Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Dimension: px
Commencer à balayer dès la page:

Download "Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]"

Transcription

1 PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la série u coverge. Par défiitio, la suite S de ses sommes partielles est covergete, disos vers u réel S. La suite S S coverge doc vers 0, ce qui reviet à dire que la suite u coverge vers 0. QC..c L assertio c. est fausse elle foctioe toutefois lorsque u et v sot à termes positifs. Cosidéros par exemple les deux suites u et v défiies pour 0 par : u = v = l Puisque la suite u ted vers 0, o peut déjà dire que v = l + u u. E revache, les séries + u et v e sot pas de même ature : La série u est covergete d après le critère spécial des séries alterées, alors que la série v est divergete. E effet, e utilisat le DL 0 de la foctio x l + x, o obtiet v = u o +. La série u est covergete, et la série [ ] + + o + est divergete so terme gééral est équivalet à lorsque ted vers +, doc, la série v est divergete. QC..d L assertio d. est fausse. Pour s e covaicre, o peut cosidérer la suite u = +. La série u est covergete d après le critère spécial des séries alterées, mais la série u, qui est autre que la série harmoique, est divergete. QC. Nous allos démotrer que la série proposée est covergete e utilisat le critère spécial des séries alterées. Posos, pour, a = l lx. La foctio x est croissate sur ]0, e] et décroissate sur x [e, + [. La suite a 3 est doc décroissate et ted clairemet vers 0. Le critère spécial des séries alterées permet doc d affirmer que la série a est covergete, ce qui reviet à dire que la série l est covergete. Préiaires P..a D après l iégalité triagulaire, o peut écrire : t k t k ε = Nε ε k=n+ k=n+ k=n+ k=n+ t k ε Auteur du corrigé : Nicolas JOUSSE Page /8

2 P..b N Posos A = t k et remarquos que A e déped pas de. Pour > N, o peut alors écrire : T = + Or, la suite costate A + N t k + + k=n+ t k coverge vers 0, doc : Aisi, pour > N MaxN, N, o peut écrire : E coclusio : Cela reviet exactemet à dire : A N N, > N = A + ε T ε + ε + ε k=n+ ε > 0, N N, > N = T ε La suite T ted vers 0. t k A + + ε + P. Supposos que la suite t ted vers u réel T. La suite t T coverge doc vers 0, doc, d après la questio., o peut dire que la suite t k T = t k T ted vers 0. La suite + + t k coverge doc vers T. + Si la suite t ted vers T, la suite T ted aussi vers T. Remarque : L éocé viet simplemet de ous faire redémotrer le théorème de Césaro! P.3.a Pour tout N, o peut écrire : T = + coskθ = + Re e ikθ = + Re e iθ k Puisque θ ]0, π[, le complexe e iθ est différet de, ce qui permet d écrire : e iθ + e T = + Re e iθ = i + + Re θ + e i θ e i + θ e i θ e i θ e i θ = + Re e i θ i si + θ = + Re e i θ si + θ i si θ si θ N, T = + cos θ si + θ si θ P.3.b Les foctios cos et si état borées par, o peut écrire : N, T + si θ O peut e déduire : Auteur du corrigé : Nicolas JOUSSE Page /8

3 La suite T ted vers 0. P.3.c Das le cas où θ = π 3, la suite t = cosθ e coverge pas car sa sous-suite t 3 = e coverge pas. Aisi : Si θ = π 3, la suite t e coverge pas. P.3.d L exemple proposé das la questio 3. permet de démotrer, à l aide d u cotre-exemple, que la réciproque de la questio. est fausse. Partie I I. La suite a est covergete, doc, c est ue suite borée. Aisi, il existe u réel K > 0 tel que a K pour tout. Cela reviet à écrire : Il existe u réel K tel que : N, a K. I. Soit x [0, [. O déduit de la majoratio précédete que :, a x K x Kx Or, la série x est ue série géométrique covergete car x [0, [, doc, par comparaiso de séries à termes positifs, o déduit que la série a x est covergete, c est-à-dire : Pour tout x [0, [, la série a x est absolumet covergete. I.3 Soiet x [0, [ et N. Commeços par remarquer que la quatité + que reste d ue série covergete. O trouve alors : L fx + a k x k + k=+ a k x k = L fx + k=+ a k x k = L fx + a k x k = L N, x [0, [, u = L fx + a k a k x k + a k x k a bie u ses, e tat a k + k=+ a k a k x k k=+ I.4.a Soit N. La partie A = { ka k, k } est ue partie de R, majorée car a vérifie, et o vide car a y appartiet, doc, à ce titre, la partie A admet ue bore supérieure : Pour tout N, le réel M = sup ka k existe. k I.4.b Avec les otatios itroduites das la questio précédete, o a A+ A pour tout N. O e déduit M + M pour tout N, doc, la suite M est décroissate, et miorée par 0, doc : a k x k Auteur du corrigé : Nicolas JOUSSE Page 3/8

4 La suite M est covergete. Détermios sa ite. Cosidéros ε > 0. Puisque la suite ka k coverge vers 0, il existe N N tel que : k N, ka k ε. Le réel ε est doc u majorat tous les esembles A pour N, doc, ue bore supérieure état le plus petit des majorats, il viet : N, 0 M ε. O e déduit : La suite M coverge vers 0. I.5 Soiet N et x [0, [. E appliquat l iégalité triagulaire das le résultat de la questio I.3, o obtiet : u L fx + a k x k + + a k x k k=+ Or, pour tout k, o a ka k M, d où a k M k u L fx + a k x k + L fx + La derière somme ifiie mise e jeu état égale à Nous allos maiteat utiliser le résultat suivat : O e déduit aussitôt : x N, x [0, [, u L fx + M, ce qui permet d écrire : a k x k + M, o déduit : M xk k=+ x k a k x k + x M k k k N, x [0, [, x k = x x k x = k x j=0 N, x [0, [, u L fx + x j=0 k a k + x M I.6 E appliquat ce qui précède avec x = [0, [, o déduit : N, u L f + k a k + M Or, d après l hypothèse, o a f + = L. D autre part, puisque la suite kak ted vers 0, o peut déduire du théorème de Césaro redémotré das les préiaires que la suite d où : + k a k = Efi, puisque la suite M ted vers 0, o peut fialemet coclure que : La suite u ted vers 0. I.7 k a k = 0 + ka k ted vers 0, D après ce qui précède, la suite a k ted vers L, c est-à-dire, la série a coverge et a pour 0 somme L. La foctio f : x a x, à priori défiie uiquemet sur [0, [, est doc prologeable par cotiuité e e posat f = L. La ouvelle foctio aisi défiie sur [0, ] est alors cotiue e à gauche. Auteur du corrigé : Nicolas JOUSSE Page 4/8

5 La foctio f est prologeable par cotiuité e e posat f = L = a. Partie II II. D après le cours, les deux foctios proposées sot développables e série etière sur ], [ et o peut écrire : + x ], [, x = x x ], [, + x = + x II. x ] R, R[ : Soit y : x a x ue foctio développable e série etière sur ] R, R[. O trouve, pour tout 0 4x y x + 4xy x yx = 4x + = 4 = = a x + 4x a x a x + 4 [ 4 ] a x = a x La foctio y est doc solutio de E autour de l origie si et seulemet si : x ] mi, R, mi, R[, [ 4 ] + a x = x x = Par uicité du développemet e série etière d ue foctio, cela équivaut à écrire : { a 0 = 0 N, 4 a = a x x p Aisi : L uique foctio DSE et solutio de E est x 4 x. = O costate que si ρ [0, [, la suite 4 ρ est borée, et lorsque ρ >, la suite doc, par défiitio : R = Sup {ρ 0 tel que la suite a ρ est borée } = Le rayo de covergece de la série etière p= 4 x vaut. 4 ρ a x ted vers +, II.3.a Pour tout, o peut écrire : α + β α + + β α + β + α β = + 4 = 4 L égalité 4 = α + β sera doc vérifiée pour tout si et seulemet si α+β = 0 et α β =. + Auteur du corrigé : Nicolas JOUSSE Page 5/8

6 , 4 = + + II.3.b Il est facile de costater que la série etière défiissat la foctio h a u rayo de covergece égal à o peut reveir à la défiitio du rayo de covergece, ou ecore utiliser d Alembert. La foctio h est doc de classe C sur ], [ et o trouve, pour tout u ], [ : O peut doc écrire : h u = u = u = u = u + + u u ], [, hu = h0 }{{} = 0 l u + l + u = l u + l + u + u u I, hu = l u II.3.c O peut écrire, pour tout x I : Hx = x + = x + x + + = x h x O e déduit : x I, Hx = + x l x x II.3.d O obtiet, à l aide des questios précédetes, pour tout x I : ϕx = = = [ + p=0 + + x p+ + p + = [ x = + = ] x + x + = ] x + = [xhx Hx ] x I, ϕx = + x x l + x x II.3.e Pour x I, o peut ecore écrire : ϕx = + x 4 x l + x x 4 x l x = + x 4 x l + x + + x 4 x l x x Lorsque x ted vers par valeurs iférieures, la derière fractio mise e jeu ted vers 0 par croissaces comparées, doc, o peut coclure : x x< ϕx = Auteur du corrigé : Nicolas JOUSSE Page 6/8

7 II.4.a Il est facile de costater que a = 0. D autre part, d après la questio II.3.e, o obtiet : + Aisi : x x< + a x = x ϕx = x< La suite a satisfait les hypothèses et de la Partie I. II.4.b Nous sommes exactemet das les coditios d applicatio du I, et la questio I.7 permet de coclure que la série a coverge et a pour somme. Remarquos alors que la somme S vaut + + a, d où : = S = 4 = II.5 E utilisat la questio II.3.a, o obtiet, pour tout : S = k= k + [ = k + p=0 p + O obtiet des sommes télescopiques, et après simplificatios : S = [ ] + E faisat tedre vers +, o obtiet : 4 = = k= ] k + puis e rajoutat le terme correspodat à l idice 0, o retrouve le résultat de la questio II.4.b : S = 4 = Partie III III. La répose est NON! Preos par exemple c = pour tout 0. La série etière 0 c x a pour rayo de covergece, et la somme de sa série sur ], [ est la foctio x +x qui admet pour ite H = lorsque x ted vers par valeurs iférieures. Pourtat, la série c est divergete et même grossièremet!. III. Puisque tous les termes c sot positifs, il suffit de démotrer que la suite des sommes partielles de la série c est majorée pour e déduire la covergece de la série associée. O peut écrire : p N, x [0, [, p c x E faisat tedre x vers par valeurs iférieures, o e déduit : p N, p c H c x = hx Auteur du corrigé : Nicolas JOUSSE Page 7/8

8 La série c est covergete. 0 Posos, pour tout 0 et tout x [0, ], f x = c x. Toutes les foctios f sot cotiues sur [0, ]. Par ailleurs, la série de foctios f coverge ormalemet sur [0, ] ; e effet : 0, x [0, ], 0 f x c = 0, f [0,] Vu que la série c est covergete, la série f [0,] l est aussi. Fialemet, la cotiuité des foctios f et la covergece ormale de la série de foctios f sur [0, ] et doc sur tout segmet de [0, ] permet d affirmer que la foctio somme, e l occurrece h, est cotiue sur [0, ], doc, e particulier e. E coclusio : x x< hx = h = c c III.3 D après la partie I, il suffit de rajouter l hypothèse pour coclure que la série coverge. 0 FIN! Auteur du corrigé : Nicolas JOUSSE Page 8/8

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Corrigé du problème: autour de la fonction zeta alternée de Riemann

Corrigé du problème: autour de la fonction zeta alternée de Riemann Corrigé du problème: autour de la foctio zeta alterée de Riema I Gééralités Pour x >, la suite décroît vers, doc la série coverge par le critère spécial des séries alterées Pour x, e ted pas vers, ce qui

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1 [http://mp.cpgedupuydelome.fr] édité le 8 décembre 6 Eocés Séries umériques Nature de séries umériques Exercice [ ] [Correctio] Détermier la ature des séries dot les termes gééraux sot les suivats : a

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ).

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ). Colle PC Semaie 3 0-03 Séries Etières Voir : http://www.mimaths.et/img/pdf/s5.pdf http://www.mimaths.et/img/pdf/sem5.pdf EXERCICE :. Doer u exemple de série etière de rayo de covergece π.. Détermier le

Plus en détail

Produit de Cauchy de la série alternée par elle-même.

Produit de Cauchy de la série alternée par elle-même. CCP 8. Filière MP. Mathématiques. Corrigé pour serveur UPS par JL. Lamard (jea-louis.lamard@prepas.org I. Gééralités. Pour > la série défiissat F coverge absolumet, pour < elle coverge par le critère spécial

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition.

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition. CHAPITRE II Séries umériques I II - Défiitios et propriétés géérales - Séries à termes réels positifs ou uls III-Séries - à termes quelcoques I-Défiitios et propriétés géérales Défiitio. Soit (u N ue suite

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1 Séries umériques Défiitios et premières propriétés. Défiitios Défiitio (Série umérique) Soit () N ue suite complexe. Pour tout N o pose : U = ( ème somme partielle). La suite (U ) N est alors appelée la

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Exercice 8 [ ] [Correction] Soit α R. Quel est le rayon de convergence de n 1 cos(nα)

Exercice 8 [ ] [Correction] Soit α R. Quel est le rayon de convergence de n 1 cos(nα) [http://mp.cpgedupuydelome.fr] édité le 28 décembre 26 Eocés Séries etières Calcul de rayo de covergece cocret Exercice [ 97 ] [Correctio] Détermier le rayo de covergece des séries etières : Exercice 6

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations 8-8- JFC p EM LYON S JF COSSUTTA Lycée Marceli BERTHELOT SAINT-MAUR jea-fracoiscossutta@waadoofr PROBLÈME Partie I : Résultats gééraux sur les matrices stochastiques - Illustratios Remarque Das la suite

Plus en détail

Exo7. Théorème de Carathéodory, calcul d aire et de volume. 1 Théorème de Carathéodory. Exercices : Barbara Tumpach Relecture : François Lescure

Exo7. Théorème de Carathéodory, calcul d aire et de volume. 1 Théorème de Carathéodory. Exercices : Barbara Tumpach Relecture : François Lescure Exercices : Barbara Tumpach Relecture : Fraçois Lescure Exo7 Théorème de Carathéodory, calcul d aire et de volume 1 Théorème de Carathéodory Exercice 1 Le but de cet exercice est de prouver le Théorème

Plus en détail

Suites et séries réelles

Suites et séries réelles Suites et séries réelles Ue suite umérique est ue famille de ombres réels ou complexes idicées par les etiers aturels. O ote ue suite u idifféremmet (u ) N, ou (u ) 0, ou simplemet (u ). L esemble des

Plus en détail

Suites réelles ou complexes

Suites réelles ou complexes 3 Suites réelles ou complexes 3. Prérequis L esemble R des ombres réels est supposé costruit avec les propriétés suivates : c est u corps commutatif totalemet ordoé ; il cotiet l esemble Q des ombres ratioels

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Cours de mathématiques P.S.I.*

Cours de mathématiques P.S.I.* Cours de mathématiques PSI* D'après les cours de M Guillaumie Heriet Queti Séries umériques Das tout le chapitre, K désige le corps R ou C, et o désige par u ue suite de K Gééralités Vocabulaire Défiitio

Plus en détail

Cours de Mathématiques Séries numériques ou vectorielles Sommaire

Cours de Mathématiques Séries numériques ou vectorielles Sommaire Sommaire Sommaire I Gééralités sur les séries......................... 2 I. Espace vectoriel des séries, Sous-espace des Séries covergetes.... 2 I.2 Critère de Cauchy. Espace des séries ormalemet covergetes....

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Analyse mathématique II

Analyse mathématique II UNIVERSITÉ IBN ZOHR Faculté des Scieces Juridiques Écoomiques et Sociales Corrigés des QCM Aalyse mathématique II FILIÈRE SCIENCES ÉCONOMIQUES ET GESTION PREMIERE ANNÉE Sessio ormale 03/04 40 questios

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Séries entières. Plan de cours

Séries entières. Plan de cours 5 Séries etières «U mathématicie qui est pas aussi quelque peu poète e sera jamais u mathématicie complet.» Extrait d ue lettre de Karl Weierstrass à Sophie Kowalevski (883) Pla de cours I Rayo de covergece

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

S n = u u n. S = u k. k=0

S n = u u n. S = u k. k=0 Chapitre 3 Séries umériques 3. Défiitios et exemples 3.. Défiitios Défiitio 3.. Soit (u ) ue suite réelle. O lui associe (S ) ue ouvelle suite défiie par S = u 0 + + u. O appelle série de terme gééral

Plus en détail

Polynômes de Bernstein

Polynômes de Bernstein Polyômes de Berstei Sergei Nataovic Berstei est é e 1880 et est mort e 1968. 1) Défiitio. Soit f ue foctio défiie et cotiue sur [0, 1] à valeurs das. Pour etier aturel o ul doé, le -ième polyôme de Berstei

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Les ratioels, les réels Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

1. Convergence des Séries Numériques

1. Convergence des Séries Numériques Séries umériques 8 - Sommaire. Covergece des Séries Numériques.. Nature d ue série umérique.......2. Séries géométriques............ 2.3. Coditio élémetaire de covergece. 2.4. Suite et série des différeces.......

Plus en détail

Feuille d exercices 11

Feuille d exercices 11 Mathématiques Aalyse I M. Samy Modeliar Feuille d eercices Itégratio Correctio Eercice Détermier, si elle eiste, la ite e + de la suite de terme gééral si ( π + ) d + Correctio. Pour tout etier, la foctio

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Séries Numériques. Chapitre Suites Numériques Définitions

Séries Numériques. Chapitre Suites Numériques Définitions Chapitre Séries Numériques Suites Numériques Défiitios Ue suite umérique est ue applicatio de N (ou d ue partie de N) à valeurs das R ou das C O la ote u(), ou u, et o désige la suite (c est-à-dire l applicatio)

Plus en détail

Séries à termes positifs

Séries à termes positifs UFR SFA, Licece 2 e aée, MATH326 Séries à termes positifs Das ce chapitre, u Ø 0, pour tout, et o étudie q u. O a S S = u Ø 0 : (S ) est croissate!. Gééralités. Propositio. Soit (u ) Ø0 ue suite de réels

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

CHAPITRE 1 SÉRIES NUMÉRIQUES

CHAPITRE 1 SÉRIES NUMÉRIQUES CHAPITRE SÉRIES NUMÉRIQUES Gééralités Défiitio Soit ue suite de ombres réels, o pose : S = u 0 + u ++ = La limite de S est appelée série de terme gééral S est appelée suite des sommes partielles de la

Plus en détail

Calculs de limites, développements limités, développements asymptotiques

Calculs de limites, développements limités, développements asymptotiques Eo7 Calculs de limites, développemets limités, développemets asymptotiques Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée...

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée... Séries umériques I Défiitios et otatios II Exemples 2 II.A Série géométrique....................................... 2 II.B Série expoetielle...................................... 3 II.C Série harmoique.......................................

Plus en détail

Concours Commun Polytechnique. Epreuve de Mathématiques 1 option MP

Concours Commun Polytechnique. Epreuve de Mathématiques 1 option MP Cocours Commu Polytechique Epreuve de Mathématiques optio MP A propos de l hypothèse de classe C par morceau du théorème de covergece ormale d ue série de Fourier... Partie I. Résultats prélimiaires I..a

Plus en détail

Feuille 2 : Séries numériques.

Feuille 2 : Séries numériques. Feuille 2 : Séries umériques. Master Eseigemet Spécialité Maths Coseils O accordera ue importace toute particulière aux démostratios des théorèmes du cours. Certais exercices de cette feuille sot ispirés

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

Banque PT - Corrigé Epreuve C 2014

Banque PT - Corrigé Epreuve C 2014 Baque PT - Corrigé Epreuve C 24 Fabie Evrard fabie.evrard@prepas.org 2 mai 24 Résumé Ce sujet traite das u premier temps ue faço d établir le DSE de la foctio expoetielle à partir d ue équatio différetielle.

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mp.cpgedupuydelome.fr] édité le 9 mai 07 Eocés Calcul de ites Exercice [ 054 ] [Correctio] Détermier la ite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = + + d u =

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Eocés Nombres complexes Nombres complexes Exercice 6 [ 03458 ] [correctio] Soiet z 0 C et r > 0 tels que z 0 r. O ote C le cercle das C de cetre z 0

Plus en détail

EXERCICES SUR LES SERIES

EXERCICES SUR LES SERIES EXERCICES SUR LES SERIES SERIES NUMERIQUES Calculer la somme des séries dot le terme gééral u est doé ci-dessous a) u = l +2) +) 2 ) b) u = d) u = l+x 2 ) < x < ) e) u = +)+2)+3) ) c) u = 3 2) 7 2 3 3+)3+4)

Plus en détail

Synthèse de cours PanaMaths (TS) Suites numériques

Synthèse de cours PanaMaths (TS) Suites numériques Sythèse de cours PaaMaths (TS) Suites umériques Das ce chapitre, le terme «suite» désige ue suite umérique (c'est-à-dire, das le cadre du programme de Termiale S, ue suite de réels). Ue telle suite sera

Plus en détail

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières Chapitre A1 - Nombres - récurreces - Sommes Table des matières 1 Esembles de ombres 2 1.1 Déitios................................................... 2 1.2 Itervalles d'etiers..............................................

Plus en détail

Corrigé de l'épreuve de maths 2 - e3a - MP

Corrigé de l'épreuve de maths 2 - e3a - MP Corrigé de l'épreuve de maths 2 - e3a - MP - 207 Partie I L'applicatio ϕ est liéaire et P R [X], ϕ(p R [X] doc ϕ iduit sur R [X] u edomorphisme 2 ϕ( = et i, ϕ(x i = X i ix i O e déduit la matrice de ϕ

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Chapitre 8 : Séries. Introduction. 1 Dénitions. ECE3 Lycée Carnot. 2 décembre 2010

Chapitre 8 : Séries. Introduction. 1 Dénitions. ECE3 Lycée Carnot. 2 décembre 2010 Chapitre 8 : Séries ECE3 Lycée Carot 2 décembre 200 Itroductio Reveos pour itroduire ce chapitre quelques siècles e arrière, au temps de Zéo d'élée, philosophe grec du ciquième siècle avat J-C. Celui-ci

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Partie I - Préliminaires

Partie I - Préliminaires SESSION 25 Cocours commu Cetrale MATHÉMATIQUES. FILIERE PC Partie I - Prélimiaires I.A - I.A. Soit N. Pour N, Puisque la série de terme gééral +... + + 2. coverge, il e est de même de la série de terme

Plus en détail

Suites et séries numériques

Suites et séries numériques Suites et séries umériques Ue suite d'élémets de K R ou C est ue applicatio déie sur N (ou ue partie de N) à valeurs das K. O ote u (u ) N ou u (u ) ue telle suite. Pour simplier, o suppose que les suites

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

SÉRIES. Cette question spécifique appelle des résultats spécifiques qui sont l objet du chapitre. u k (n ème reste de la série), alors : lim.

SÉRIES. Cette question spécifique appelle des résultats spécifiques qui sont l objet du chapitre. u k (n ème reste de la série), alors : lim. Christophe Bertault Mathématiques e MPSI SÉRIES INTRODUCTION AUX SÉRIES. SÉRIE, SOMME, PREMIERS EXEMPLES Défiitio (Série, sommes partielles) Soit(u ). Pour tout, o pose : U partielle). La suite(u ) est

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales Filtratios et martigales 1 [M. Gubielli - Processus discrets - M1 MMD 2009/2010-20100113 - v.6] IV Martigales 1 Filtratios et martigales O cosidère u espace probabilisé (Ω, F, P). Défiitio 1. Ue filtratio

Plus en détail

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 64

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 64 Sylvai ETIENNE 3/4 IMAGE D UN INTERVALLE PAR UNE FONCTION CONTINUE, IMAGE D UN SEGMENT. CONTINUITE DE LA FONCTION RECIPROQUE D UNE FONCTION CONTINUE STRICTEMENT MONOTONE SUR UN INTERVALLE. Niveau : Complémetaire.

Plus en détail

CORRIGÉ : MATH 1 ; MP ; Mines-ponts_2015

CORRIGÉ : MATH 1 ; MP ; Mines-ponts_2015 CORRIÉ : MATH 1 ; MP ; Mies-pots_15 A. Opérateur de Volterra 1) Soiet f, g E, c est clair que Vf et V f sot deux primitives de f. Vf, g / Vf xgx / Vf xv g x Vf xv gx / et Vf, g / fxv gx f, V g. Vf xv gx

Plus en détail

1. Après avoir décomposé la fraction rationnelle, décider, en utilisant la dénition de la. convergence d'une série numérique, si la série

1. Après avoir décomposé la fraction rationnelle, décider, en utilisant la dénition de la. convergence d'une série numérique, si la série Outils Mathématiques 3 PCSTM L) Aée 00/0 Uiversité de Rees UFR Mathématiques Chapitre : Séries umériques Exercice... Après avoir décomposé la fractio ratioelle, décider, e utilisat la déitio de la xx +

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours tifawtcom Exo7 Suites Exercices de Jea-Louis Rouget * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour travailler et mémoriser le cours Exercice ***IT

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 25 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la lus grade imortace à la clarté, à la récisio et à la cocisio de

Plus en détail

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples.

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples. 23. Séries umériques. Comportemet des restes ou sommes partielles. Exemples. Pierre Lissy December 8, 29 Das tout ce qui suit, K désige R ou C Covergece d'ue série. Déitio et modes de covergece[3] Déitio.

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

Feuille d exercices n 7 : corrigé

Feuille d exercices n 7 : corrigé Feuille d exercices 7 : corrigé PTSI B Lycée Eiffel décembre 05 Vrai-Faux. Vrai, elle est miorée par le plus petit des termes précédat le rag à partir duquel elle est croissate c est-à-dire que si, par

Plus en détail

1 Équations diérentielles linéaires du premier ordre

1 Équations diérentielles linéaires du premier ordre TD : EQUA DIFF Le 8 mai 00 Uiversité Paris - MASS -L Équatios diéretielles liéaires du premier ordre Résumé C'est ue équatio de la forme E : y + axy bx L'équatio homogèe associée est E : y + axy 0 O a

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail