LES TRIANGLES. Dans un triangle, la longueur de chaque côté est inférieure à la somme des 2 autres. L INEGALITE TRIANGULAIRE :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "LES TRIANGLES. Dans un triangle, la longueur de chaque côté est inférieure à la somme des 2 autres. L INEGALITE TRIANGULAIRE :"

Transcription

1 I) L inégalité triangulaire : 1) Propriété : Dans un triangle, la longueur de chaque côté est inférieure à la somme des 2 autres. B A C L INEGALITE TRIANGULAIRE : BC BA + AC BA BC + AC AC AB + BC 2) Conséquences a, b et c sont trois longueurs données avec a la plus grande de ces longueurs. Si a b+c, alors on peut construire un triangle de cotés a, b et c. Si a b+c, alors on ne peut pas construire un triangle de cotés a, b et c. 3) Exemple : Peut-on construire un triangle FGH sachant que FG=2cm, FH=6cm et HG=3cm? On compare la longueur du plus grand coté et la somme des longueurs des deux autres cotés : FG+HG = = 5cm et FH = 6 cm On a FH FG+HG. L inégalité triangulaire n est pas vérifiée, donc on ne peut pas construire ce triangle FGH.

2 II) CAS D EGALITE 1) Propriété Si un point M appartient au segment [AB], alors : AM + MB = AB A M B 2) Propriété réciproque Si trois points A, B et M sont tels que : alors le point M appartient au segment [AB] AM + MB = AB Activité Tracer un triangle quelconque ABC. Mesurer les angles suivants à l aide de votre rapporteur :ABC, BAC et ACB. A B C III) SOMME DES MESURES DES ANGLES D UN TRIANGLE 1) Propriété Dans un triangle, la somme des mesures des angles est égale à 180 α β + γ + = 180

3 Activités : 4 et 5 page 171 IV) APPLICATION AUX TRIANGLES PARTICULIERS 1) Le triangle rectangle a) Propriété : Si un triangle est rectangle, alors la somme des mesures des angles aigus est égale à =90 b) Propriété réciproque : Si, dans un triangle, la somme des mesures de deux angles est égale à 90, alors ce triangle est rectangle. Dans le triangle FGH suivant : Donc le triangle FGH est rectangle en H Exercices 41 ; 42 ; 43 ; 44 page 179

4 Activité 5 page 171 1) Tracer un triangle EFG isocèle en G. 2) a) Quels angles de ce triangle ont la même mesure? Justifier la réponse. b) Quelle est la somme des mesures de ces angles? 3) Recopier et compléter le tableau suivant : Triangle n Mesure de Mesure de Mesure de ) Le triangle isocèle a) Propriété : Dans un triangle isocèle, les angles à la base sont de même mesure. b) Exemple : Dans le triangle ABC isocèle en C : Les angles = 67 ont la même mesure. La somme des mesures des angles dans un triangle est de D où + Donc la mesure de l angle est de 46

5 3) Le triangle équilatéral a) Propriétés : Si un triangle est équilatéral, alors chacun de ces angles a pour mesure 60. b) Exemple : Le triangle ABC est équilatéral, donc ses angles ABC, BAC et ACB sont égaux. ABC = BCA = BAC = 60 Activité : Cercle circonscrit à un triangle Lancer le logiciel de géométrie dynamique GeoGebra. 1. Construire un triangle ABC dont les dimensions sont les suivantes : BC = 7cm, AB = 5cm, AC= 6cm. On utilisera les icones suivantes :,, et. 2. Tracer la médiatrice (d) du segment [BC] à l aide de l icône. 3. Tracer la médiatrice (d ) du segment [AB]. 4. Tracer la médiatrice (d ) du segment [AC]. 5. Que remarquez-vous?.. 6. Faites apparaître le point d intersection O de ces trois droites à l aide de l icône. 7. Relier le point O aux point A, B et C puis faites apparaitres les longueurs des segments suivants : OA=, OB=.., OC= Que remarquez-vous?. 8. Quelle figure géométrique a pour centre le point O et passe par les points A, B et C?.. 9. Tracer cette figure à l aide de l icône qui convient.

6 V) DROITES REMARQUABLES D Un TRIANGLE 1) Médiatrices d un triangle : a) Propriétés : Dans un triangle, les trois médiatrices se coupent en un même point : on dit qu elles sont concourantes. Ce point est le centre d un cercle qui passe par les trois sommets du triangle. Ce cercle est le cercle circonscrit au triangle. b) Exemple Tracer un triangle DFE suivant : DE=6 cm, EF = 8,5 cm et DF=7 cm Tracer les médiatrices du triangle DFE, puis tracer le cercle circonscrit au triangle. c) Exercices : Tracer les médiatrices des triangles suivants, puis tracer le cercle circonscrit de chacun d entre eux.

7 Activité : Dans le triangle ABC, le point M se déplace sur le segment [BC]. Le logiciel GeoGebra permet d afficher l aire des triangles ABM et ACM au fur et à mesure que le point M se déplace. Que peut-on dire de la position de M quand les aires sont égales? Dans ce cas, la droite (AM) est la médiane issue de A dans le triangle ABC. 2) Médianes d un triangle : a) Définition : Dans un triangle, la médiane issue d un sommet est la droite qui passe par ce sommet et par le milieu du côté opposé à ce sommet. b) Exemple Dans c) le triangle ABC, la droite (AI) est la médiane issue de A. 3) c) Remarque : Dans un triangle ABC il y a trois médianes : Celle issue du sommet A, celle du sommet B et celle du sommet C.

8 Activité Dessiner un triangle ABC tel que BC=10cm, AB=7cm et AC= 9cm a) Que doit-on tracer pour pouvoir mesurer à quelle hauteur se trouve le point A par rapport au côté [BC]? b) Mesurer cette hauteur à 1 mm près. c) Si l on fait pivoter la feuille pour que le côté [AB] soit horizontal, on peut mesurer la hauteur du point C par rapport au segment [AB]. d) Mesurer cette hauteur à 1 mm près. e) De même si l on fait pivoter le triangle pour que le côté [AC] soit horizontal, on peut mesurer la hauteur du point B par rapport au segment [AC]. f) Mesurer cette hauteur à 1 mm près. 3) Hauteur d un triangle : a) Définition Dans un triangle, la hauteur issue d un sommet est la droite qui passe par ce sommet et qui est perpendiculaire au côté opposé à ce sommet. b) Exemples H Dans le triangle ABC, la droite (AH) est la hauteur issue de A. Dans le triangle DEF, la droite (DH) est la hauteur issue de D. c) Exercice A quelle hauteur du sol se trouve l alpiniste? Donner la mesure d une hauteur du triangle ABC. Construire le triangle en prenant 1 cm pour 10 mètres et mesurer en cm les autres hauteurs du triangle sur le dessin ainsi tracé.

9 Activité : Cercle circonscrit à un triangle Lancer le logiciel de géométrie dynamique GeoGebra. 10. Construire un triangle ABC dont les dimensions sont les suivantes : BC = 7cm, AB = 5cm, AC= 6cm. On utilisera les icones suivantes :,, et. 11. Tracer la médiatrice (d) du segment [BC] à l aide de l icône. 12. Tracer la médiatrice (d ) du segment [AB]. 13. Tracer la médiatrice (d ) du segment [AC]. 14. Que remarquez-vous? Faites apparaître le point d intersection O de ces trois droites à l aide de l icône. 16. Relier le point O aux point A, B et C puis faites apparaitres les longueurs des segments suivants : OA=, OB=.., OC= Que remarquez-vous?. 17. Quelle figure géométrique a pour centre le point O et passe par les points A, B et C? Tracer cette figure à l aide de l icône qui convient. 19. Enregistrer votre travail avec le nom : cerclecirconscrit dans le répertoire \travail\maths\ Activité : Cercle circonscrit à un triangle Lancer le logiciel de géométrie dynamique GeoGebra. 1. Construire un triangle ABC dont les dimensions sont les suivantes : BC = 7cm, AB = 5cm, AC= 6cm. On utilisera les icones suivantes :,, et. 2. Tracer la médiatrice (d) du segment [BC] à l aide de l icône. 3. Tracer la médiatrice (d ) du segment [AB]. 4. Tracer la médiatrice (d ) du segment [AC]. 5. Que remarquez-vous?.. 6. Faites apparaître le point d intersection O de ces trois droites à l aide de l icône. 7. Relier le point O aux point A, B et C puis faites apparaitres les longueurs des segments suivants : OA=, OB=.., OC= Que remarquez-vous?. 8. Quelle figure géométrique a pour centre le point O et passe par les points A, B et C?.. 9. Tracer cette figure à l aide de l icône qui convient. 10. Enregistrer votre travail avec le nom : cerclecirconscrit dans le répertoire \travail\maths\

10 DEMONSTRATION SOMME DES ANGLES D Un TRIANGLE 1. Tracer un triangle ABC quelconque. 2. Placer le point I milieu du segment [AB] 3. Placer le point J milieu du segment [AC] 4. Tracer le symétrique B de B par rapport au milieu J du coté [AC]. 5. Tracer le symétrique C de C par rapport au milieu I du coté [AB]. 6. Démontrer que les angles ACB et CAB ont la même mesure. Les angles ACB et CAB sont deux angles symétriques par rapport au point J. Or la symétrie centrale conserve les mesures des angles.donc les angles ACB et CAB ont même mesure. 7. Démontrer que les angles ABC et BAC' ont la même mesure. Les anglesabc et BAC' sont deux angles symétriques par rapport au point I. Or la symétrie centrale conserve les mesures des angles.donc les angles ABC et BAC' ont même mesure. 8. Démontrer que les droites (AB ) et (BC) sont parallèles. Les droites (AB ) et (BC) sont symétriques par rapport au point J. Or deux droites symétriques par rapport à un point sont parallèles. Donc les droites (AB ) et (BC) sont parallèles. 9. Démontrer que les droites (AC ) et (BC) sont parallèles. Les droites (AC ) et (BC) sont symétriques par rapport au point J. Or deux droites symétriques par rapport à un point sont parallèles. Donc les droites (AC ) et (BC) sont parallèles. 10. En déduire que les points C, A et B sont alignés. Ainsi les droites (AB ) et (AC ) sont toutes deux parallèles à la droite (BC), elles sont donc parallèles entre-elles et ont un point commun A. Donc les droites (AB ) et (AC ) sont confondues, par conséquent les points C, A et B sont alignés. 11. Justifier que BAC'+BAC +CAB =180. Les angles BAC', BAC et CAB sont adjacents et les points C, A et B sont alignés. Donc BAC'+BAC +CAB = En déduire que ABC +BCA +CAB =180. Or, BAC'=ABC et CAB =ACB : Donc ABC +BCA +CAB =180.

11 DEMONSTRATION SOMME DES ANGLES D Un TRIANGLE 1. Tracer un triangle ABC quelconque. 2. Placer le point I milieu du segment [AB] 3. Placer le point J milieu du segment [AC] 4. Tracer le symétrique B de B par rapport au milieu J du coté [AC]. 5. Tracer le symétrique C de C par rapport au milieu I du coté [AB]. 6. Démontrer que les angles ACB et CAB ont la même mesure. 7. Démontrer que les angles ABC et BAC' ont la même mesure. 8. Démontrer que les droites (AB ) et (BC) sont parallèles. 9. Démontrer que les droites (AC ) et (BC) sont parallèles. 10. En déduire que les points C, A et B sont alignés. 11. Justifier que BAC'+BAC +CAB = En déduire que ABC +BCA +CAB =180.

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT :

PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT : THÈMES ABORDÉS : L INÉGALITÉ TRIANGULAIRE LA SOMME DES ANGLES DANS UN TRIANGLE LES DROITES REMARQUABLES DU TRIANGLE PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT : 1. La somme des angles d un triangle est égale à

Plus en détail

Cours. Cas. Cas. Cas. Conclusion : = 3 cm et. BC = 3 cm. = 2 cm et. o BC AB + AC. 5 ième COURS PROFESSEUR

Cours. Cas. Cas. Cas. Conclusion : = 3 cm et. BC = 3 cm. = 2 cm et. o BC AB + AC. 5 ième COURS PROFESSEUR Cours n 4 : TRIANGLES I- L INEGALITE TRIANGULAIRE Cas n 1 : construire un segment [AB], puis un point C tel que : AB = 6 cm ; AC = 3 cm et BC = 4 cm. C A B Cas n 2 : construire un segment [AB], puis un

Plus en détail

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire

5 ème COURS triangles et droites remarquables. 1 Inégalité triangulaire 1 Inégalité triangulaire Quels que soient les points A, B et C on a l inégalité : AB AC + CB appelé linégalité triangulaire. A, B et C, sont trois points. On a l inégalité triangulaire : AB AC + CB Ecrire

Plus en détail

Triangles. I. Construction de triangles. 1. Inégalité triangulaire

Triangles. I. Construction de triangles. 1. Inégalité triangulaire Triangles I. Construction de triangles 1. Inégalité triangulaire Exercice : 1. Tracer un segment [AB] tel que AB = 8 cm. Tracer un cercle de centre A et de rayon 5 cm. 2. On veut construire un cercle de

Plus en détail

Chapitre 2 : Les triangles

Chapitre 2 : Les triangles Chapitre 2 : Les triangles Compétences à valider : Utiliser les définitions et les propriétés relatives aux angles des triangles particuliers. Utiliser l'inégalité triangulaire. Construire un triangle

Plus en détail

#2 Triangles, médiatrices et cercle circonscrit

#2 Triangles, médiatrices et cercle circonscrit #2 Triangles, médiatrices et cercle circonscrit I Construction d un triangle connaissant ses 3 longueurs Activité 1 : Construis un triangle dont les côtés mesurent 3, 5 et 9 cm. Que remarque-t-on? Réponse

Plus en détail

ANGLES ET TRIANGLES I- CONSTRUCTION DES ANGLES :

ANGLES ET TRIANGLES I- CONSTRUCTION DES ANGLES : Chapitre 8 ANGLES ET TRIANGLES I- CONSTRUCTION DES ANGLES : Un angle est une ouverture comprise entre deux demi-droites sécantes. La construction des angles peut se faire de plusieurs manières. I-1- Par

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Triangles Triangles.odt clicprof.free.fr 1/10

Triangles Triangles.odt clicprof.free.fr 1/10 Triangles Table des matières 1Quelques rappels sur les triangles...2 1Médiatrices...2 2Bissectrices...2 3Nature d'un Triangle...2 Triangle isocèle...2 Triangle équilatéral...2 Triangle rectangle...2 2Construction

Plus en détail

Rappels de collège sur la géométrie dans le plan

Rappels de collège sur la géométrie dans le plan Rappels de collège sur la géométrie dans le plan I Rappels sur les symétries : I 1 Symétrie axiale : On note I le milieu de On appelle médiatrice du segment la droite perpendiculaire en I à Propriétés

Plus en détail

Triangles. 1) Somme des angles d'un triangle Propriété: La somme des trois angles d'un triangle est égale à 180. Démonstration

Triangles. 1) Somme des angles d'un triangle Propriété: La somme des trois angles d'un triangle est égale à 180. Démonstration Triangles 1) Somme des angles d'un triangle Propriété: La somme des trois angles d'un triangle est égale à 180. Démonstration On considère un triangle ABC. Traçons la droite d parallèle à (BC) passant

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

5 eme : Triangles et ce qui s y rapporte

5 eme : Triangles et ce qui s y rapporte 5 eme : Triangles et ce qui s y rapporte Michael A. 15 octobre 2014 Ce petit cours traitera des triangles et de ce que l on peut appliquer à un triangle pour s amuser un peu. 1 Triangles 1.1 Définition

Plus en détail

Symétrie axiale cours 6e

Symétrie axiale cours 6e Symétrie axiale cours 6e F.Gaudon 24 février 2004 Table des matières 1 Axes de symétrie 2 1.1 Approche expérimentale..................... 2 1.2 Axes de symétrie particuliers................... 2 1.2.1

Plus en détail

manba3math 1 ASC yassine mrazek

manba3math 1 ASC yassine mrazek manba3math 1 ASC yassine mrazek septembre 2013 2 QUI PEUT FAIRE ; PEUT FAIRE MIEUX Table des matières 1 enchaînement d opérations 7 1.1 vocabulaire........................................ 7 1.1.1 la somme

Plus en détail

CHAP 5G1 LES TRIANGLES

CHAP 5G1 LES TRIANGLES CHAP 5G1 LES TRIANGLES 1 Définition, triangles particuliers. 1.1 Définition Définition : Un triangle est un polygone à 3 côtés Un triangle possède donc : - 3 sommets - 3 côtés - 3 angles Conséquence :

Plus en détail

Droites remarquables dans les triangles

Droites remarquables dans les triangles Droites remarquables dans les triangles F.Gaudon 16 février 2005 Table des matières 1 Différentes droites 2 1.1 Médiatrices............................ 2 1.2 Hauteurs.............................. 4 1.3

Plus en détail

ABC est un triangle (quelconque)

ABC est un triangle (quelconque) Triangles I) Définition : Un triangle est un polygone qui trois côtés. ABC est un triangle (quelconque) II) Construction de triangles 1) Figure à main levée : Lorsque nous voulons construire une figure

Plus en détail

Les triangles : droites et points remarquables

Les triangles : droites et points remarquables Fiche de cours : Configurations du plan. Les triangles : droites et points remarquables Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et

Plus en détail

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE 1. Le point. C'est l élément élémentaire de la géométrie. Une infinité de points constitue une droite. Sur le dessin, la droite (D) passe par une infinité de points : on dit que ces points sont alignés.

Plus en détail

Chapitre 6 Triangle rectangle et cercle circonscrit

Chapitre 6 Triangle rectangle et cercle circonscrit Chapitre 6 Triangle rectangle et cercle circonscrit Compétences : Exemples d'activités, commentaires :. Ex N 1,,13,31,37,56 p175 Interrogation I 6 DST n 6 poly DM6 + sur chapitre et chapitre 6 ( IUFM)

Plus en détail

Droites remarquables du triangle (1) Cours 4 ème

Droites remarquables du triangle (1)   Cours 4 ème Droites remarquables du triangle (1) www.mathmaurer.com Cours 4 ème I Les médiatrices du triangle 1 - Rappels sur la médiatrice d'un segment Définition 1: On appelle médiatrice d'un segment la droite qui

Plus en détail

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités Angles : Définitions utiles Angles : Propriétés utiles D1: Deux angles qui ont un sommet commun et un côté commun sont dits adjacents. Sur la figure ci contre, l angle en rouge et l angle en vert ont en

Plus en détail

Fiche de cours : Configurations du plan.

Fiche de cours : Configurations du plan. Fiche de cours : Configurations du plan. Les triangles. Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et coupe le côté [BC] en son milieu.

Plus en détail

1 - Inégalité triangulaire

1 - Inégalité triangulaire 1 - Inégalité triangulaire Bilan 1 Une évidence Le plus court chemin entre deux points est la ligne droite. Tout autre chemin, passant par un troisième point est forcément plus long (ou de même longueur

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Repérage dans le plan Cours

Repérage dans le plan Cours Repérage dans le plan Cours Objectifs du chapitre Savoir repérer la position d un point à l aide de ses coordonnées dans un repère. Savoir calculer les coordonnées du milieu d un segment. Savoir calculer

Plus en détail

Dresse la liste de tous les types de triangles dont tu connais le nom. Pour chacun d eux, établis la liste des propriétés dont tu te souviens.

Dresse la liste de tous les types de triangles dont tu connais le nom. Pour chacun d eux, établis la liste des propriétés dont tu te souviens. Page 121 Que sais-je? Aide-mémoire Triangles remarquables Classement des triangles Dresse la liste de tous les types de triangles dont tu connais le nom. Pour chacun d eux, établis la liste des propriétés

Plus en détail

Chap 06 - Triangles. (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un triangle) triangle

Chap 06 - Triangles. (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un triangle) triangle hap 06 - Triangles (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un ) I) Inégalité triangulaire 1) des longueurs des cotés d un Dans un, la longueur d un coté est toujours

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Activités sur Distance Tangente - Bissectrice

Activités sur Distance Tangente - Bissectrice Activités sur Distance Tangente - Bissectrice Activité 1 1)Tracer une droite (d) et un point P n appartenant pas à cette droite comme le montre le dessin ci-dessous. 2) Placer 5 points distincts sur la

Plus en détail

Chapitre 3. Les Triangles. Savoir que la somme des mesures des angles d'un triangle vaut...

Chapitre 3. Les Triangles. Savoir que la somme des mesures des angles d'un triangle vaut... Chapitre 3 Les Triangles bjectifs : Savoir que la somme des mesures des angles d'un triangle vaut... Connaître l'inégalité triangulaire Savoir construire un triangle avec une règle, un compas, un rapporteur,

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base CRPE Mise en route S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base 1. A et B sont deux points du plan. que représentent (AB), [AB], [AB), AB? 2. A, B et C sont trois points distincts

Plus en détail

CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF

CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF I) LE RAISONNEMENT DEDUCTIF EN GEOMETRIE. On ne peut pas prouver qu un énoncé de géométrie est vrai en faisant uniquement

Plus en détail

LES SYMETRIES. Exercice 1

LES SYMETRIES. Exercice 1 Exercice 1 O (d) En t aidant du quadrillage et sans faire aucun trait de construction, construis le symétrique de la maison : 1) Dans la symétrie centrale de centre O ; 2) Dans la symétrie axiale d axe

Plus en détail

Leçon 29. Droites remarquables du triangle

Leçon 29. Droites remarquables du triangle Tout ce qui est en bleu sera dit à l'oral ou nous sera éventuellement utile pour les questions venant du jury; le reste sera projeté. Leçon 29. Droites remarquables du triangle Introduction (à l'oral):

Plus en détail

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239

Seconde : Géométrie plane page 1. Géométrie plane. Pour reprendre contact n o p 239 Seconde : Géométrie plane page 1 Géométrie plane Pour reprendre contact n o 1-2 - 3 p 239 I. Droites et points remarquables du triangle (A) Hauteurs Définition 1 Une hauteur est une droite passant par

Plus en détail

CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES

CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES I. CORRECTION EXERCICES : DROITES ; CERCLES ; TRIANGLES a) Un segment contient une infinité de points (tout comme une droite!) b) (AB) et (CD) se coupent car elles ne sont pas parallèles. c) On peut tracer

Plus en détail

correction EXERCICES D ENTRAINEMENT

correction EXERCICES D ENTRAINEMENT DEVOIR NUMERO 6 : REVISION DE GEOMETRIE ETUDE DES FIGURES Révision ; inégalité triangulaire et triangles particuliers quadrilatères, quadrilatères particuliers et les symétries correction EXERCICES D ENTRAINEMENT

Plus en détail

Chapitre I Configurations du plan et géométrie repérée

Chapitre I Configurations du plan et géométrie repérée I. Rappels sur les symétries 1. Symétries axiales Chapitre I Configurations du plan et géométrie repérée Méd iatric e de Définition : Médiatrice d un segment On note I le milieu de. On appelle médiatrice

Plus en détail

DROITES REMARQUABLES DANS UN TRIANGLE

DROITES REMARQUABLES DANS UN TRIANGLE THEME : DROITES REMARQUABLES DANS UN TRIANGLE Médiatrice d un segment ( Rappels ) Définition : La médiatrice d un segment est la droite perpendiculaire à ce segment qui passe par le milieu du segment.

Plus en détail

Dans un triangle non aplati, la longueur de chaque côté est inférieure à la somme des deux autres côtés.

Dans un triangle non aplati, la longueur de chaque côté est inférieure à la somme des deux autres côtés. DROITES REMARQUABLES I Construction de triangles 1. Inégalité triangulaire : Voir une présentation ici et une illustration ici Propriété admise Dans un triangle non aplati, la longueur de chaque côté est

Plus en détail

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale Géométrie plane I - Symétries 1 - Symétrie axiale Définition : Deux figures géométriques sont symétriques par rapport à une droite (d) si, en pliant la feuille suivant la droite (d), les deux figures se

Plus en détail

Classe de quatrième B TRUCHETET Chapitre 4 Distance -Tangente - Bissectrice

Classe de quatrième B TRUCHETET Chapitre 4 Distance -Tangente - Bissectrice Chapitre 4 Distance -Tangente - Bissectrice Compétences : Exemples d'activités, commentaires :. Remarques : Géogebra Ex N 14,22,29, 55,4 p193 Défi N 54 p197 Interrogation I 4 DM N 4 27 p 194 DST n 4 poly

Plus en détail

Chap 06 - Triangles. (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un triangle) étant. plus

Chap 06 - Triangles. (Inégalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un triangle) étant. plus hap 06 - Triangles (négalité triangulaire, propriétés sur les angles, médiatrices et hauteurs d un ) ) négalité triangulaire 1) ctivité d introduction Exercice n 1 la feuille d exercices suplémentaires

Plus en détail

LES DROITES DU TRIANGLE

LES DROITES DU TRIANGLE LES DROITES DU TRIANGLE DÉMONSTRATION DE LA PROPRIÉTÉ DES HAUTEURS D UN TRIANGLE... 2 DÉMONSTRATION DE LA PROPRIÉTÉ DES MÉDIANES D UN TRIANGLE... 3 DÉMONSTRATION DE LA PROPRIÉTÉ DES BISSECTRICES D UN TRIANGLE...

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

CORRECTION DU DEVOIR DE RECHERCHE N 4 classe de 5e

CORRECTION DU DEVOIR DE RECHERCHE N 4 classe de 5e CORRECTION DU DEVOIR DE RECHERCHE N 4 classe de 5e I. PARTIE COURS: Je recherche dans mon livre et je copie sur ma feuille les définitions et dans chaque cas j'illustre la définition à l'aide d'un dessin:

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Seconde - Chapitre 3: Configurations & triangles

Seconde - Chapitre 3: Configurations & triangles Seconde - Chapitre 3: Configurations & triangles 1 Droites remarquables du triangle. 1.1 Les médiatrices. On définit la médiatrice d un segment [AB] : C est la droite perpendiculaire à [AB] passant par

Plus en détail

Chapitre n 10 : «Les triangles»

Chapitre n 10 : «Les triangles» Chapitre n 10 : «Les triangles» I. Rappels Vocabulaire Les sommets sont A, B, C. Les côtés sont [ AB], [ BC ] et [CA]. Les angles sont ACB, CAB et ABC. Le côté [ AB] est opposé au sommet C. Le sommet A

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore C H A P I T R E 6 Énigme du chapitre. Objectifs du chapitre. Tom veut rejoindre l école le plus rapidement possible. Il doit traverser une rivière de 1 mètre de large. Où faut-il

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Les axes de symétrie. des figures usuelles

Les axes de symétrie. des figures usuelles Les axes de symétrie des figures usuelles 1. Le triangle isocèle... p2 4. Le rectangle... p6 2. Le triangle équilatéral... p3 5. Le carré... p7 3. Le losange... p5 Copyright meilleurenmaths.com. Tous droits

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

LES BASES DE LA GEOMETRIE.

LES BASES DE LA GEOMETRIE. Chapitre 2 LES BASES DE LA GEOMETRIE. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle

Plus en détail

4 triangles rectangles et cercles exercices correction.doc Page 1 sur 7

4 triangles rectangles et cercles exercices correction.doc Page 1 sur 7 EXERCICE 1 SI un triangle ABC est rectangle en A ALRS ABC est inscrit dans un cercle de diamètre [BC] SI un triangle ABC est rectangle en B ALRS ABC. est inscrit dans un cercle de diamètre [AC] SI un triangle

Plus en détail

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que ANNEXES I. Documents cinquième a. Fiche modèle à rendre avec la figure Noms : Données Je sais que D après la propriété J en conclus que Travail en groupe Exercice Groupe 1 Construire un triangle ABC rectangle

Plus en détail

De la symétrie centrale au parallélogramme

De la symétrie centrale au parallélogramme La géométrie en 5 doit nous permettre de passer de l identification perceptive (la reconnaissance par la vue) de figures et de configurations à leur caractérisation par des propriétés (passage du dessin

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

PRODUIT SCALAIRE DANS V 2

PRODUIT SCALAIRE DANS V 2 I) RAPPELLE 1) Définition du produit scalaire. 1.1 Mesure algébrique : PRODUIT SCALAIRE DANS V Soit (D) (O,I) une droite graduée ; M et N deux points sur la droite (D) d abscisses respectifs x M et x N

Plus en détail

1 Quelques rappels fondamentaux de géométrie

1 Quelques rappels fondamentaux de géométrie Partie D A propos des angles droits 1 Quelques rappels fondamentaux de géométrie 1.1 Médiatrice d'un segment Définition 1: la médiatrice d'un segment est la droite perpendiculaire à celui-ci passant par

Plus en détail

LES BASES DE LA GEOMETRIE

LES BASES DE LA GEOMETRIE Chapitre 2. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle tel que AB=10cm, AC=3cm

Plus en détail

Symétrie centrale - Exercices

Symétrie centrale - Exercices Symétrie centrale - Exercices Exercice 1 On considère le triangle ABC tel que AB = 4, 5 cm, AC = 6cm et BC = 4cm. a. Construire ce triangle. b. Tracer les symétriques A et C de A et C par rapport à B.

Plus en détail

Activités sur le théorème de Thalès dans un triangle Agrandissement - Réduction

Activités sur le théorème de Thalès dans un triangle Agrandissement - Réduction Activités sur le théorème de Thalès dans un triangle Agrandissement - Réduction Activité 1 * A l aide du logiciel Géogébra : Partie 1 Une aide technique est à votre disposition page 5 1) Construction de

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 5 REPERAGE DANS LE PLAN I. Coordonnées de points du plan a) Repère du plan Définition : un repère orthonormé d origine O est un triplet (O ;I,J) de points tels que le triangle OIJ est rectangle isocèle

Plus en détail

DISTANCE D UN POINT A UNE DROITE. POSITIONs RELATIVES D UN CERCLE ET D UNE DROITE - TANGENTE

DISTANCE D UN POINT A UNE DROITE. POSITIONs RELATIVES D UN CERCLE ET D UNE DROITE - TANGENTE THEME : DISTANCE D UN POINT A UNE DROITE. POSITIONs RELATIVES D UN CERCLE ET D UNE DROITE - TANGENTE Inégalité triangulaire Propriété : Si A, B et C sont trois points du plan, alors AC AB + BC Remarquons

Plus en détail

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle FICHE G - CONFIGURATIONS du PLAN (théorèmes importants) A savoir : On peut remplacer une définition par une équivalence : «A B». Le triangle: droites et points remarquables.. Hauteurs et orthocentre. Définition:

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

I) LES DEUX PROPRIÉTÉS FONDAMENTALES. 1) Somme des mesures des angles d'un triangle

I) LES DEUX PROPRIÉTÉS FONDAMENTALES. 1) Somme des mesures des angles d'un triangle TRINGLES Faire au préalable l'activité 4 p183 à la maison I) LES DEUX PROPRIÉTÉS FONDMENTLES 1) Somme des mesures des angles d'un triangle Dans un triangle, la somme des mesures des angles est égale à

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Chapitre 4 : Droite des milieux : TP Geogebra. M. EL HANI

Chapitre 4 : Droite des milieux : TP Geogebra. M. EL HANI Chapitre 4 : Droite des milieux : TP Geogebra. M. EL HANI Partie 1 : 2) Placer le point D milieu de [AB]. 3) Placer le point E milieu de [AC]. 4) Tracer la droite (DE). 5) Déplacer les points A, B puis

Plus en détail

Configurations fondamentales - Seconde

Configurations fondamentales - Seconde Configurations fondamentales - Seconde Exercices de géométrie plane avec GéoPlan : puzzle, triangle, point fixe. Sommaire 1. Puzzle et triangle isocèle 2. Puzzle et carrés 3. Propriété de Thalès 4. Utiliser

Plus en détail

Chapitre 4. Deux angles sont complémentaires lorsque la somme de leurs mesures est 90, c est-à-dire lorsqu ils forment un angle droit.

Chapitre 4. Deux angles sont complémentaires lorsque la somme de leurs mesures est 90, c est-à-dire lorsqu ils forment un angle droit. Nom : Chapitre 4 Groupe : SAVOIRS 4.1 Les différents types d angles Les angles complémentaires Deux angles sont complémentaires lorsque la somme de leurs mesures est 90, c est-à-dire lorsqu ils forment

Plus en détail

CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES

CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES 3 semaines : 5 + 2 séances 28 septembre au 20 octobre Inégalité triangulaire Médiatrice d'un segment Hauteurs d'un triangle Constructions avec Geogebra David

Plus en détail

Un triangle est-il toujours constructible? Soyez précis dans votre réponse. Qu appelle-t-on «inégalité triangulaire»? Soyez précis dans votre réponse.

Un triangle est-il toujours constructible? Soyez précis dans votre réponse. Qu appelle-t-on «inégalité triangulaire»? Soyez précis dans votre réponse. Trois documents Trois questions Un triangle est-il toujours constructible? Soyez précis dans votre réponse. http://www.geogebra.org/student/m160784 Qu appelle-t-on «inégalité triangulaire»? Soyez précis

Plus en détail

Configuration du plan

Configuration du plan onfiguration du plan I - Les triangles 1 - Rappels La somme des angles d un triangle est égale à 180 Si le triangle est rectangle en, alors d après le théorème de Pythagore 2 = 2 + 2. Réciproquement, si

Plus en détail

Chapitre 2 Inégalité triangulaire Droites remarquables d'un triangle Initiation à la démonstration

Chapitre 2 Inégalité triangulaire Droites remarquables d'un triangle Initiation à la démonstration 5ème Chapitre 2 Inégalité triangulaire Droites remarquables d'un triangle Initiation à la démonstration I_ Inégalité triangulaire Construction de triangles A. Propriété de l'inégalité triangulaire Dans

Plus en détail

CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES

CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES CHAPITRE 2 CONNAITRE ET UTILISER LES TRIANGLES 3 semaines : 10 séances 1 au 19 octobre Inégalité triangulaire Médiatrice d'un segment Hauteurs d'un triangle Constructions avec Geogebra David Prieto Colmenarejo

Plus en détail

EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES

EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES EXERCICE N 1 : Pour chacun des neuf cas ci-après, préciser s il existe une transformation qui permette de passer de la figure a à la figure b.

Plus en détail

TRIANGLES. La somme des angles d'un triangle est égale à 180 degrés

TRIANGLES. La somme des angles d'un triangle est égale à 180 degrés TRIANGLES Un peu d histoire : VII ème siècle avant notre ère... En Grèce, Thalès est le premier mathématicien à énoncer des résultas généraux concernant les objets mathématiques. Il est principalement

Plus en détail

NOM : DROITES REMARQUABLES 4ème

NOM : DROITES REMARQUABLES 4ème Exercice 1 1) Retrouver les deux définitions de la médiatrice d un segment [AB]. 2) Construire à la règle et au compas les trois médiatrices d un triangle RST tel que : RS = 10cm, ST = 7cm et RT = 4cm.

Plus en détail

BOITE A OUTILS. 3ème

BOITE A OUTILS. 3ème BOITE A OUTILS 3ème 2014/2015 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles

Plus en détail

Réflexion. Année Séquence 7 : TRIANGES RECTANGLES et CERCLES Objectifs : Séance 1

Réflexion. Année Séquence 7 : TRIANGES RECTANGLES et CERCLES Objectifs : Séance 1 Séance 1 Séquence 7 : TRINGES RECTNGLES et CERCLES Objectifs : Enoncé des propriétés qui justifient l existence d un triangle rectangle pplication à des calculs avec le théorème de Pythagore Définition,

Plus en détail

EXERCICES DE GEOMETRIE BASES

EXERCICES DE GEOMETRIE BASES EXERES E GEETRE SES Exercice n 1 p. 222 Puisque et sont de même mesure, il en est de même pour les angles L et N. Notons x cet angle. Par suite, NL = N = 180 (90 + x) = 90 x. e même, NL = L = 180 (90 +

Plus en détail

Cours de mathématiques Classe de Quatrième

Cours de mathématiques Classe de Quatrième CHAPITRE 5 PROJECTION ET COSINUS Le calcul d'erathostène 76 Cosinus d'un angle aigu 77 Projection ; Cosinus d'un angle aigu 78 Projection et milieu 83 Exercices de démonstration 83 Utilisation du Cos 85

Plus en détail

ANNEXES. Ateliers de Mathématique et d Informatique

ANNEXES. Ateliers de Mathématique et d Informatique ANNEXES 110 Documents imprimés Une rubrique réalisée dans l atelier Hypergéo : la rubrique Carré (définition). La base de données complète est disponible sur la disquette. Les énoncés des deux épreuves

Plus en détail

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente Chapitre issectrice Cercle inscrit Distance d un point à une droite Tangente Connaître et utiliser la définition de la bissectrice. Utiliser différentes méthodes pour tracer : La médiatrice d un segment.

Plus en détail