Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)

Dimension: px
Commencer à balayer dès la page:

Download "Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)"

Transcription

1 CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène. L équilibre de Cournot résulte de l intersection des fonctions de réactions de chaque entreprise lorsqu elles fixent de manière simultanée leurs quantités. L équilibre de Stackelberg résulte du choix du leader de la quantité q qui maximise son profit sous la contrainte de la fonction de réponse optimale à la Cournot du suiveur. A l équilibre de Stackelberg, le bien-être du leader est plus grand et celui du suiveur moins grand, qu à l équilibre de Cournot. La quantité de bien vendue en Stackelberg est plus grande chez le leader et moins importante chez le follower qu en Cournot. La fonction de réponse optimale (ou fonction de réaction) indique la meilleure action possible de l entreprise (en terme de profit), pour une anticipation donnée de l action de sa rivale. Graphiquement, on obtient les équilibres de Cournot et Stackelberg, respectivement au point C et S lorsque la firme 1 est dominante. Graphique 1 : Détermination des équilibres de Cournot et Stackelberg lorsque l entreprise 1 est la firme dominante (extrait de «Eléments de Microéconomie», Pierre Picard, 2002)

2 Question 2 : a) La relation entre l indice de Lerner et la part de marché est la suivante : Li = -s i /ε avec s i = y i /Y Li = (p-c i )/p Avec ε, l élasticité de la demande par rapport au prix b) Démonstration de la relation entre l IHH et l indice de Lerner L indice de Lerner moyen est : L = Σ i s i L i or Li = -si/ε Alors L = Σ i s i (-s i /ε) = Σ i= 1 (-s i 2 /ε) Question 3 : On peut sortir ε qui ne dépend pas de i d où : L= (-1/ε) Σ i s i 2 or Σ i s i 2 = IHH D où L= -IHH / ε Si les firmes qui ont des contraintes de capacité de production, on emploie l indice IHH adj au lieu de l IHH pour calculer le degré de concentration du secteur. Les entreprises du secteur de l électricité sont soumises à des contraintes de capacité et c est donc pour ce secteur, par exemple, que nous employons cet indice. Question 4 : Jeu «Pierre, Feuille, Ciseaux» a) Le jeu «Pierre, Feuille, Ciseaux» est un jeu un jeu simultané «à somme nulle» (conflit pur), en information complète (bimatrice connue des 2 joueurs) mais avec incertitude endogène sur le choix de l autre. Le jeu sous forme normale se présente de la manière suivante : Joueur A Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0) Ce jeu est un jeu à somme nulle dans le sens où tout ce qui est un gagné par l'un est perdu par l'autre. En d'autres termes, nous avons déjà vu que nous pouvions parler dès lors de jeux "strictement compétitifs". Le jeu sous forme extensive est le suivant (facultatif) :

3 b) Un équilibre de Nash est un état dans lequel aucun joueur ne souhaite modifier sa stratégie étant donné les stratégies adoptées par les autres joueurs. Chaque stratégie est une meilleure réponse aux stratégies des autres joueurs. MRA (Pierre)= Feuille MRA (Feuille)= Ciseaux MRA (Ciseaux)= Pierre MRB (Pierre) = Feuille MRB (Feuille) = Ciseaux MR B (Ciseaux)= Pierre En stratégie pure, il n y a pas d équilibre de Nash. La raison pour laquelle on n a pas d équilibres est la suivante : la notion d équilibre de Nash en stratégies pures suppose que chaque joueur connaisse les stratégies des autres joueurs. Or, nous sommes dans des jeux ou chaque joueur a intérêt à cacher sa stratégie, ou à bluffer. En effet, dans les jeux pile ou face ou tirer un penalty, ou bluff au poker, on n utilise pas toujours la même stratégie, et on ne connaît stratégie pas non plus à l avance celle de l adversaire. Stratégie (pure) = instruction exhaustive donnée à un représentant pour jouer à votre place. Chaque joueur a 3 stratégies. Exemple: jouer pierre. c) Définition : Une issue i réalisable qui n'admet aucune "amélioration" est appelée un "optimum de Pareto" (O.P.) et est définie rigoureusement par :

4 La "pareto-optimalité" est à comprendre comme une condition sine qua non, sans lequel le concept de solution d'un jeu coopératif que nous cherchons à élaborer devrait être automatiquement rejeté. C'est-à-dire que si dans un jeu, un couple d'issues est telle qu'il est impossible d'améliorer le score de l'un des deux joueurs sans diminuer le score de l'autre, nous disons que ces issues sont "paretooptimales" ou "pareto-efficientes". Dans notre jeu, toutes les issues sont des optima de Pareto. Exercice 1 : 1) Fonction de demande inverse : P= 200 2(Q1) 2(Q2) Fonction de réaction de l entreprise 1 : (Q1)= 100/3 (Q2)/3 Fonction de réaction de l entreprise 2 : (Q2)= 40 2/5 (Q1) 2) Equilibre : résolution du système formé des deux fonctions de réaction : (Q1*)= 300/13 (Q2*)= 400/13 P*= 1200/13 3) Maximiser le profit joint par rapport à (Q1) et (Q2): π = p((q1) + (Q2)) ((Q1)+(Q2)) C(Q1) C(Q2) Résoudre le système formé des deux équations. 4) L entreprise 1 en monopole connait la fonction de demande inverse : P= 200 2(Q1) La maximisation du profit conduit à l équilibre suivant : (Q1*)= 100/3 P*= 400/3 Exercice 2 Partie 1 a) ( P1+P2) /2 0 P1 P2 1 b) En rouge, ils votent pour P1 car ils sont plus proches de P1. Il y a donc du fait de la distribution uniforme : (P1 0) + ((P1+P2)/2 P1) = (P1+ P2) / 2 électeurs de P1.

5 En noir, ils votent pour P2 car ils sont plus proche de P2. Il y a donc du fait de la distribution uniforme : (1- P2) + (P2- ((P1+P2)/2) = 1 (P1+P2)/2 électeurs de P2. Nota bene : une distribution uniforme sur un segment [a, b] signifie qu il y a (b-a) individus sur la segment [a, b]. c) On suppose que P2 reste fixé. Si P1 dévie tout près de P2, il reçoit presque (P1 + P2)/2 voix en plus. Avant déviation : (en rouge, ceux qui votent pour P1, en noir ceux qui votent pour P2) ( P1+P2) /2 0 P1 P2 1 Après déviation : (en rouge, ceux qui votent pour P1, en noir ceux qui votent pour P2) (P1+P2)/2 _ _ 0 P1 P1 P2 1 Conclusion : cette déviation de P1 vers P2 lui est profitable en termes d électeurs. d) Un équilibre de Nash pour le parti politique P1 est une stratégie telle qu il n existe pas d autre stratégie qui fournirait un paiement plus élevé (plus d électeurs) au parti politique 1 quelle que soit la stratégie du parti P2. On voit bien que la stratégie du c) fournit plus d électeurs au parti 1 que la stratégie b) ; la stratégie du b) n est donc pas un équilibre de Nash. Toute stratégie de la partie 1 n est donc pas un équilibre de Nash, puisque que quand P1 P2, il existe toujours une déviation profitable pour un parti étant donné la position de l autre : se rapprocher la plus possible de la position de l autre parti. Partie 2 : a) 0 P1 0,5 1 =P2 = (P1+P2)/2 Nota bene : Le signe mathématique union : U signifie ou. On a donc P1 appartient à [0 ; 0,5[ ou ]0,5 ; 1] ; de même pour P2 avec P1=P2. b) Il est dit dans l énoncé que si les deux partis occupent la même position, ils se partagent les électeurs. Dans ce cas, chaque parti reçoit la moitié des électeurs. Soit P1=1/2 et P2=1/2. c) On suppose P2 fixé. P1 a intérêt à dévier vers le centre. Il aura dans ce cas plus d électeurs.

6 Avant deviation: 0 P1 0,5 1 =P2 = (P1+P2)/2 Après déviation : ( P1+P2)/2 0 P2 P1 0,5 1 Dans cette configuration P2 a (P1+P2)/2 voix. Dans cette configuration P1 a 1- P1 + P1 (P1+P2)/2 = 1 (P1+P2)/2 > 1/2 voix P1 a donc intérêt à faire cette déviation, il préfère la situation c) à la situation b) car il a plus d électeurs. d) La situation de la partie 2 n est pas un équilibre de Nash puisque quand P1=P2 0,5 alors chaque parti a intérêt à dévier unilatéralement de manière à gagner plus de voix, à avoir un paiement supplémentaire. Partie 3 : En conclusion le seul équilibre de Nash possible du jeu est P1=P2=0,5. Dans ce cas chaque parti reçoit la moitié des voix. Et si un parti dévie il reçoit tous les votes entre lui et l extrémité du segment plus la moitié des ceux qui sont entre P1 et P2. Cela fait moins que 1/2. Il n a donc jamais intérêt à dévier. Cette solution est un équilibre de Nash. Avant deviation: 0 P1 1 = P2 = (P1+P2)/2 = 0,5 Après déviation : (P1+P2)/2 0 P2 P1 1 = 0,5 Après déviation, le parti P1 a moins de voix donc il n a pas intérêt à dévier. Donc cette situation est un équilibre de nash.

L oligopole ESCP 2012 2103

L oligopole ESCP 2012 2103 Structures de marché L oligopole Anne Yvrande Billon ESCP 2012 2103 1 Plan du cours (2/2) 1. Introduction : qu est ce qu un oligopole? 2. L oligopole de Cournot 3. Le «paradoxe de Bertrand» 4. Le modèle

Plus en détail

Théorie de l oligopole et oligopoles non coopératifs

Théorie de l oligopole et oligopoles non coopératifs Théorie de l oligopole et oligopoles non coopératifs Dans un marché oligopolistique, le nombre de firmes est limité I - Cadre général Le nombre limité de firmes dans un oligopole peut s expliquer par des

Plus en détail

Exercice I. On considère un monopole sur un marché caractérisé par les données suivantes:

Exercice I. On considère un monopole sur un marché caractérisé par les données suivantes: TD n 7 OLIGOPOLE, STRATEGIES CONCURRENTIELLES ET THEORIE DES JEUX. Lecture obligatoire: Pindyck et Rubinfeld Chapitre pp. 493-56 et Chapitre 3 pp. 535-57 Exercice I. On considère un monopole sur un marché

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

5) Extension : Équilibre de Cournot Nash en information incomplète. . 2 T y 2 2 ) B. > (a 2 ) H. k y

5) Extension : Équilibre de Cournot Nash en information incomplète. . 2 T y 2 2 ) B. > (a 2 ) H. k y 5) Extension : Équilibre de Cournot Nash en information incomplète Supposons désormais que la firme 2 connaît avec perfection la fonction de coût de la firme, mais que celle - ci en revanche est imparfaitement

Plus en détail

chaque entreprise choisi un prix p. Le prix le plus bas attire les clients. Les entreprises maximisent leur profit q

chaque entreprise choisi un prix p. Le prix le plus bas attire les clients. Les entreprises maximisent leur profit q 5. e modèle de Bertrand En 1883, Joseph Bertrand a critiqué le modèle de Cournot en disant qu en pratique les firmes ne choisissent pas les quantités, mais les prix. Il propose le modèle alternatif: Etant

Plus en détail

Simulation centrée individus

Simulation centrée individus Simulation centrée individus Théorie des jeux Bruno BEAUFILS Université de Lille Année 4/5 Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Partage dans les

Plus en détail

L oligopole ESCP 2012 2103

L oligopole ESCP 2012 2103 Structures de marché L oligopole Anne Yvrande Billon ESCP 2012 2103 1 Plan du cours (1/2) 1. Introduction : qu est ce qu un oligopole? 2. L oligopole de Cournot 3. Le «paradoxe de Bertrand» 2 1. Introduction

Plus en détail

Jeux sous forme normale

Jeux sous forme normale CHAPITRE 4 Jeux sous forme normale Dans les problèmes de décision, nous avons relié les choix qui pouvaient être faits par un agent avec les utilités qu il pouvait en dériver. L idée qu un agent rationnel

Plus en détail

EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012

EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012 EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012 Tous les documents et les calculatrices sont interdits. PARTIE 1 : QUESTIONS DE COURS Précisez la ou les

Plus en détail

1 Questionnaire à choix multiples

1 Questionnaire à choix multiples EXAMEN FINAL mercredi 19 janvier 2011, Durée h00 Pierre Fleckinger Une attention particulière doit être portée à la rédaction et à l explication des calculs faits. Utiliser un feuillet simple pour le QCM

Plus en détail

Chapitre 2 - choix efficace et non-efficace des

Chapitre 2 - choix efficace et non-efficace des Chapitre 2 - choix efficace et non-efficace des firmes Arnold Chassagnon Université Paris-Dauphine (LEDA-SDFi) DU1 - Université Paris-Dauphine, 2009-2010 1 Analyse positive - analyse normative 1 Objectif

Plus en détail

MICROECONOMIE - 2 ème année de Sciences-Economiques Chapitre IV - Les défaillances du marché

MICROECONOMIE - 2 ème année de Sciences-Economiques Chapitre IV - Les défaillances du marché MICROECONOMIE - 2 ème année de Sciences-Economiques Chapitre IV - Les défaillances du marché SUPPLEMENT - Rappels essentiels La concurrence pure et parfaite (les agents sont price-takers). Elle se rencontre

Plus en détail

Concurrence imparfaite Département Économie HEC

Concurrence imparfaite Département Économie HEC Concurrence imparfaite Département Économie HEC Avant de commencer Où en sommes nous? Détermination des prix dans un marché concurrentiel Chapitre 2 Interventions Chapitre 3 Monopole Chapitre 4 Théorie

Plus en détail

Introduction à la Microéconomie Corrigé de l interrogation récapitulative du 17 décembre 2014

Introduction à la Microéconomie Corrigé de l interrogation récapitulative du 17 décembre 2014 Introduction à la Microéconomie Corrigé de l interrogation récapitulative du 17 décembre 2014 Question 1: Maxime, un consommateur rationnel, reçoit 1900 euros en t1 et 1210 euros en t2. Sa fonction d utilité

Plus en détail

Concurrence et marchés. Cours SEGF - ENPC 2004. Barrières à l entrée

Concurrence et marchés. Cours SEGF - ENPC 2004. Barrières à l entrée Concurrence et marchés Cours SEGF - ENPC 2004 Barrières à l entrée PLAN Barrières à l entrée définitions et oligopole naturel dissuasion / accomodation à l entrée: modèle de Stackelberg en quantités Stackelberg

Plus en détail

Reputation, Prix Limite et Prédation

Reputation, Prix Limite et Prédation Reputation, Prix Limite et Prédation Economie Industrielle Laurent Linnemer Thibaud Vergé Laboratoire d Economie Industrielle (CREST-INSEE) 13 et 20 janvier 2009 Linnemer - Vergé (CREST-LEI) Reputation,

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Deuxième partie es jeux non-coopératifs avec information complète 3. É quilibre de Nash (1951) 4. D ynamique et rétroduction 5.

Deuxième partie es jeux non-coopératifs avec information complète 3. É quilibre de Nash (1951) 4. D ynamique et rétroduction 5. Deuxième partie Les jeux non-coopératifs avec information complète 3. Équilibre de Nash (1951) 35 4. Dynamique et rétroduction 61 5. Jeux répétés 85 3. Équilibre de Nash (1951) John Nash a généralisé

Plus en détail

Jeux sous forme normale (Jeux statiques à information complète)

Jeux sous forme normale (Jeux statiques à information complète) (Jeux statiques à information complète) Plan du chapitre (29 juillet 2010) 1/ Définitions et exemples Équilibre de Nash Existence d un équilibre de Nash en stratégies pures Extension mixte d un jeu et

Plus en détail

THÉORIE DES JEUX : ÉQUILIBRES DE NASH

THÉORIE DES JEUX : ÉQUILIBRES DE NASH THÉORIE DES JEUX : ÉQUILIBRES DE NASH INDEX 1) INTRODUCTION 1.1)Définition d'un jeu 1.2)Historique et applications 2)LES JEUX MATRICIELS 2.1)Définition 2.2)Le Théorème fondamental 2.3)Principe de la preuve

Plus en détail

La théorie des jeux. Les jeux séquentiels. Les jeux simultanés. Les jeux répétés. Simon Porcher 1

La théorie des jeux. Les jeux séquentiels. Les jeux simultanés. Les jeux répétés. Simon Porcher 1 La théorie des jeux Les jeux séquentiels Les jeux simultanés Les jeux répétés 1 La théorie des jeux Les jeux séquentiels Les jeux simultanés Les jeux répétés 2 Les jeux séquentiels Théorie des jeux Opposition

Plus en détail

Théorie des jeux, Master AE2 et magistère 2, 1ère série d exercices, Solutions

Théorie des jeux, Master AE2 et magistère 2, 1ère série d exercices, Solutions Théorie des jeux, Master AE2 et magistère 2, 1ère série d exercices, Solutions December 9, 2013 Question 1 Démontrer heuristiquement les énoncés suivants: (1) S il existe une unique combinaison de stratégies

Plus en détail

INTRODUCTION À LA MICROÉCONOMIE INTERROGATION RÉCAPITULATIVE DU 16 DÉCEMBRE 2015 CORRIGÉ

INTRODUCTION À LA MICROÉCONOMIE INTERROGATION RÉCAPITULATIVE DU 16 DÉCEMBRE 2015 CORRIGÉ INTRODUCTION À LA MICROÉCONOMIE INTERROGATION RÉCAPITULATIVE DU 16 DÉCEMBRE 2015 CORRIGÉ Question 1 : Soit la firme A dont vous possédez des actions. Sachant que l élasticité de la demande pour le produit

Plus en détail

Chapitre II LES MONOPOLES NATURELS

Chapitre II LES MONOPOLES NATURELS Chapitre II LES MONOPOLES NATURELS 1) Rappels sur le monopole i) Hypothèses et notations Définition : Une entreprise est en position de monopole si elle est seule à fournir le marché d un bien pour lequel

Plus en détail

Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction

Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction EXERCICE 1 : TAUX D ÉVOLUTION 5 points Le tableau ci-dessous présente le nombre de voitures neuves vendues en France en 1980,

Plus en détail

Jeux sous forme extensive (Jeux dynamiques)

Jeux sous forme extensive (Jeux dynamiques) (Jeux dynamiques) Plan du chapitre ( juillet 008) / éfinitions, exemples et équivalences Arbres de jeux, information et mémoire tratégies et réduction en forme normale Équilibre de Nash parfait en sous-jeux

Plus en détail

Partie I Le consommateur et la demande

Partie I Le consommateur et la demande Partie I Le consommateur et la demande Chapitre 1 La fonction d utilité 1 Plan du cours 1. Le consommateur. 2. La notion d utilité. 3. Les courbes d indifférence. 4. L optimum du consommateur. 5. Exercices.

Plus en détail

NC8 THEORIE DE L OLIGOPOLE (1 ère partie)

NC8 THEORIE DE L OLIGOPOLE (1 ère partie) NC8 THEORIE DE L OLIGOPOLE (1 ère partie) D après la définition de VARIAN dans Analyse microéconomique, «l oligopole est l étude des interactions d un petit nombre d entreprises sur un marché». Ce concept

Plus en détail

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide La constante d autoprotolyse de l eau, K W, est égale au produit de K a par K b pour un couple acide/base donné : En passant en échelle logarithmique, on voit donc que la somme du pk a et du pk b d un

Plus en détail

Chapitre 5. Équilibre concurrentiel et bien-être

Chapitre 5. Équilibre concurrentiel et bien-être Chapitre 5 Équilibre concurrentiel et bien-être Microéconomie III 5 1 5.1 Qu est-ce qu un équilibre souhaitable socialement? E cacité versus équité Que nous permet de dire la science économique sur l e

Plus en détail

Chapitre 5. Le monopole

Chapitre 5. Le monopole Chapitre 5. Le monopole 5.1. Présentation. Une entreprise est dite en situation de monopole lorsqu elle est l unique offreur sur le marché d un bien, si le nombre de demandeurs sur le marché est grand

Plus en détail

Exercices en économie industrielle couvrant les séances 2-3-4 (B.Caillaud)

Exercices en économie industrielle couvrant les séances 2-3-4 (B.Caillaud) Concurrence et Marches Ecole Nationale des Ponts et Chaussees Exercices en économie industrielle couvrant les séances 2-3-4 (B.Caillaud) 1. Monopole et tarification de pointe. Une entreprise en situation

Plus en détail

Chapitre 7 Concurrence monopolistique

Chapitre 7 Concurrence monopolistique Chapitre 7 Concurrence monopolistique Concurrence Monopolistique: La concurrence monopolistique est un cas intermédiaire entre le monopole et la concurrence parfaite. En concurrence monopolistique, il

Plus en détail

Micro-économie approfondie Chapitre 2 : Rappels d économie industrielle : le monopole 1

Micro-économie approfondie Chapitre 2 : Rappels d économie industrielle : le monopole 1 Micro-économie approfondie Chapitre 2 : Rappels d économie industrielle : le monopole 1 Olivier Bos olivier.bos@u-paris2.fr 11.1 1 Bibliographie : Belflamme et Peitz 2.2.2, 2.2.3, 8.1, 8.2, 9.1, 9.2, 10.1,

Plus en détail

CHAPITRE III : L EQUILIBRE DU MARCHE

CHAPITRE III : L EQUILIBRE DU MARCHE CHAPITRE III : L EQUILIBRE DU MARCHE L équilibre de marché traduit généralement la confrontadon de l offre et de la demande. La courbe de demande globale des consommateurs permet de connaître la quandté

Plus en détail

Doctorat en économique. Examen de synthèse en Théorie micro-économique 8 août 2011. Durée : 4 heures exactement

Doctorat en économique. Examen de synthèse en Théorie micro-économique 8 août 2011. Durée : 4 heures exactement Département d économie agroalimentaire et des sciences de la consommation Département d économique Université Laval NOM: Doctorat en économique Examen de synthèse en Théorie micro-économique 8 août 211

Plus en détail

TRAVAUX DIRIGÉS DE MICROÉCONOMIE Licence 1 Semestre 2 - Parcours EM

TRAVAUX DIRIGÉS DE MICROÉCONOMIE Licence 1 Semestre 2 - Parcours EM TRAVAUX DIRIGÉS DE MICROÉCONOMIE Licence 1 Semestre 2 - Parcours EM Aurelia Tison, Anne-Sarah Chiambretto AMU, année 2013 1 La théorie du producteur (séances 1 à 4) La fonction de production : les facteurs

Plus en détail

Microéconomie 2 Le Comportement de l Entreprise

Microéconomie 2 Le Comportement de l Entreprise Microéconomie 2 Le Comportement de l Entreprise 1 ) Sur un marché en concurrence monopolistique, le monopole a) S'explique par l'existence de barrières à l'entrée. b) Est une situation de marché dans laquelle

Plus en détail

Le duopole : introduction à la stratégie des entreprises et aux fondements de la concurrence

Le duopole : introduction à la stratégie des entreprises et aux fondements de la concurrence Le duopole : introduction à la stratégie des entreprises et aux fondements de la concurrence e chapitre est sont consacré à l étude d un marché en situation de duopole. Deux offreurs sont présents sur

Plus en détail

Théorie des Jeux Et ses Applications

Théorie des Jeux Et ses Applications Théorie des Jeux Et ses Applications De la Guerre Froide au Poker Clément Sire Laboratoire de Physique Théorique CNRS & Université Paul Sabatier www.lpt.ups-tlse.fr Quelques Définitions de la Théorie des

Plus en détail

Feuille 1 : représentation d interactions stratégiques, connaissance commune

Feuille 1 : représentation d interactions stratégiques, connaissance commune Université Paris-Dauphine, Departement MIDO. Théorie des jeux, L3, 2009/2010. Feuille 1 : représentation d interactions stratégiques, connaissance commune Exercice 1 ( Il y a deux joueurs. A la période

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Jeux-Langages-Logique Jeux extensifs, jeux stratégiques

Jeux-Langages-Logique Jeux extensifs, jeux stratégiques Université de Bordeaux Master Informatique, 2015/2016 Jeux extensifs, à information complète Jeux-Langages-Logique Jeux extensifs, jeux stratégiques Exercice 2.1 Th. de Von Neumann Soit un graphe orienté

Plus en détail

Economie de l Incertain et des Incitations

Economie de l Incertain et des Incitations Economie de l Incertain et des Incitations CHAPITRE 2 Eléments de théorie des jeux en information symétrique et asymétrique Equilibres Bayesiens - Université de Tours - M1 AGE - Arnold Chassagnon - Automne

Plus en détail

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7 Chapitre 1 Modelisation 11 Exemples de Problèmes 111 La Cafétaria Cafétaria ouverte toute la semaine Statistique sur le personnel requis : Jour Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche Nombre

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Université des Sciences Sociales de Toulouse Année universitaire Licence d Économie 2 e Année Microéconomie 2.2 TD N 3.

Université des Sciences Sociales de Toulouse Année universitaire Licence d Économie 2 e Année Microéconomie 2.2 TD N 3. Université des Sciences Sociales de Toulouse Année universitaire 2008-2009 Licence d Économie 2 e Année Microéconomie 2.2 TD N 3 L oligopole B - L oligopole non-coopératif Exercice 1 (Un duopole de Cournot

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

- 04 - LA METHODE DU COÛT MARGINAL. Découverte de l'analyse marginale appliquée aux coûts et aux marges.

- 04 - LA METHODE DU COÛT MARGINAL. Découverte de l'analyse marginale appliquée aux coûts et aux marges. - 04 - LA METHODE DU COÛT MARGINAL Objectif(s) : o Pré requis : o Modalités : o o o o o o Découverte de l'analyse marginale appliquée aux coûts et aux marges. Notions de dérivée. Principes, Exemples, Synthèse,

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2011-2012 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

dans les salles de De l économétrie pour vendre des vins ou des obligations Philippe Février et Michael Visser

dans les salles de De l économétrie pour vendre des vins ou des obligations Philippe Février et Michael Visser De l économétrie pour vendre des vins ou des obligations Philippe Février et Michael Visser Grands vins ou bons du Trésor font l objet de ventes aux enchères. Mais quel type d enchères faut-il pratiquer?

Plus en détail

Exercice 1 : Balance des Paiements (4 points)

Exercice 1 : Balance des Paiements (4 points) Université Paris Ouest-Nanterre La Défense Master Economie U.F.R. SEGMI Premier Semestre 2009-2010 Macroéconomie Ouverte Chargé de T.D. : Romain Restout Cours de Olivier Musy Contrôle Continu (14/12/2009)

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Introduction à l analyse microéconomique Devoir Maison n o 1

Introduction à l analyse microéconomique Devoir Maison n o 1 Introduction à l analyse microéconomique Devoir Maison n o 1 10 novembre 2014 Marianne Tenand Monitorat ENS (2014-2015) marianne.tenand@ens.fr A rendre au plus tard dans mon casier du bâtiment B le mercredi

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Economie de l information

Economie de l information 1 Introduction Economie de l information Les méthodes de la microéconomie peuvent être appliquées à tout problème particulier de la vie économique De nombreuses études sont consacrées à des marchés ou

Plus en détail

Introduction à la théorie des jeux. David Bounie

Introduction à la théorie des jeux. David Bounie Introduction à la théorie des jeux David Bounie Introduction Nous avons étudié la firme concurrentielle et le monopole. Il existe des structures de marché intermédiaires : l oligopole. Une forme particulière

Plus en détail

COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES

COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES Cours 6c Principe Protocole centralisé, un commissaire-priseur/vendeur (auctioneer) et plusieurs enchérisseurs/acheteurs (bidders) Le commissaire-priseur

Plus en détail

Apprendre la stratégie de l adversaire

Apprendre la stratégie de l adversaire M1 Master d informatique 28/29 Apprentissage à Partir d Exemples janvier 29 Apprendre la stratégie de l adversaire 1 But Soit un jeu à deux joueurs quelconque. Supposons que l un des deux joueurs suive

Plus en détail

Chapitre 2. La concurrence oligopolistique

Chapitre 2. La concurrence oligopolistique Chapitre 2. La concurrence oligopolistique Nicolas Carayol M1 MIMSE 17 mars 2015 Introduction La concurrence se fait fondamentalement en prix Mais, dans le modèle simple : cela conduit aux prix (et profits)

Plus en détail

EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012. Corrigé

EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012. Corrigé EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012 Corrigé Tous les documents et les calculatrices sont interdits. PARTIE 1 : QUESTIONS DE COURS Précisez la

Plus en détail

UNE GENERALISATION DU THEOREME DE REPONSE RAPIDE DE BASKAR AVEC UNE APPLICATION AU CHOIX DU NIVEAU DE CAPITALISATION DES FIRMES

UNE GENERALISATION DU THEOREME DE REPONSE RAPIDE DE BASKAR AVEC UNE APPLICATION AU CHOIX DU NIVEAU DE CAPITALISATION DES FIRMES UNE GENERALISATION DU THEOREME DE REPONSE RAPIDE DE BASKAR AVEC UNE APPLICATION AU CHOIX DU NIVEAU DE CAPITALISATION DES FIRMES Patrick GUY* Dans cet article, nous développons un modèle de duopole qui

Plus en détail

Examen d Introduction à la Microéconomie Giovanni Ferro-Luzzi et Federica Sbergami, 2014-2015 13 janvier 2015

Examen d Introduction à la Microéconomie Giovanni Ferro-Luzzi et Federica Sbergami, 2014-2015 13 janvier 2015 Nom: Prénom: N étudiant : Examen d Introduction à la Microéconomie Giovanni Ferro-Luzzi et Federica Sbergami, 2014-2015 13 janvier 2015 Nombre de pages au total: 10 pages + 1 grille réponse Durée de l

Plus en détail

La maximisation du profit

La maximisation du profit 2 La maximisation du profit Le profit, au sens économique du terme, se définit comme la différence entre les recettes perçues et les coûts supportés par une firme. Il est important de bien comprendre que

Plus en détail

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 6 le Rôle de l Information - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 Plan du cours 1. Probabilités subjectives 2. Arrivée symétrique de l information 3. Information asymétrique

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Règles du jeu officielles du Monopoly

Règles du jeu officielles du Monopoly Règles du jeu officielles du Monopoly Garanties presque sans erreurs BUT DU JEU : Etre le dernier joueur à rester en jeu, c'est-à-dire le dernier joueur n'ayant pas fait faillite. PREPARATION 1. Prenez

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

PLAN DE TABLE. un exercice domestique. On a une table ronde autour de laquelle on doit disposer N couples. On s oblige à deux contraintes :

PLAN DE TABLE. un exercice domestique. On a une table ronde autour de laquelle on doit disposer N couples. On s oblige à deux contraintes : PLAN DE TABLE un exercice domestique POSITION DU PROBLÈME On a une table ronde autour de laquelle on doit disposer N couples. On s oblige à deux contraintes : 1) Alternance des hommes et des femmes. 2)

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Assurance maladie publique et «Opting out» - Réflexions théoriques

Assurance maladie publique et «Opting out» - Réflexions théoriques Assurance maladie publique et «Opting out» - Réflexions théoriques Carine Franc CREGAS INSERM - U 537 Une définition de «l opting out» «to opt out» : choisir de ne pas participer ; [hopital, school] choisir

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1 Exemple de sujet n 1 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 1 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

S5 Info-MIAGE 2013-2014 Mathématiques Financières Les bases de l évaluation des investissements

S5 Info-MIAGE 2013-2014 Mathématiques Financières Les bases de l évaluation des investissements Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières LES BASES DE L EVALUATION DES INVESTISSEMENTS Les

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Probabilités sur un univers ni

Probabilités sur un univers ni POIRET Aurélien TD n o 21 MPSI Probabilités sur un univers ni 1 Événements et probabilités Exercice N o 1 : Dans un centre de loisirs, une personne peut pratiquer trois activités. On considère les événements

Plus en détail

Définitions Approches managériales Approches psychologiques

Définitions Approches managériales Approches psychologiques Séminaire [CID] : Créativité, Innovation, Décision Partie B : DECISION Définitions Approches managériales Approches psychologiques www.evoreg.eu M2i : Management International de l Innovation Emmanuel

Plus en détail

THEORIE DES JEUX : Introduction. Fabien Prieur (UM1, INRA) Premier semestre L3, 5 septembre 2013

THEORIE DES JEUX : Introduction. Fabien Prieur (UM1, INRA) Premier semestre L3, 5 septembre 2013 THEORIE DES JEUX : Introduction Premier semestre L3, 5 septembre 2013 Propos liminaires Organisation du cours 20h de CM + 15h de TD CM : Séances de 2 heures le mercredi Evaluation (pondération) : Un contrôle

Plus en détail

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations nde Eléments de correction du DNS 1 Lectures graphiques Soient f et g deux fonctions définies sur IR. Leurs représentations graphiques, notées respectivement C f et C g, sont tracées dans le repère ci-dessous.

Plus en détail

CAC, DAX ou DJ : lequel choisir?

CAC, DAX ou DJ : lequel choisir? CAC, DAX ou DJ : lequel choisir? 1. Pourquoi cette question Tout trader «travaillant 1» sur les indices s est, à un moment ou un autre, posé cette question : «je sais que la tendance est bien haussière

Plus en détail

TP MICRO : Séance 1 Le Consommateur

TP MICRO : Séance 1 Le Consommateur TP MICRO : Séance 1 Le Consommateur A. Choix individuel Description des préférences 1. * Qu est-ce qu une courbe d indifférence? 2. (Rappel 1 ère candi) Le capitaine Chester n aime que le whisky pur, l

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

chaînes de monopole : intégration, externalités et contraintes verticales

chaînes de monopole : intégration, externalités et contraintes verticales II. RELATIONS VERTICALES ENTRE FIRMES (2 ème partie) II.1 chaînes de monopole : intégration, externalités et contraintes verticales A Hypothèse : coûts de production nuls B1 B2 Demande globale : elle dépend

Plus en détail

Première S Exercices valeur absolue 2010-2011

Première S Exercices valeur absolue 2010-2011 Première S Exercices valeur absolue 2010-2011 Exercice 1 : Résoudre dans Y, les inéquations suivantes : a) 2 < x + 1 < 3 b) 1 x 3 < 4 2 x 3 > 2 c) x + 4 3 Exercice 2 : On souhaite résoudre dans Y l équation

Plus en détail

Plusieurs exercices de la douzième séance de TD

Plusieurs exercices de la douzième séance de TD Plusieurs exercices de la douzième séance de TD Décembre 2006 1 Offre du travail 1.1 énoncé On considère un ménage dont les préférences portent sur la consommation et le temps consacré aux activités non

Plus en détail

Théorie des Jeux Et ses Applications

Théorie des Jeux Et ses Applications Théorie des Jeux Et ses Applications De la Guerre Froide au Poker Clément Sire Laboratoire de Physique Théorique CNRS & Université Paul Sabatier, Toulouse www.lpt.ups-tlse.fr Quelques Définitions de la

Plus en détail

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011

Analyse Microéconomique. Francesco Quatraro L1 AES 2010/2011 Francesco Quatraro L1 AES 2010/2011 1 L objectif de la firme est la maximisation du profit Les profits sont définis comme la différence entre les recettes et le coûts Supposons que la firme produise n

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Série d exercices 4. /s k

Série d exercices 4. /s k ACT-10412 Mathématiques financières Série d exercices 4 1. Un prêt est remboursé à l aide de n paiements annuels égaux. Après n 1 années, le montant total de capital remboursé s élève à 3 955,20. La part

Plus en détail

1 Une simple histoire de production, et déjà des calculs

1 Une simple histoire de production, et déjà des calculs Université François Rabelais - L AES Cours d Economie Générale Enoncé du TD n 7 Automne 202 Une simple histoire de production, et déjà des calculs Vous considérez dans cet exercice une firme qui a la possibilité

Plus en détail

Université de Bordeaux 4 Master 1 TEI Examen final, 1ère session 2000-2001 Economie publique Durée : 1 heure

Université de Bordeaux 4 Master 1 TEI Examen final, 1ère session 2000-2001 Economie publique Durée : 1 heure 2000-2001 1) La réglementation des monopoles naturels. (12 points) 2) Au choix : (8 points) a) Soient les préférences des individus a, b, c et d sur les options x, y, z et t : Individu a : x > y > t >

Plus en détail