectifs d un système de vision numérique Localisation s y s - 8 4 4 m o d u l e 7 Identifier Localiser Méthodes passives Plan du module Stéréoscopie Gradient d éclairement Méthodes actives Temps de vol

Plus en détail

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation Photométrie d un rétroprojecteur Doc. OPT-TP-02A (14.0) Date : 13 octobre 2014 TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur 1 But de l expérience Le but de ce TP est de : 1. comprendre le

Plus en détail

Introduction à la notion Pipeline Graphique (initiation)

Introduction à la notion Pipeline Graphique (initiation) DENNE Introduction à la notion Pipeline Graphique (initiation) Année universitaire 2004-2005 Pascal Mignot Pascal.Mignot@univ-reims.fr DENNE Objectifs préparation au cours: d OpenGL (initiation) de DirectX

Plus en détail

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction Au programme Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal

Plus en détail

Vision par ordinateur: Formation d image et Photographie

Vision par ordinateur: Formation d image et Photographie Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal Hiver 2007

Plus en détail

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON

LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON LA DÉTERMINATION DE LA LONGUEUR D` ONDE D`UNE RADIATION LUMINEUSE MONOCHROMATIQUE UTILISANT LES ANNEAUX DE NEWTON 1. Les objectifs 1.1. La mise en évidence du phénomène d`interférence pour obtenir des

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

Capsule théorique sur l optique géométrique (destinée au personnel)

Capsule théorique sur l optique géométrique (destinée au personnel) Capsule théorique sur l optique géométrique (destinée au personnel) Octobre 2014 Table des matières Spectre électromagnétique... 3 Rayons lumineux... 3 Réflexion... 3 Réfraction... 3 Lentilles convergentes...

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES

BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Repère : SESSION 2008 Durée : 3 H Page : 0/7 Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR DES MÉTIERS DE L AUDIOVISUEL OPTION MÉTIERS DU SON ÉPREUVE E3 : SCIENCES PHYSIQUES Page : 1/7 Coefficient : 2

Plus en détail

LO12. Chap 1 1. 1. Introduction UTC A2006. 1.1 Présentation de l'uv. Bases de l infographie et Images de synthèse. Objectifs

LO12. Chap 1 1. 1. Introduction UTC A2006. 1.1 Présentation de l'uv. Bases de l infographie et Images de synthèse. Objectifs UTC A2006 1. Introduction 1.1 Présentation de l'uv Objectifs Bases de l infographie et Images de synthèse savoir se repérer dans l espace, comprendre les principaux algorithmes d infographie (leur puissance

Plus en détail

Shadows. gael.guennebaud@inria.fr

Shadows. gael.guennebaud@inria.fr Shadows gael.guennebaud@inria.fr Simulation de l'éclairage Simule la façon dont un objet reflète la lumière Propriétés de la surface Propriétés des sources lumineuses Propriétés de l'environnement Problématique

Plus en détail

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Quebec PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Direction de la formation générale

Plus en détail

Cours S6. Formation d une image

Cours S6. Formation d une image Cours S6 Formation d une image David Malka MPSI 2015-2016 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Le miroir plan 1 1.1 Le miroir plan...............................................

Plus en détail

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE

RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE RAYONNEMENT THERMIQUE DU CORPS NOIR PARTIE THEORIQUE 1 Définitions Considérons un corps porté à une température T. Ce corps émet de l'énergie par sa surface sous forme de rayonnement thermique, c estàdire

Plus en détail

Communication graphique

Communication graphique Introduction générale Partie I. La projection parallèle 1. Le dessin multivue 2. La méthode de Monge 3. L axonométrie 4. Courbes de Bézier 5. La projection cotée (topographie) Projection cotée Méthode

Plus en détail

DEVOIR SURVEILLE N 1

DEVOIR SURVEILLE N 1 Année 2011/2012 - PCSI-2 DS 01 : Optique 1 DEVOIR SURVEILLE N 1 Samedi 24 Septembre 2011 Durée 3h00 Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident OPTIQUE Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident AIR rayon réfléchi EAU rayon réfracté A l'interface entre les deux milieux, une partie

Plus en détail

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr Licence IOVIS 2011/2012 Optique géométrique Lucile Veissier lucile.veissier@spectro.jussieu.fr Table des matières 1 Systèmes centrés 2 1.1 Vergence................................ 2 1.2 Eléments cardinaux..........................

Plus en détail

Contrôle des spécifications dimensionnelles et géométriques sur Machines à Mesurer Tridimensionnelles

Contrôle des spécifications dimensionnelles et géométriques sur Machines à Mesurer Tridimensionnelles Contrôle des spécifications dimensionnelles et géométriques sur Machines à Mesurer Tridimensionnelles 1 Inspection d une spécification portée sur un dessin Les étapes : Définir selon la norme (ISO) la

Plus en détail

NORMES DE TRANSPORT CANADA SUR LES MODULES DE SIGNALISATION A DIODES ELECTROLUMINESCENTES (DEL) DE PASSAGES A NIVEAU RAIL-ROUTE NORMES

NORMES DE TRANSPORT CANADA SUR LES MODULES DE SIGNALISATION A DIODES ELECTROLUMINESCENTES (DEL) DE PASSAGES A NIVEAU RAIL-ROUTE NORMES NORMES DE TRANSPORT CANADA SUR LES MODULES DE SIGNALISATION A DIODES ELECTROLUMINESCENTES (DEL) DE PASSAGES A NIVEAU RAIL-ROUTE NORMES TC E-14 Norme approuvé le 10 octobre 2003 {R-14-2} TABLE DES MATIÈRES

Plus en détail

8TRD147: Animation et images par ordinateur

8TRD147: Animation et images par ordinateur 8TRD147: Animation et images par ordinateur Textures Y. Chiricota Département d informatique et de mathématique Université du Québec à Chicoutimi / Certaines des illustrations de ce document proviennent

Plus en détail

Introduction au Dessin Vectoriel

Introduction au Dessin Vectoriel Introduction au Dessin Vectoriel Introduction Lorsque l'on affiche une image sur l'écran d'un ordinateur, ce que l'on voit n'est qu'une succession de points. Il existe pourtant deux manières différentes

Plus en détail

pour la Réalité Augmentée

pour la Réalité Augmentée Analyse d Image 3D pour la Réalité Augmentée Jean-Marc Vezien vezien@limsi.fr Master Recherche RV&A Janvier 2011 La 3D comment? Les capteurs et les techniques pour l acquisition de la 3D Capteurs actifs

Plus en détail

Introduction au maillage pour le calcul scientifique

Introduction au maillage pour le calcul scientifique Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel franck.ledoux@cea.fr Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,

Plus en détail

Codage Couleurs. E. Jeandel. Emmanuel.Jeandel at lif.univ-mrs.fr. E. Jeandel, Lif CodageCouleurs 1/1

Codage Couleurs. E. Jeandel. Emmanuel.Jeandel at lif.univ-mrs.fr. E. Jeandel, Lif CodageCouleurs 1/1 Codage Couleurs E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CodageCouleurs 1/1 La lumière La lumière est une onde. Cette lumière peut se décomposer en plusieurs composantes (son spectre)

Plus en détail

Chapitre 18 : Transmettre et stocker de l information

Chapitre 18 : Transmettre et stocker de l information Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant

Plus en détail

Visibilité polygone à polygone :

Visibilité polygone à polygone : Introduction Visibilité polygone à polygone : calcul, représentation, applications Frédéric Mora Université de Poitiers - Laboratoire SIC 10 juillet 2006 1 La visibilité Introduction Contexte L espace

Plus en détail

Pipeline Graphique. Transforma)ons de modélisa)on. Illumina)on (Shading) Transforma)ons d affichage. Clipping. Transforma)on écran (Projec)on)

Pipeline Graphique. Transforma)ons de modélisa)on. Illumina)on (Shading) Transforma)ons d affichage. Clipping. Transforma)on écran (Projec)on) Pipeline Graphique Pipeline Graphique de Modèle de la scène Image 3D Transformations de modélisation de Application des transformations de composition de scène : Passage du système de coordonnées local

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

MIROIRS SPHÉRIQUES ET LENTILLES

MIROIRS SPHÉRIQUES ET LENTILLES EXPÉRIENCE 5 MIROIRS SPHÉRIQUES ET LENTILLES I. Introduction et objectifs Les miroirs et les lentilles sont des objets utilisés quotidiennement. Le miroir le plus répandu (et le plus simple) est le miroir

Plus en détail

Chapitre 4 : Modélisation 3D

Chapitre 4 : Modélisation 3D Chapitre 4 : Modélisation 3D Modélisation 3D et Synthèse Fabrice Aubert fabrice.aubert@lifl.fr Master Informatique 2014-2015 F. Aubert (MS2) M3DS/ 4 - Modélisation 3D 2014-2015 1 / 44 1 Introduction F.

Plus en détail

TP2 Opérations et filtres

TP2 Opérations et filtres TP2 Opérations et filtres 1. Opérations arithmétiques Mettre en place les fonctions Min et Max sur 2 images en niveaux de gris. Min() conserve entre 2 images les pixels de luminance minimum, Max() conserve

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Chapitre 5 : Les lentilles et les instruments d optique

Chapitre 5 : Les lentilles et les instruments d optique Exercices Chapitre 5 : Les lentilles et les instruments d optique E. (a) On a 33, 2 0cm et 20 cm. En utilisant l équation 5.2, on obtient 33 0 cm 33 20 cm 858 cm Le chat voit le poisson à 858 cm derrière

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

Mesure de Température par Caméra Infrarouge

Mesure de Température par Caméra Infrarouge Mesure de Température par Caméra Infrarouge INTRODUCTION La caméra infrarouge capte au travers d un milieu transmetteur (ex : l atmosphère) les rayonnements émis par une scène thermique. Le système radiométrique

Plus en détail

PRINCIPE MICROSCOPIE CONFOCALE

PRINCIPE MICROSCOPIE CONFOCALE PRINCIPE MICROSCOPIE CONFOCALE Un microscope confocal est un système pour lequel l'illumination et la détection sont limités à un même volume de taille réduite (1). L'image confocale (ou coupe optique)

Plus en détail

Notions générales en synthèse d'images. Espace image, espace utilisateur, modèles

Notions générales en synthèse d'images. Espace image, espace utilisateur, modèles Notions générales en synthèse d'images Espace image, espace utilisateur, modèles Catégories Type de scènes (3D, 2D, 2,5D) Type d images. Fil-de-fer Parties cachées Dessin au trait Image avec couleurs et

Plus en détail

TRAVAUX PRATIQUES DE PHYSIQUE

TRAVAUX PRATIQUES DE PHYSIQUE TRAVAUX PRATIQUES DE PHYSIQUE DÉPARTEMENT DE PHYSIQUE DOSSIER POUR RAPPORT D EXPÉRIENCE Date : 26 mars 2009 Section : Physique Groupe No : 7 Nom : Jérôme Dufour Sascha Jörg Manipulation : F4 - Instrument

Plus en détail

fig 1 - télescope Schmitt-Cassegrain

fig 1 - télescope Schmitt-Cassegrain OPTIQUE GEOMETRIQUE 1 Pour former l'image de la réalité, on utilise un système optique, généralement constitué d'un objectif (système réfractant). Le système optique complet est plus complexe pour certaines

Plus en détail

Ce test met en jeu un cube avec une fissure en forme de lentille, soumis à une tension hydrostatique.

Ce test met en jeu un cube avec une fissure en forme de lentille, soumis à une tension hydrostatique. Titre : SSLV155 - Fissure lentille en traction Date : 20/07/2015 Page : 1/24 SSLV155 Fissure lentille en traction Résumé : Ce test a pour but de valider le calcul des facteurs d'intensité de contrainte

Plus en détail

Formation des images dans les conditions de Gauss

Formation des images dans les conditions de Gauss ormation des images dans les conditions de Gauss Table des matières 1 Définitions 3 1.1 Système optique............................... 3 1.2 Objet-Image................................. 3 1.2.1 Objet................................

Plus en détail

Chapitre «Couleur des objets»

Chapitre «Couleur des objets» Lycée Joliot Curie à 7 PHYSIQUE - Chapitre II Classe de 1 ère S Chapitre «Couleur des objets» La sensation de couleur que nous avons en regardant un objet dépend de nombreux paramètres. Elle dépend, entre

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Informatique Graphique Méthodes de Rendu

Informatique Graphique Méthodes de Rendu Informatique Graphique Méthodes de Guillaume Gilet Guillaume.Gilet@unilim.fr 2012-2013 Résumé des épisodes précédents Principe de synthèse d'images Evaluation du transport de lumière Complexité des phénomènes

Plus en détail

Guide pour une utilisation correcte d un système de vision industriel

Guide pour une utilisation correcte d un système de vision industriel Guide pour une utilisation correcte d un système de vision industriel Comment optimiser les performances d un système de vision industriel avancées Utilisation de l éclairage 1. Éclairage pour le traitement

Plus en détail

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique.

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique. OPTIQUE GEOMETRIQUE Définitions : L optique est la science qui décrit les propriétés de la propagation de la lumière. La lumière est un concept extrêmement compliqué et dont la réalité physique n est pas

Plus en détail

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION - 1 - Expérience no 21 1. INTRODUCTION ELEMENTS D OPTIQUE Dans cette expérience les principes de l optique géométrique sont applicables car les obstacles traversés par la lumière sont beaucoup plus grands

Plus en détail

TP MSO Synthèse d images: Lancé de rayons CPE

TP MSO Synthèse d images: Lancé de rayons CPE TP MSO Synthèse d images: Lancé de rayons CPE durée-4h 2011 FIGURE 1 Étapes de l algorithme de lancé de rayons. De gauche à droite : équation du calcul d intersection; image des intersections; ordonnancement

Plus en détail

SP4 Formation des images & Approximation de Gauss

SP4 Formation des images & Approximation de Gauss SP4 Formation des images & Approximation de Gauss Objectifs de cette leçon : Définitions d un objet, d une image et d un système optique. Notions d objets et d images étendues Notions d objets et d images

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Visualisation 3D sur un Smartphone

Visualisation 3D sur un Smartphone Visualisation 3D sur un Smartphone Réalisé par: Bouhajja Lamia Daikhi Rahma Encadré par : Madame Ben Azouz Zouhour SOMMAIRE : I. Introduction Générale générale II. Objectif du projet III. Rendu 3D IV.

Plus en détail

Chapitre 5. Transfert chaleur par rayonnement

Chapitre 5. Transfert chaleur par rayonnement Chapitre 5 Transfert chaleur par rayonnement 1 Sommaire : 1 - Nature du rayonnement 2 - Caractéristiques ristiques Energétiques 3 - Corps noir 4 - Flux solaire intercepté par la planète Terre 5 - Equilibre

Plus en détail

VI. Amélioration du rendu

VI. Amélioration du rendu VI. Amélioration du rendu On parle de rendu réaliste lorsqu'une image contient la plupart des effets de lumière en interaction avec des objets physiques réels. Les travaux de recherche en ce domaine sont

Plus en détail

Lentilles Détermination de distances focales

Lentilles Détermination de distances focales Lentilles Détermination de distances focales Résumé Les lentilles sont capables de faire converger ou diverger un faisceau lumineux. La distance focale f d une lentille caractérise cette convergence ou

Plus en détail

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PARTIE THEORIQUE A - RESEAUX 1 - Définition On appelle réseau plan le système constitué par un grand nombre de fentes fines, parallèles, égales

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Description du projet. Principe d'un Raytracer

Description du projet. Principe d'un Raytracer Projet de Java Licence 3 Informatique Rémi Forax, Pierre Peterlongo, Benoit Olivieri (forax@univ-mlv.fr, pierre.peterlongo@univ-mlv.fr, olivieri@univ-mlv.fr) Description du projet Le programme RayOfLight

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

5ETI Synthese d images: Modélisation 3D

5ETI Synthese d images: Modélisation 3D Synthèse d images : Domaines d applications 5ETI Synthese d images: Loisir, Graphique (Entertainment) : Cinéma, Jeux vidéos, Communication,.... Calcul : Engineering, médical,... CAO (CAD) : Conception,

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention:

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention: TP Physique n 1 Spécialité TS Convention: Dans cet exposé, la lumière est supposée se déplacer de la gauche vers la droite. I. Généralités sur les lentilles minces: Une lentille est un milieu transparent

Plus en détail

TP Cours : Polarisation rectiligne de la lumière

TP Cours : Polarisation rectiligne de la lumière TP Cours : Polarisation rectiligne de la lumière Les ondes lumineuses sont des ondes électromagnétiques vectorielles. Certains systèmes physiques, comme par exemple les lunettes de soleil polarisantes,

Plus en détail

Chapitre 2 : La couleur des objets (p. 29)

Chapitre 2 : La couleur des objets (p. 29) PRTIE 1 - OSERVER : OULEURS ET IMGES hapitre 2 : La couleur des objets (p. 29) onnaissances : Phénomènes d absorption, de diffusion et de transmission. Savoir-faire : Utiliser les notions de couleur blanche

Plus en détail

GEOGEBRA : Les indispensables

GEOGEBRA : Les indispensables Préambule GeoGebra est un logiciel de géométrie dynamique dans le plan qui permet de créer des figures dans lesquelles il sera possible de déplacer des objets afin de vérifier si certaines conjectures

Plus en détail

o Introduction o Modèle versus représentations

o Introduction o Modèle versus représentations Plan de la présentation MGA 802 Programmation des systèmes de CAO pour l aéronautique La modélisation et les représentations géométriques Le cœur des systèmes de CAO o o Modèles versus représentations

Plus en détail

Chapitre 0-2 Introduction générale au cours de BCPST1

Chapitre 0-2 Introduction générale au cours de BCPST1 Chapitre 0-2 Introduction générale au cours de BCPST Extrait du programme I. Les grandeurs en sciences physiques Définition : une grandeur est une observable du système On peut la mettre en évidence a.

Plus en détail

BTS MÉTIERS DE L'AUDIOVISUEL SCIENCES PHYSIQUES - U. 3 OPTION MÉTIERS DU SON

BTS MÉTIERS DE L'AUDIOVISUEL SCIENCES PHYSIQUES - U. 3 OPTION MÉTIERS DU SON BTS MÉTIERS DE L'AUDIOVISUEL SCIENCES PHYSIQUES - U. 3 OPTION MÉTIERS DU SON SESSION 20 Durée: 3 heures Coefficient: 2 Matériel autorisé: Toutes les calculatrices de poche y compris les calculatrices programmables

Plus en détail

2 Correspondance des Points de Contrôle Spline - Bézier

2 Correspondance des Points de Contrôle Spline - Bézier COURBES B-SPLINES 1 Introduction Une courbe de Bézier est totalement modifiée dès qu on déplace un point de contrôle : on dit que la méthode de Bézier est une méthode globale. Les courbes B-Splines Uniformes,

Plus en détail

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

SDLV120 - Absorption d'une onde de compression dans un barreau élastique Titre : SDLV120 - Absorption d'une onde de compression dan[...] Date : 09/11/2011 Page : 1/9 SDLV120 - Absorption d'une onde de compression dans un barreau élastique Résumé On teste les éléments paraxiaux

Plus en détail

UE3 Analyse des Images Optique : géométrie et formation d'image

UE3 Analyse des Images Optique : géométrie et formation d'image UE3 Analyse des Images Optique : géométrie et formation d'image Plan du cours 1 Optique géométrique principes, loi de Snell Descartes stigmatisme, image réelle et virtuelle 2 Formation d'une image formation

Plus en détail

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière Physique - Optique et applications pour la Synthèse d Images IUT StDié Cours niveau Licence Optique v.2005-10-05 Stéphane Gobron Plan Introduction 2. Image, réflexion et réfraction 4. Interférences et

Plus en détail

Etude expérimentale sur les interférences lumineuses

Etude expérimentale sur les interférences lumineuses Etude expérimentale sur les interférences lumineuses La lumière est une onde électromagnétique. Deux ondes sont à même d interagir en se sommant. Dans certains cas particuliers, notamment pour deux rayons

Plus en détail

Cours 1 - Premiers pas en 3D. Xavier Décoret - INF583 École Polytechnique

Cours 1 - Premiers pas en 3D. Xavier Décoret - INF583 École Polytechnique Cours 1 - Premiers pas en 3D Xavier Décoret - INF583 École Polytechnique Disclaimer Attention, c est le cours le plus difficile le plus important Il y a beaucoup de on verra plus tard C est le canvas sur

Plus en détail

Chapitre 4 - Lumière et couleur

Chapitre 4 - Lumière et couleur Choix pédagogiques Chapitre 4 - Lumière et couleur Manuel pages 64 à 77 Ce chapitre reprend les notions introduites au collège et en classe de seconde sur les sources de lumières monochromatiques et polychromatiques.

Plus en détail

TRAVAUX DIRIGÉS DE O 3

TRAVAUX DIRIGÉS DE O 3 TRVUX DIRIGÉS DE O 3 Exercice : Constructions graphiques Pour chacune des figures, déterminer la position de l objet ou de son image par la lentille mince. Les points situés sur l axe optique sont les

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 2 heures Sujet Lampe à incandescence et bilans thermiques...2 I.Lampe à incandescence en régime permanent...2 A.Détermination de la température

Plus en détail

LA THERMOGRAPHIE INFRAROUGE

LA THERMOGRAPHIE INFRAROUGE LA THERMOGRAPHIE INFRAROUGE 1 EMISSION THERMIQUE DE LA MATIERE 2 1.1 LE RAYONNEMENT ELECTROMAGNETIQUE 2 1.2 LES CORPS NOIRS 2 1.3 LES CORPS GRIS 3 2 APPLICATION A LA THERMOGRAPHIE INFRAROUGE 4 2.1 DISPOSITIF

Plus en détail

Animation d un robot

Animation d un robot nimation d un robot IFT3355 : Infographie - TP #1 Jérémie Dumas Baptiste De La Robertie 3 février 2010 Université de Montréal Table des matières Introduction au problème 2 1 Transformations 2 1.1 Passage

Plus en détail

Éclairage naturel L5C 2009/2010. Aurore BONNET

Éclairage naturel L5C 2009/2010. Aurore BONNET Éclairage naturel L5C 2009/2010 Aurore BONNET Introduction : Les 2 aspects de l éclairage naturel : Introduction : Les 2 aspects de l éclairage naturel : l ensoleillement et l éclairage diffus L ENSOLEILLEMENT

Plus en détail