Mathématiques Niveau 1 et 2 Troisième partie Fonctions

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Mathématiques Niveau 1 et 2 Troisième partie Fonctions"

Transcription

1 HITRE 3 : DROITES RERQULES DU TRINGLE 3.1 Les médiatrices Définition La médiatrice d'un segment de droite est l'ensemble des points situés à égale distance des extrémités de ce segment. ela signifie que si X est un point de la médiatrice du segment, alors δ(,x) = δ(,x). On peut démontrer que la médiatrice d'un segment est une droite perpendiculaire à ce segment et passant par son milieu. En effet, si et sont les extrémités du segment et son point milieu, il est évident que appartient à la médiatrice de X. Si maintenant X est un autre point de la médiatrice de, alors X est tel que δ(,x) = δ(,x). ais alors le triangle X est isocèle et selon ce qui a été démontré à la fin du chapitre précédent, la droite X est perpendiculaire à la droite. Donc tous les points de la médiatrice de sont situés sur une droite passant par et perpendiculaire au segment. Les trois médiatrice d'un triangle se coupent en un même point. Démonstration ppelons D le point d'intersection des médiatrices de et et montrons que D est un point de la médiatrice de. médiatrice de médiatrice de D ollège Sismondi (S.Z., cours G.E.) chap.3, p.1

2 ar définition, δ(,d) = δ(,d) et δ(,d) = δ(,d), donc δ(,d) = δ(,d), ce qui montre que D (étant à la même distance de et de ) appartient à la médiatrice de, donc que les trois médiatrices se coupent en un même point (le point D). De plus, comme D est à égale distance des trois sommets du triangle, un cercle centré en D et passant par l'un des sommets passe aussi par les autres sommets. médiatrice de EF E F médiatrice de EG G Le point d'intersection des médiatrices d'un triangle est le centre du cercle circonscrit au triangle. 3.2 Les bissectrices Définition La bissectrice d'un angle est l'ensemble des points situés à égale distance des deux demi-droites délimitant cet angle. ela signifie que si X est un point de la bissectrice de l'angle formé par les demi-droites d 1 et d 2, alors δ(d 1,X) = δ(d 2,X). On peut démontrer que la bissectrice d'un angle est une droite qui divise l'angle en deux parties égales. En effet, il est évident que le sommet de l'angle est un point de la bissectrice (car ce point est sur les deux droites, donc à la même distance de chacune d'elles!). Si maintenant X est un autre point de la bissectrice de l'angle formé par les demi-droites d 1 S!! 1 2 Q X d 1 et d 2, alors δ(d 1,X) = δ(d 2,X). ais dans ce cas, les triangles SQX et SX sont rectangles et QX = X d 2 lors, selon le théorème de ythagore, SQ 2 = SX 2! XQ 2 = SX 2! X 2 = S 2, c est-à-dire SQ = S. eci montre que les triangles SQX et SX sont égaux et qu'ils ont les mêmes angles, donc α 1 = α 2. La bissectrice partage donc l'angle en deux parties égales. ollège Sismondi (S.Z., cours G.E.) chap.3, p.2

3 Les trois bissectrices d'un triangle se coupent en un même point. Démonstration ppelons D le point d'intersection des bissectrices de α et β, et montrons que D est un point de la bissectrice de γ. d 2 bissectrice de! d 1 bissectrice de " D d 3 ar définition, δ(d 2,D) = δ(d 3,D) et δ(d 1,D) = δ(d 3,D), donc δ(d 1,D) = δ(d 2,D) ce qui montre que D (étant à la même distance de d 1 et de d 2 ) est un point de la bissectrice de γ, donc que les trois bissectrices se coupent en un même point (le point D). De plus, comme D est à égale distance des trois côtés, un cercle centré en D tangent à l'un des côtés est tangent aux autres côtés. bissectrice de! bissectrice de " G G est le centre du cercle inscrit Le point d'intersection des bissectrices d'un triangle est le centre du cercle inscrit du triangle. ollège Sismondi (S.Z., cours G.E.) chap.3, p.3

4 3.3 Les hauteurs Définition Une hauteur d'un triangle est une droite issue d'un sommet et perpendiculaire à la droite contenant le côté opposé. Les trois hauteurs d'un triangle se coupent en un même point. Démonstration ar chacun des sommets du triangle, on fait passer une droite parallèle au côté opposé. On obtient ainsi un nouveau triangle '''. hauteur issue de ' ' ' ar construction, le quadrilatère ' est un parallèlogramme, donc = ' ; de la même façon = ' : ceci montre que le sommet est au milieu du côté ''. omme les côtés et '' sont parallèles, la hauteur issue de (dans le triangle ) est la médiatrice du côté '' (dans le triangle '''). Donc les hauteurs du triangle sont les médiatrices du triangle '''. ais nous savons que les médiatrices (du triangle ''') se coupent en un même point, donc nous pouvons conclure que les hauteurs (du triangle ) se coupent en un même point. Remarque : Le terme hauteur est utilisé dans deux sens différents : d'une part c'est la droite issue d'un sommet et perpendiculaire à la droite contenant le côté opposé et d'autre part, c'est la distance du sommet à la droite contenant le côté opposé (c'est cette distance que l'on utilise pour déterminer l'aire d'un triangle). Le contexte suffit en général à préciser de quelle "hauteur" il s'agit. ollège Sismondi (S.Z., cours G.E.) chap.3, p.4

5 3.4 Les médianes Définition Une médiane d'un triangle est une droite issue d'un sommet et passant par le milieu du côté opposé. Les trois médianes d'un triangle se coupent en un même point. Démonstration Soit le triangle et les points, N et respectivement milieux des segments, et. On a donc = 1 2 N et = 1, ce qui montre 2 que les droites N et sont parallèles. Soit maintenant R le point d'intersection des R N droites et N. Selon Thalès, R = = 1 2, donc R = 1 2 et de la même façon NR = 1 ; mais comme 2 =, il en résulte que R = NR et que R est le milieu de N. La médiane du triangle est aussi médiane du triangle N. Imaginons maintenant une suite infinie de triangles construits de la façon suivante : les sommets d'un triangle sont les milieux des côtés du triangle précédent. D'après ce qui précède, les médianes du premier R triangle sont aussi les médianes des autres! Et comme les triangles sont toujours plus petits, il n'y a pas la place à l'intérieur de ces triangles pour plus qu'un point. e qui montre que les médianes du T S N triangle de départ ne peuvent pas se rencontrer autrement qu'en un point. ollège Sismondi (S.Z., cours G.E.) chap.3, p.5

6 Les médianes d'un triangle se coupent au tiers de leur longueur. On entend ici par longueur d'une médiane, la longueur du segment de médiane intérieur au triangle. Démonstration : Dans le dessin ci-dessus,, N et sont les milieux des côtés. N D our démontrer ce théorème, nous avons besoin de connaître une proposition que nous allons utiliser quelques fois. Lemme Une médiane partage un triangle en deux triangles de même aire. En effet, dans le triangle ci-dessus, la médiane partage le triangle en deux triangles et qui ont des bases ( et ) de même longueur et la même hauteur (car la hauteur de ces deux triangles est la distance de à la droite ), donc Δ = Δ. (Ici Δ signifie ire du triangle.) Revenons à la démonstration du théorème : Selon le lemme, ΔD = ΔD et Δ = Δ, donc ΔD = ΔD. ais ΔD = 2 ΔDN et ΔD = 2 ΔD, ce qui montre que les 6 petits triangles D, DN, DN, D, D et D ont la même aire. ais alors, Δ = 3 ΔD (car le triangle est composé des 6 petits triangles et le triangle D de 2 de ces triangles) et comme ces deux triangles ont la même base, la hauteur du grand doit être 3 fois celle du petit : ' = 3!DD'. N D ' D' Les droites ' et DD' sont parallèles, donc, d'après Thalès, D = DD' ' = 1 3, ce qui montre que = 3!D et termine la démonstration!!! Remarque Le point d'intersection des médianes est le centre de gravité du triangle. ollège Sismondi (S.Z., cours G.E.) chap.3, p.6

7 3.5 Quelques propriétés des triangles particuliers en relation avec les droites remarquables Triangle rectangle : Dans un triangle rectangle le milieu de l'hypoténuse est le centre du cercle circonscrit. Démonstration : O milieu de : O = O. On doit montrer que : O = O O Traçons la parallèle à passant par O. O est la hauteur du triangle O (car à ) O est la médiane du Δ O (car ΔO ~ Δ et le rapport est de 1 2 ) omme la hauteur est égale à la médiane, le ΔO est isocèle, donc O = O Définition : Le cercle de Thalès est le cercle ayant pour centre le milieu de l'hypoténuse et comme rayon la moitié de l'hypoténuse Triangle isocèle Il est possible de montrer que les deux définitions suivantes sont équivalentes. Définitions : 1. Un triangle isocèle est un triangle qui a 2 côtés de même longueur. 2. Un triangle isocèle est un triangle qui a 2 angles de même grandeur. ollège Sismondi (S.Z., cours G.E.) chap.3, p.7

8 Si, dans un triangle, la hauteur est égale à la médiatrice correspondante, alors le triangle est isocèle. Démonstration : = ' 2 + ' 2 = ' 2 + ' 2 = (avec ' = ' ) ' Remarques : 1. On peut montrer que la hauteur issue du sommet auquel aboutissent les 2 côtés isométriques est égale à la médiane correspondante dans un triangle isocèle. En fait, dans un triangle isocèle, le segment issu du sommet est à la fois bissectrice, hauteur, médiane et médiatrice. 2. Dans un triangle isocèle, les médianes et les hauteurs relatives aux 2 côtés égaux sont elles-mêmes égales Triangle équilatéral Il est possible de montrer que les deux définitions suivantes sont équivalentes. Définitions : 1. Un triangle équilatéral est un triangle dont les 3 côtés sont de même longueur. 60 h a 2. Un triangle équilatéral est un triangle dont les 3 angles sont égaux et mesurent 60 Remarques : Les propriétés suivantes sont à démontrer comme exercices : - Deux triangles équilatéraux sont semblables. - Deux triangles équilatéraux ayant un côté de même longueur sont égaux. - Dans un triangle équilatéral, toute médiane est aussi hauteur, médiatrice et bissectrice. En d autres mots, les quatre droites remarquables sont confondues. - Si a est le côté d'un triangle équilatéral, alors on a : 3a hauteur h = 2 3a 2 aire = 4 ollège Sismondi (S.Z., cours G.E.) chap.3, p.8

Les triangles : droites et points remarquables

Les triangles : droites et points remarquables Fiche de cours : Configurations du plan. Les triangles : droites et points remarquables Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

Fiche de cours : Configurations du plan.

Fiche de cours : Configurations du plan. Fiche de cours : Configurations du plan. Les triangles. Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et coupe le côté [BC] en son milieu.

Plus en détail

Conséquence. Si deux triangles sont isométriques, alors ils ont leurs trois côtés égaux deux à deux. AB = MN BC = NP CA = PM A = M AB = MN AC = MP

Conséquence. Si deux triangles sont isométriques, alors ils ont leurs trois côtés égaux deux à deux. AB = MN BC = NP CA = PM A = M AB = MN AC = MP Seconde Triangles isométriques, triangles semblables I. Triangles isométriques. Définition. Deux triangles sont isométriques ou superposables, si l un est l image de l autre par une isométrie ou la composée

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

Rappels de collège sur la géométrie dans le plan

Rappels de collège sur la géométrie dans le plan Rappels de collège sur la géométrie dans le plan I Rappels sur les symétries : I 1 Symétrie axiale : On note I le milieu de On appelle médiatrice du segment la droite perpendiculaire en I à Propriétés

Plus en détail

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle FICHE G - CONFIGURATIONS du PLAN (théorèmes importants) A savoir : On peut remplacer une définition par une équivalence : «A B». Le triangle: droites et points remarquables.. Hauteurs et orthocentre. Définition:

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Classeur de géométrie 4 ème

Classeur de géométrie 4 ème - 1 - lasseur de géométrie 4 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

CONFIGURATIONS DU PLAN

CONFIGURATIONS DU PLAN onfiguations du plan - Théorème de Pythagore ONFGURTONS DU PLN Théorème de Pythagore Si un triangle est rectangle, alors le carré de son hypoténuse est égal à la somme des carrés des deux autres côtés

Plus en détail

Configuration du plan

Configuration du plan onfiguration du plan I - Les triangles 1 - Rappels La somme des angles d un triangle est égale à 180 Si le triangle est rectangle en, alors d après le théorème de Pythagore 2 = 2 + 2. Réciproquement, si

Plus en détail

Triangle isocèle et équilatéral

Triangle isocèle et équilatéral Collège Ferdinand Sarrien Bourbon-Lancy Classe de 6 ème Classe de 5 ème Classe de 4 ème Classe de ème Droites Si deux droites sont parallèles à une même droite alors ces deux droites sont parallèles entre

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

1 INEQUATIONS. Question 1. 6 x (x + 2) (x 1) 0. a) Démontrer que : x 2 x + 2 x + 1. x 1. b) résoudre dans IR l'inéquation : x 2 x 1

1 INEQUATIONS. Question 1. 6 x (x + 2) (x 1) 0. a) Démontrer que : x 2 x + 2 x + 1. x 1. b) résoudre dans IR l'inéquation : x 2 x 1 0 evoir surveillé n 4 Vendredi 6 décembre 00 NEQUTONS Question a) émontrer que : x x + x + x 6 x (x + ) (x ) 0 b) résoudre dans R l'inéquation : x x + x + x Question a) émontrer que ( x ) 9 4 (x ) (x +

Plus en détail

Mathématiques LES TRIANGLES. La somme des mesures des angles d un triangle vaut 180.

Mathématiques LES TRIANGLES. La somme des mesures des angles d un triangle vaut 180. RPE LES TRNGLES. Définition Un triangle est un polygone à trois côtés.. Somme des angles d un triangle La somme des mesures des angles d un triangle vaut 180. Démonstration : ß ß On mène la parallèle par

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale Géométrie plane I - Symétries 1 - Symétrie axiale Définition : Deux figures géométriques sont symétriques par rapport à une droite (d) si, en pliant la feuille suivant la droite (d), les deux figures se

Plus en détail

Groupe seconde chance Feuille d exercice n 9

Groupe seconde chance Feuille d exercice n 9 roupe seconde chance euille d exercice n 9 xercice 1 MN et MN sont deux triangles isocèles, respectivement en et en. R est un point de (N) distinct de et N. Soit S l intersection de () et (MN). On appelle

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Droites et triangles

Droites et triangles Droites et triangles I - Médiatrice d un segment : A. Définition : On appelle médiatrice d un segment la droite perpendiculaire à ce segment en son milieu. La droite (d) est perpendiculaire au segment

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

Exercices de géométrie

Exercices de géométrie OMIN : Géométrie UTUR : Igor KORTHMSKI NIVU : ébutants STG : Grésillon 2011 ONTNU : xercices xercices de géométrie xercice 1 Soit un triangle. Montrer que l intersection de la bissectrice issue de et de

Plus en détail

Classeur de géométrie 3 ème

Classeur de géométrie 3 ème - 1 - lasseur de géométrie 3 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

EXERCICES DE GEOMETRIE BASES

EXERCICES DE GEOMETRIE BASES EXERES E GEETRE SES Exercice n 1 p. 222 Puisque et sont de même mesure, il en est de même pour les angles L et N. Notons x cet angle. Par suite, NL = N = 180 (90 + x) = 90 x. e même, NL = L = 180 (90 +

Plus en détail

LA DEMONSTRATION EN GEOMETRIE PLANE

LA DEMONSTRATION EN GEOMETRIE PLANE LA DEMONSTRATION EN GEOMETRIE PLANE I. Le débat Pour discuter de la validité d'énoncés mathématiques, les mathématiciens ont mis en place des règles de débat. En mathématiques, ces principales règles sont

Plus en détail

Chapitre n.. Droites remarquables d un triangle

Chapitre n.. Droites remarquables d un triangle (HPITRE 1 : en 008/009 Définitions et tracés des médianes, hauteurs et médiatrices dans un triangle. ercle circonscrit. ire d un disque. ire d'un triangle quelconque. onstater que chaque médiane partage

Plus en détail

Droites remarquables dans les triangles

Droites remarquables dans les triangles Droites remarquables dans les triangles F.Gaudon 16 février 2005 Table des matières 1 Différentes droites 2 1.1 Médiatrices............................ 2 1.2 Hauteurs.............................. 4 1.3

Plus en détail

MS2_proprietes 2014/3/4 15:52 page 1 #1. page vide pour attaquer en page paire!

MS2_proprietes 2014/3/4 15:52 page 1 #1. page vide pour attaquer en page paire! MS2_proprietes 2014/3/4 15:52 page 1 #1 1 page vide pour attaquer en page paire! MS2_proprietes 2014/3/4 15:52 page 2 #2 PRPRIÉTÉS PUR ÉMNTRER EN GÉMÉTRIE Pour démontrer en géométrie, quelques astuces

Plus en détail

Cours de GEOMETRIE PLANE

Cours de GEOMETRIE PLANE Institut municipal : JM Labatte Géométrie plane. 1/8 Cours de GEOMETRIE PLANE I Droites Notations : Un point du plan est représenté par une lettre majuscule : A, B Une droite est notée (d), d, (D) ou (AB)

Plus en détail

Chapitre 2 : Configurations et transformations.

Chapitre 2 : Configurations et transformations. hapitre 2 : onfigurations et transformations. I Droites remarquables d un triangle. 1 Hauteurs et orthocentre. Dans un triangle, la hauteur issue de est la droite passant par et perpendiculaire à (). L

Plus en détail

1 Triangles égaux. 2 Axiomes de la géométrie

1 Triangles égaux. 2 Axiomes de la géométrie Razvan arbulescu 17 février 2015, stage de achan 1 Triangles égaux GÉOMÉTRIE Problème 1 (Pythagore 1ère méthode). Soit un triangle rectangle en et posons = c, = a et = b. Sur chaque segment du carré MNP

Plus en détail

Géométrie. Constructions des droites et points remarquables dans les triangles

Géométrie. Constructions des droites et points remarquables dans les triangles Géométrie Constructions des droites et points remarquables dans les triangles 1. Droites et points remarquables dans les triangles Les médiatrices: Les médiatrices des côtés d un triangle se coupent en

Plus en détail

A H A H. Exercices de 4 ème Chapitre 2 - Droites, cercles et triangles Énoncés. Exercice 1

A H A H. Exercices de 4 ème Chapitre 2 - Droites, cercles et triangles Énoncés. Exercice 1 xercices de 4 ème hapitre 2 - Droites, cercles et triangles Énoncés xercice 1 ur les figures suivantes, les droites repassées en gras sont parallèles. ndiquer, si possible, le numéro du théorème à appliquer

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

CHAPITRE 3 : BASES DE GEOMETRIE PLANE

CHAPITRE 3 : BASES DE GEOMETRIE PLANE hapitre 3 ases de géométrie plane page 1 HPITRE 3 : SES DE GEOMETRIE PLNE 1. Triangles Propriété La somme des angles d un triangle vaut 180. d La droite d est parallèle à () et passe par. 1. Marquer clairement

Plus en détail

Triangle rectangle. 1 Rappels sur le triangle rectangle. 1.1 Vocabulaire. Définition 1 Un triangle rectangle c est un triangle qui a un angle droit.

Triangle rectangle. 1 Rappels sur le triangle rectangle. 1.1 Vocabulaire. Définition 1 Un triangle rectangle c est un triangle qui a un angle droit. Triangle rectangle 1 Rappels sur le triangle rectangle 1.1 Vocabulaire Définition 1 Un triangle rectangle c est un triangle qui a un angle droit. Définition 2 Le coté qui est situé en face de l angle droit

Plus en détail

Géométrie. Copyright meilleurenmaths.com. Tous droits réservés

Géométrie. Copyright meilleurenmaths.com. Tous droits réservés 1. Médiatrice d'un segment p 7. Théorème de Thalès p 2. Médiatrices d'un triangle p 8. Réciproque du théorème de Thalès p 3. Bissectrice d'un angle p 9. Exercices p 4. Bissectrices d'un triangle p 10.

Plus en détail

Aide mémoire Géométrie 4 ème

Aide mémoire Géométrie 4 ème ide mémoire Géométrie 4 ème Si un triangle est rectangle, alors la longueur de la médiane relative à l'hypoténuse est égale à la moitié de la longueur de l'hypoténuse. Triangle rectangle et cercle circonscrit:

Plus en détail

triangles Exemples: Construisez, si possible, un triangle avec les trois segments donnés:

triangles Exemples: Construisez, si possible, un triangle avec les trois segments donnés: Les triangles Existence d'un triangle Pour construire un triangle, il nous faut 3 segments. Cependant, il existe une condition sur ces trois segments, comme l'illustrent les deux exemples: Exemples: Construisez,

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Chapitre I Configurations du plan et géométrie repérée

Chapitre I Configurations du plan et géométrie repérée I. Rappels sur les symétries 1. Symétries axiales Chapitre I Configurations du plan et géométrie repérée Méd iatric e de Définition : Médiatrice d un segment On note I le milieu de. On appelle médiatrice

Plus en détail

Proprié té s dé gé omé trié plané

Proprié té s dé gé omé trié plané Proprié té s dé gé omé trié plané Droites Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles (fig.1). Si deux droites sont perpendiculaires à une même troisième

Plus en détail

CHAPITRE 5 TRIANGLES SEMBLABLES TRIANGLES ISOMÉTRIQUES

CHAPITRE 5 TRIANGLES SEMBLABLES TRIANGLES ISOMÉTRIQUES HPITRE 5 TRINGLES SEMLLES TRINGLES ISOMÉTRIQUES I Triangles isométriques Définition ' Deux triangles sont isométriques s ils sont images l un de l autre par une symétrie (axiale ou centrale), rotation,

Plus en détail

Chapitre 1 - Repérage et configurations du plan

Chapitre 1 - Repérage et configurations du plan nde hapitre 1 - Repérage et configurations du plan 01-013 hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur

Plus en détail

Mathématiques Niveau 1 et 2 Deuxième partie Géométrie

Mathématiques Niveau 1 et 2 Deuxième partie Géométrie Mathématiques Niveau 1 et euxième partie éométrie PITR 1 : RPPLS 1.1 Introuction près les quelques rappels e ce chapitre, nous aorerons, ans ce cours e géométrie plane, plus particulièrement les triangles

Plus en détail

Leçon 29. Droites remarquables du triangle

Leçon 29. Droites remarquables du triangle Tout ce qui est en bleu sera dit à l'oral ou nous sera éventuellement utile pour les questions venant du jury; le reste sera projeté. Leçon 29. Droites remarquables du triangle Introduction (à l'oral):

Plus en détail

Extrait CNED. Configuration du plan. Sommaire. 1. Prérequis 2. Les théorèmes à connaître, à savoir utiliser. Séquence 7 MA20. Cned Académie en ligne

Extrait CNED. Configuration du plan. Sommaire. 1. Prérequis 2. Les théorèmes à connaître, à savoir utiliser. Séquence 7 MA20. Cned Académie en ligne Extrait NED onfiguration du plan Sommaire 1. Prérequis 2. Les théorèmes à connaître, à savoir utiliser Séquence 7 M20 1 ned cadémie en ligne 1 Prérequis Médiatrice Définition Définition Soient et deux

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

Triangles. I. Construction de triangles. 1. Inégalité triangulaire

Triangles. I. Construction de triangles. 1. Inégalité triangulaire Triangles I. Construction de triangles 1. Inégalité triangulaire Exercice : 1. Tracer un segment [AB] tel que AB = 8 cm. Tracer un cercle de centre A et de rayon 5 cm. 2. On veut construire un cercle de

Plus en détail

Symétrie Centrale. Théorème admis: Le symétrique d'un segment est un segment de même longueur. On dit qu'une symétrie centrale conserve les longueurs.

Symétrie Centrale. Théorème admis: Le symétrique d'un segment est un segment de même longueur. On dit qu'une symétrie centrale conserve les longueurs. Symétrie entrale I.Définition 1) Symétrique d'une figure approche expérimentale Dans une symétrie centrale, deux figures sont symétriques par rapport à un point lorsqu'on passe d'une figure à l'autre en

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

Chapitre 7. Géométrie plane

Chapitre 7. Géométrie plane Chapitre 7 Géométrie plane Hauteurs Ce sont les perpendiculaires aux côtés, issues du sommet opposé. Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. Médianes

Plus en détail

Triangle rectangle et cercle Cours 4 ème

Triangle rectangle et cercle   Cours 4 ème Triangle rectangle et cercle www.mathmaurer.com Cours 4 ème I Cercle circonscrit et médiane du triangle rectangle 1 - Cercle circonscrit au triangle rectangle Propriété 1: Si un triangle est rectangle

Plus en détail

CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF

CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF I) LE RAISONNEMENT DEDUCTIF EN GEOMETRIE. On ne peut pas prouver qu un énoncé de géométrie est vrai en faisant uniquement

Plus en détail

Distances et Tangentes

Distances et Tangentes Distances et Tangentes I) Distances 1) Définition Définition : La distance d'un point à une droite (d) est la plus courte de toutes les distances possibles entre et un point de (d). Elle est égale à H

Plus en détail

Exercices sur la chasse aux angles

Exercices sur la chasse aux angles OMIN : Géométrie UTUR : Igor KORTHMSKI NIVU : ébutants STG : Montpellier 2013 ONTNU : xercices xercices sur la chasse aux angles - Énoncés- xercice 1 Soient Γ 1 et Γ 2 deux cercles s intersectant en P

Plus en détail

I U. Exercices de 4 ème Chapitre 2 - Droites, cercles et triangles Énoncés. Exercice 1

I U. Exercices de 4 ème Chapitre 2 - Droites, cercles et triangles Énoncés. Exercice 1 xercices de 4 ème hapitre - Droites, cercles et triangles Énoncés xercice 1 ur le dessin ci-contre, on sait que (TH) // (). ontrer que T est le milieu du segment []. T H xercice n utilisant le codage du

Plus en détail

Droites remarquables du triangle (1) Cours 4 ème

Droites remarquables du triangle (1)   Cours 4 ème Droites remarquables du triangle (1) www.mathmaurer.com Cours 4 ème I Les médiatrices du triangle 1 - Rappels sur la médiatrice d'un segment Définition 1: On appelle médiatrice d'un segment la droite qui

Plus en détail

Exercices de géométrie

Exercices de géométrie OMNE : Géométrie UTEUR : mbroise MRGOT NVEU : ébutants STGE : Grésillon 2011 ONTENU : Exercices Exercices de géométrie Exercice 1 Soient Γ et Γ deux cercles de même rayon, sécants en et. Une tangente commune

Plus en détail

LES BASES DE LA GEOMETRIE

LES BASES DE LA GEOMETRIE Chapitre 2. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle tel que AB=10cm, AC=3cm

Plus en détail

30 o. 65 o O E I C. Exercice 1. Angle ABC BOD AOD DCB. Inscrit ou au centre Arc intercepté

30 o. 65 o O E I C. Exercice 1. Angle ABC BOD AOD DCB. Inscrit ou au centre Arc intercepté xercice 1 ngle Remplissez le tableau ci-dessous en indiquant quels sont les angles inscrits et en précisant alors l arc de cercle intercepté. nscrit ou au centre rc intercepté orrection 1 ngle nscrit ou

Plus en détail

CONFIGURATIONS PLANES. Médiatrice d un segment. Vous savez donc construire : Le milieu d'un segment Une droite perpendiculaire à une droite donnée.

CONFIGURATIONS PLANES. Médiatrice d un segment. Vous savez donc construire : Le milieu d'un segment Une droite perpendiculaire à une droite donnée. Médiatrice d un segment Définition : La médiatrice d'un segment [] est la droite perpendiculaire à [] et passant par son milieu. Un point est sur la médiatrice de [] si et seulement si il est équidistant

Plus en détail

DROITES REMARQUABLES DANS UN TRIANGLE

DROITES REMARQUABLES DANS UN TRIANGLE THEME : DROITES REMARQUABLES DANS UN TRIANGLE Médiatrice d un segment ( Rappels ) Définition : La médiatrice d un segment est la droite perpendiculaire à ce segment qui passe par le milieu du segment.

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Chap G1 Premiers pas en géométrie

Chap G1 Premiers pas en géométrie Chap G1 Premiers pas en géométrie 6ème Chap G1 - Premiers pas en géométrie I. Définitions...3 1) Points...3 2) Droites...3 3) Segments...3 4) Demi-droite...4 5) Résumé...4 II. ppartenir à une droite, être

Plus en détail

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente Chapitre issectrice Cercle inscrit Distance d un point à une droite Tangente Connaître et utiliser la définition de la bissectrice. Utiliser différentes méthodes pour tracer : La médiatrice d un segment.

Plus en détail

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Analyse de la figure Notes Géométrie 2016 Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Construire et décrire une figure géométrique Un programme de tracé est une

Plus en détail

VOCABULAIRE DE GEOMETRIE PLANE

VOCABULAIRE DE GEOMETRIE PLANE Fiche de vocabulaire VOCABULAIRE DE GEOMETRIE PLANE Généralités... 2 1) Nom des polygones courants... 2 2) Qu est-ce qu un polygone?... 2 La médiatrice d un segment... 3 Cercle et disque... 3 1) Le disque?

Plus en détail

Le point M image de M est défini par : O est le milieu de [ M M ] (D) est la médiatrice de [ M M ] OM OM et. MOM' α.

Le point M image de M est défini par : O est le milieu de [ M M ] (D) est la médiatrice de [ M M ] OM OM et. MOM' α. Seconde Les transformations du plan Les transformations. e sont des fonctions, l ensemble de départ est formé de tous les points du plan. Les notations sont les mêmes que pour les fonctions numériques.

Plus en détail

I) LES DEUX PROPRIÉTÉS FONDAMENTALES. 1) Somme des mesures des angles d'un triangle

I) LES DEUX PROPRIÉTÉS FONDAMENTALES. 1) Somme des mesures des angles d'un triangle TRINGLES Faire au préalable l'activité 4 p183 à la maison I) LES DEUX PROPRIÉTÉS FONDMENTLES 1) Somme des mesures des angles d'un triangle Dans un triangle, la somme des mesures des angles est égale à

Plus en détail

FE = 4,5 DE =? DF =?

FE = 4,5 DE =? DF =? Mathématiques 1 Niv.1 et 2 GOMTRI xercices chapitre 2 1. alculer la longueur de la diagonale d'un carré de côté a. 2. alculer la longueur du côté d'un carré de diagonale d 3. alculer la hauteur d'un triangle

Plus en détail

LES BASES DE LA GEOMETRIE.

LES BASES DE LA GEOMETRIE. Chapitre 2 LES BASES DE LA GEOMETRIE. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle

Plus en détail

LGL Cours de Mathématiques

LGL Cours de Mathématiques Existence d'un triangle Pour construire un triangle, il nous faut 3 segments. Cependant, il existe une condition sur ces trois segments, comme l'illustrent les deux exemples: Exemples: Construisez, si

Plus en détail

Triangle rectangle et cercle circonscrit. Théorème de Pythagore et réciproque

Triangle rectangle et cercle circonscrit. Théorème de Pythagore et réciproque Chapitre 7 Triangle rectangle et cercle circonscrit. Théorème de Pythagore et réciproque 1. Triangle rectangle et cercle circonscrit Rappelons que le cercle circonscrit d'un triangle ABC est le cercle

Plus en détail

Pour débuter en géométrie élémentaire : chasse aux angles et éléments de géométrie du triangle

Pour débuter en géométrie élémentaire : chasse aux angles et éléments de géométrie du triangle Pour débuter en géométrie élémentaire : chasse aux angles et éléments de géométrie du triangle 11 novembre 2014 e document, rédigé à partir de cours donnés lors de stages olympiques ou d autres événements

Plus en détail

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD].

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD]. Prismes 1 Prisme à base un triangle rectangle 1 Pavés droits 1 Le pavé droit 1 Le cube Pyramides pyramide dans pavé droit ctivité pyramide à base rectangulaire, d'arêtes égales. alques et résultats. 4

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

5 eme : Triangles et ce qui s y rapporte

5 eme : Triangles et ce qui s y rapporte 5 eme : Triangles et ce qui s y rapporte Michael A. 15 octobre 2014 Ce petit cours traitera des triangles et de ce que l on peut appliquer à un triangle pour s amuser un peu. 1 Triangles 1.1 Définition

Plus en détail

Exercices résolus de mathématiques. GSP 0 EXGSP000 EXGSP009

Exercices résolus de mathématiques. GSP 0 EXGSP000 EXGSP009 Exercices résolus de mathématiques. GSP 0 EXGSP000 EXGSP009 http://www.matheux.be.tf Jacques ollot 1 avril 03 www.matheux.be.tf - GSP 0-1 - EXGSP001 - Rappels. a) Si d un point pris dans le plan du cercle,

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Symétrie axiale cours 6e

Symétrie axiale cours 6e Symétrie axiale cours 6e F.Gaudon 24 février 2004 Table des matières 1 Axes de symétrie 2 1.1 Approche expérimentale..................... 2 1.2 Axes de symétrie particuliers................... 2 1.2.1

Plus en détail

GEOMETRIE ELEMENTAIRE DU PLAN ET DE L'ESPACE

GEOMETRIE ELEMENTAIRE DU PLAN ET DE L'ESPACE GEOMETRIE ELEMENTAIRE DU PLAN ET DE L'ESPACE GEOMETRIE PLANE - CONSTRUCTIONS Exercice 1 1) combien peut-on tracer de droites passant par un point? et par deux points? 2) Combien un segment contient-il

Plus en détail

Exercices sur la chasse aux angles

Exercices sur la chasse aux angles OMIN : Géométrie UTUR : Igor KORTHMSKI NIVU : ébutants STG : Montpellier 2012 ONTNU : xercices xercices sur la chasse aux angles - Énoncés- xercice 1 Soit un triangle. Montrer que l intersection de la

Plus en détail

Partie A : Les angles

Partie A : Les angles Partie : Les angles 1. Les angles complémentaires Définition : La somme des angles égale 90 o 2. Les angles supplémentaires Définition : La somme des angles égale 180 o 20 o + 70 o 50 o + 130 o 20 o 70

Plus en détail

Constructions géométriques

Constructions géométriques DERNIÈRE IMPRESSION LE 24 juin 2016 à 18:08 onstructions géométriques Table des matières 1 Rappels et notations 2 2 onstruction dans le plan 3 3 Figures de bases pour la construction 3 3.1 La médiatrice

Plus en détail

DROITES REMARQUABLES D UN TRIANGLE

DROITES REMARQUABLES D UN TRIANGLE - Des Pliages DRITES REMRQULES D UN TRINGLE a) Découpe un grand triangle dont les trois angles sont aigus. Replie le côté [] sur lui-même de façon que le pli passe par le sommet. Quel est le nom de la

Plus en détail

BOITE A OUTILS. 3ème

BOITE A OUTILS. 3ème BOITE A OUTILS 3ème 2014/2015 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles

Plus en détail

Droites sécantes: Droites parallèles // :

Droites sécantes: Droites parallèles // : ide mé mo i r e Géomé t r i e 6 è m e à 3 è m e Points alignés: roite, demi-droite et segment de droite: droite: () es points sont alignés lorsqu'ils appartiennent à la même droite. ( ) ( ) ( ) demi-droite:

Plus en détail

DROITES REMARQUABLES CAS PARTICULIERS

DROITES REMARQUABLES CAS PARTICULIERS THEME : DROITES REMARQUABLES CAS PARTICULIERS Cas particulier 1 : Le triangle isocele Isocèle : ( de isos, " égal " et skelos, " jambe ' ) qui a deux jambes. La véritable orthographe adoptée par le Dictionnaire

Plus en détail

Olympiades Françaises de Mathématiques

Olympiades Françaises de Mathématiques lympiades rançaises de athématiques 2015-2016 lympiades rançaises athématiques NV NUÉR 2 : RRGÉ xercice 1. Soit un point extérieur à un cercle de centre. Un point P se déplace sur. Soit le point d intersection

Plus en détail

RAPPELS DE GÉOMETRIE

RAPPELS DE GÉOMETRIE RPPELS DE GÉOMETRIE Sommaire de ce document : Remarques préalables page 2 I Formules pour calculer des aires page 2 II Quelques propriétés utiles pour bâtir une démonstration page 3 III Formules permettant

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail

LA GEOMETRIE DU COLLEGE

LA GEOMETRIE DU COLLEGE L GEETRIE DU LLEGE I. Le triangle : 1 ) Triangles particuliers Un triangle isocèle a deux côtés égaux Un triangle équilatéral a tous ses côtés égaux Un triangle rectangle a un angle droit ) Droites remarquables

Plus en détail

Parallélogrammes particuliers

Parallélogrammes particuliers Tout est dans le socle. I.Le rectangle Parallélogrammes particuliers 1) éfinition n appelle rectangle un quadrilatère qui a quatre angles droits. remarque 1: si un quadrilatère a trois angles droits, alors

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES GEOMETRIE : RAPPELS PARALLELES ET PERPENDICULAIRES Théorème 1: Si deux droites sont parallèles à une même troisième. Alors elles sont parallèles entre elles. Théorème 2: Si deux droites sont perpendiculaires

Plus en détail

DROITES REMARQUABLES D'UN TRIANGLE. I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point

DROITES REMARQUABLES D'UN TRIANGLE. I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point DROITES REMARQUABLES D'UN TRIANGLE I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point Leur point d'intersection est le centre d'un cercle passant par

Plus en détail

EXERCICEE - "LONGUEURS" DES HAUTEURS, MEDIANES, BISSECTRICES ET MEDIATRICES DANS UN TRIANGLE RECTANGLE. BC = 10 ( cm )

EXERCICEE - LONGUEURS DES HAUTEURS, MEDIANES, BISSECTRICES ET MEDIATRICES DANS UN TRIANGLE RECTANGLE. BC = 10 ( cm ) THEMEE : Correction EXERCICEE - "LONGUEURS" DES HAUTEURS, MEDIANES, BISSECTRICES ET MEDIATRICES DANS UN TRIANGLE RECTANGLE La construction est laissée au soin du lecteur!!!! b) Calcul de BC : Dans le triangle

Plus en détail