Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)

Dimension: px
Commencer à balayer dès la page:

Download "Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)"

Transcription

1 CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène. L équilibre de Cournot résulte de l intersection des fonctions de réactions de chaque entreprise lorsqu elles fixent de manière simultanée leurs quantités. L équilibre de Stackelberg résulte du choix du leader de la quantité q qui maximise son profit sous la contrainte de la fonction de réponse optimale à la Cournot du suiveur. A l équilibre de Stackelberg, le bien-être du leader est plus grand et celui du suiveur moins grand, qu à l équilibre de Cournot. La quantité de bien vendue en Stackelberg est plus grande chez le leader et moins importante chez le follower qu en Cournot. La fonction de réponse optimale (ou fonction de réaction) indique la meilleure action possible de l entreprise (en terme de profit), pour une anticipation donnée de l action de sa rivale. Graphiquement, on obtient les équilibres de Cournot et Stackelberg, respectivement au point C et S lorsque la firme 1 est dominante. Graphique 1 : Détermination des équilibres de Cournot et Stackelberg lorsque l entreprise 1 est la firme dominante (extrait de «Eléments de Microéconomie», Pierre Picard, 2002)

2 Question 2 : a) La relation entre l indice de Lerner et la part de marché est la suivante : Li = -s i /ε avec s i = y i /Y Li = (p-c i )/p Avec ε, l élasticité de la demande par rapport au prix b) Démonstration de la relation entre l IHH et l indice de Lerner L indice de Lerner moyen est : L = Σ i s i L i or Li = -si/ε Alors L = Σ i s i (-s i /ε) = Σ i= 1 (-s i 2 /ε) Question 3 : On peut sortir ε qui ne dépend pas de i d où : L= (-1/ε) Σ i s i 2 or Σ i s i 2 = IHH D où L= -IHH / ε Si les firmes qui ont des contraintes de capacité de production, on emploie l indice IHH adj au lieu de l IHH pour calculer le degré de concentration du secteur. Les entreprises du secteur de l électricité sont soumises à des contraintes de capacité et c est donc pour ce secteur, par exemple, que nous employons cet indice. Question 4 : Jeu «Pierre, Feuille, Ciseaux» a) Le jeu «Pierre, Feuille, Ciseaux» est un jeu un jeu simultané «à somme nulle» (conflit pur), en information complète (bimatrice connue des 2 joueurs) mais avec incertitude endogène sur le choix de l autre. Le jeu sous forme normale se présente de la manière suivante : Joueur A Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0) Ce jeu est un jeu à somme nulle dans le sens où tout ce qui est un gagné par l'un est perdu par l'autre. En d'autres termes, nous avons déjà vu que nous pouvions parler dès lors de jeux "strictement compétitifs". Le jeu sous forme extensive est le suivant (facultatif) :

3 b) Un équilibre de Nash est un état dans lequel aucun joueur ne souhaite modifier sa stratégie étant donné les stratégies adoptées par les autres joueurs. Chaque stratégie est une meilleure réponse aux stratégies des autres joueurs. MRA (Pierre)= Feuille MRA (Feuille)= Ciseaux MRA (Ciseaux)= Pierre MRB (Pierre) = Feuille MRB (Feuille) = Ciseaux MR B (Ciseaux)= Pierre En stratégie pure, il n y a pas d équilibre de Nash. La raison pour laquelle on n a pas d équilibres est la suivante : la notion d équilibre de Nash en stratégies pures suppose que chaque joueur connaisse les stratégies des autres joueurs. Or, nous sommes dans des jeux ou chaque joueur a intérêt à cacher sa stratégie, ou à bluffer. En effet, dans les jeux pile ou face ou tirer un penalty, ou bluff au poker, on n utilise pas toujours la même stratégie, et on ne connaît stratégie pas non plus à l avance celle de l adversaire. Stratégie (pure) = instruction exhaustive donnée à un représentant pour jouer à votre place. Chaque joueur a 3 stratégies. Exemple: jouer pierre. c) Définition : Une issue i réalisable qui n'admet aucune "amélioration" est appelée un "optimum de Pareto" (O.P.) et est définie rigoureusement par :

4 La "pareto-optimalité" est à comprendre comme une condition sine qua non, sans lequel le concept de solution d'un jeu coopératif que nous cherchons à élaborer devrait être automatiquement rejeté. C'est-à-dire que si dans un jeu, un couple d'issues est telle qu'il est impossible d'améliorer le score de l'un des deux joueurs sans diminuer le score de l'autre, nous disons que ces issues sont "paretooptimales" ou "pareto-efficientes". Dans notre jeu, toutes les issues sont des optima de Pareto. Exercice 1 : 1) Fonction de demande inverse : P= 200 2(Q1) 2(Q2) Fonction de réaction de l entreprise 1 : (Q1)= 100/3 (Q2)/3 Fonction de réaction de l entreprise 2 : (Q2)= 40 2/5 (Q1) 2) Equilibre : résolution du système formé des deux fonctions de réaction : (Q1*)= 300/13 (Q2*)= 400/13 P*= 1200/13 3) Maximiser le profit joint par rapport à (Q1) et (Q2): π = p((q1) + (Q2)) ((Q1)+(Q2)) C(Q1) C(Q2) Résoudre le système formé des deux équations. 4) L entreprise 1 en monopole connait la fonction de demande inverse : P= 200 2(Q1) La maximisation du profit conduit à l équilibre suivant : (Q1*)= 100/3 P*= 400/3 Exercice 2 Partie 1 a) ( P1+P2) /2 0 P1 P2 1 b) En rouge, ils votent pour P1 car ils sont plus proches de P1. Il y a donc du fait de la distribution uniforme : (P1 0) + ((P1+P2)/2 P1) = (P1+ P2) / 2 électeurs de P1.

5 En noir, ils votent pour P2 car ils sont plus proche de P2. Il y a donc du fait de la distribution uniforme : (1- P2) + (P2- ((P1+P2)/2) = 1 (P1+P2)/2 électeurs de P2. Nota bene : une distribution uniforme sur un segment [a, b] signifie qu il y a (b-a) individus sur la segment [a, b]. c) On suppose que P2 reste fixé. Si P1 dévie tout près de P2, il reçoit presque (P1 + P2)/2 voix en plus. Avant déviation : (en rouge, ceux qui votent pour P1, en noir ceux qui votent pour P2) ( P1+P2) /2 0 P1 P2 1 Après déviation : (en rouge, ceux qui votent pour P1, en noir ceux qui votent pour P2) (P1+P2)/2 _ _ 0 P1 P1 P2 1 Conclusion : cette déviation de P1 vers P2 lui est profitable en termes d électeurs. d) Un équilibre de Nash pour le parti politique P1 est une stratégie telle qu il n existe pas d autre stratégie qui fournirait un paiement plus élevé (plus d électeurs) au parti politique 1 quelle que soit la stratégie du parti P2. On voit bien que la stratégie du c) fournit plus d électeurs au parti 1 que la stratégie b) ; la stratégie du b) n est donc pas un équilibre de Nash. Toute stratégie de la partie 1 n est donc pas un équilibre de Nash, puisque que quand P1 P2, il existe toujours une déviation profitable pour un parti étant donné la position de l autre : se rapprocher la plus possible de la position de l autre parti. Partie 2 : a) 0 P1 0,5 1 =P2 = (P1+P2)/2 Nota bene : Le signe mathématique union : U signifie ou. On a donc P1 appartient à [0 ; 0,5[ ou ]0,5 ; 1] ; de même pour P2 avec P1=P2. b) Il est dit dans l énoncé que si les deux partis occupent la même position, ils se partagent les électeurs. Dans ce cas, chaque parti reçoit la moitié des électeurs. Soit P1=1/2 et P2=1/2. c) On suppose P2 fixé. P1 a intérêt à dévier vers le centre. Il aura dans ce cas plus d électeurs.

6 Avant deviation: 0 P1 0,5 1 =P2 = (P1+P2)/2 Après déviation : ( P1+P2)/2 0 P2 P1 0,5 1 Dans cette configuration P2 a (P1+P2)/2 voix. Dans cette configuration P1 a 1- P1 + P1 (P1+P2)/2 = 1 (P1+P2)/2 > 1/2 voix P1 a donc intérêt à faire cette déviation, il préfère la situation c) à la situation b) car il a plus d électeurs. d) La situation de la partie 2 n est pas un équilibre de Nash puisque quand P1=P2 0,5 alors chaque parti a intérêt à dévier unilatéralement de manière à gagner plus de voix, à avoir un paiement supplémentaire. Partie 3 : En conclusion le seul équilibre de Nash possible du jeu est P1=P2=0,5. Dans ce cas chaque parti reçoit la moitié des voix. Et si un parti dévie il reçoit tous les votes entre lui et l extrémité du segment plus la moitié des ceux qui sont entre P1 et P2. Cela fait moins que 1/2. Il n a donc jamais intérêt à dévier. Cette solution est un équilibre de Nash. Avant deviation: 0 P1 1 = P2 = (P1+P2)/2 = 0,5 Après déviation : (P1+P2)/2 0 P2 P1 1 = 0,5 Après déviation, le parti P1 a moins de voix donc il n a pas intérêt à dévier. Donc cette situation est un équilibre de nash.

L oligopole ESCP 2012 2103

L oligopole ESCP 2012 2103 Structures de marché L oligopole Anne Yvrande Billon ESCP 2012 2103 1 Plan du cours (2/2) 1. Introduction : qu est ce qu un oligopole? 2. L oligopole de Cournot 3. Le «paradoxe de Bertrand» 4. Le modèle

Plus en détail

Exercice I. On considère un monopole sur un marché caractérisé par les données suivantes:

Exercice I. On considère un monopole sur un marché caractérisé par les données suivantes: TD n 7 OLIGOPOLE, STRATEGIES CONCURRENTIELLES ET THEORIE DES JEUX. Lecture obligatoire: Pindyck et Rubinfeld Chapitre pp. 493-56 et Chapitre 3 pp. 535-57 Exercice I. On considère un monopole sur un marché

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

chaque entreprise choisi un prix p. Le prix le plus bas attire les clients. Les entreprises maximisent leur profit q

chaque entreprise choisi un prix p. Le prix le plus bas attire les clients. Les entreprises maximisent leur profit q 5. e modèle de Bertrand En 1883, Joseph Bertrand a critiqué le modèle de Cournot en disant qu en pratique les firmes ne choisissent pas les quantités, mais les prix. Il propose le modèle alternatif: Etant

Plus en détail

Simulation centrée individus

Simulation centrée individus Simulation centrée individus Théorie des jeux Bruno BEAUFILS Université de Lille Année 4/5 Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Partage dans les

Plus en détail

5) Extension : Équilibre de Cournot Nash en information incomplète. . 2 T y 2 2 ) B. > (a 2 ) H. k y

5) Extension : Équilibre de Cournot Nash en information incomplète. . 2 T y 2 2 ) B. > (a 2 ) H. k y 5) Extension : Équilibre de Cournot Nash en information incomplète Supposons désormais que la firme 2 connaît avec perfection la fonction de coût de la firme, mais que celle - ci en revanche est imparfaitement

Plus en détail

Jeux sous forme normale

Jeux sous forme normale CHAPITRE 4 Jeux sous forme normale Dans les problèmes de décision, nous avons relié les choix qui pouvaient être faits par un agent avec les utilités qu il pouvait en dériver. L idée qu un agent rationnel

Plus en détail

Concurrence imparfaite Département Économie HEC

Concurrence imparfaite Département Économie HEC Concurrence imparfaite Département Économie HEC Avant de commencer Où en sommes nous? Détermination des prix dans un marché concurrentiel Chapitre 2 Interventions Chapitre 3 Monopole Chapitre 4 Théorie

Plus en détail

L oligopole ESCP 2012 2103

L oligopole ESCP 2012 2103 Structures de marché L oligopole Anne Yvrande Billon ESCP 2012 2103 1 Plan du cours (1/2) 1. Introduction : qu est ce qu un oligopole? 2. L oligopole de Cournot 3. Le «paradoxe de Bertrand» 2 1. Introduction

Plus en détail

MICROECONOMIE - 2 ème année de Sciences-Economiques Chapitre IV - Les défaillances du marché

MICROECONOMIE - 2 ème année de Sciences-Economiques Chapitre IV - Les défaillances du marché MICROECONOMIE - 2 ème année de Sciences-Economiques Chapitre IV - Les défaillances du marché SUPPLEMENT - Rappels essentiels La concurrence pure et parfaite (les agents sont price-takers). Elle se rencontre

Plus en détail

EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012

EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012 EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012 Tous les documents et les calculatrices sont interdits. PARTIE 1 : QUESTIONS DE COURS Précisez la ou les

Plus en détail

Concurrence et marchés. Cours SEGF - ENPC 2004. Barrières à l entrée

Concurrence et marchés. Cours SEGF - ENPC 2004. Barrières à l entrée Concurrence et marchés Cours SEGF - ENPC 2004 Barrières à l entrée PLAN Barrières à l entrée définitions et oligopole naturel dissuasion / accomodation à l entrée: modèle de Stackelberg en quantités Stackelberg

Plus en détail

Deuxième partie es jeux non-coopératifs avec information complète 3. É quilibre de Nash (1951) 4. D ynamique et rétroduction 5.

Deuxième partie es jeux non-coopératifs avec information complète 3. É quilibre de Nash (1951) 4. D ynamique et rétroduction 5. Deuxième partie Les jeux non-coopératifs avec information complète 3. Équilibre de Nash (1951) 35 4. Dynamique et rétroduction 61 5. Jeux répétés 85 3. Équilibre de Nash (1951) John Nash a généralisé

Plus en détail

INTRODUCTION À LA MICROÉCONOMIE INTERROGATION RÉCAPITULATIVE DU 16 DÉCEMBRE 2015 CORRIGÉ

INTRODUCTION À LA MICROÉCONOMIE INTERROGATION RÉCAPITULATIVE DU 16 DÉCEMBRE 2015 CORRIGÉ INTRODUCTION À LA MICROÉCONOMIE INTERROGATION RÉCAPITULATIVE DU 16 DÉCEMBRE 2015 CORRIGÉ Question 1 : Soit la firme A dont vous possédez des actions. Sachant que l élasticité de la demande pour le produit

Plus en détail

Jeux sous forme extensive (Jeux dynamiques)

Jeux sous forme extensive (Jeux dynamiques) (Jeux dynamiques) Plan du chapitre ( juillet 008) / éfinitions, exemples et équivalences Arbres de jeux, information et mémoire tratégies et réduction en forme normale Équilibre de Nash parfait en sous-jeux

Plus en détail

1 Questionnaire à choix multiples

1 Questionnaire à choix multiples EXAMEN FINAL mercredi 19 janvier 2011, Durée h00 Pierre Fleckinger Une attention particulière doit être portée à la rédaction et à l explication des calculs faits. Utiliser un feuillet simple pour le QCM

Plus en détail

TRAVAUX DIRIGÉS DE MICROÉCONOMIE Licence 1 Semestre 2 - Parcours EM

TRAVAUX DIRIGÉS DE MICROÉCONOMIE Licence 1 Semestre 2 - Parcours EM TRAVAUX DIRIGÉS DE MICROÉCONOMIE Licence 1 Semestre 2 - Parcours EM Aurelia Tison, Anne-Sarah Chiambretto AMU, année 2013 1 La théorie du producteur (séances 1 à 4) La fonction de production : les facteurs

Plus en détail

Introduction à la Microéconomie Corrigé de l interrogation récapitulative du 17 décembre 2014

Introduction à la Microéconomie Corrigé de l interrogation récapitulative du 17 décembre 2014 Introduction à la Microéconomie Corrigé de l interrogation récapitulative du 17 décembre 2014 Question 1: Maxime, un consommateur rationnel, reçoit 1900 euros en t1 et 1210 euros en t2. Sa fonction d utilité

Plus en détail

Marchés oligopolistiques avec vente d un bien non homogène

Marchés oligopolistiques avec vente d un bien non homogène Marchés oligopolistiques avec vente d un bien non homogène Partons de quelques observations : 1. La plupart des industries produisent un grand nombre de produits similaires mais non identiques; 2. Parmi

Plus en détail

Université de Bordeaux 4 Master 1 TEI Examen final, 1ère session 2000-2001 Economie publique Durée : 1 heure

Université de Bordeaux 4 Master 1 TEI Examen final, 1ère session 2000-2001 Economie publique Durée : 1 heure 2000-2001 1) La réglementation des monopoles naturels. (12 points) 2) Au choix : (8 points) a) Soient les préférences des individus a, b, c et d sur les options x, y, z et t : Individu a : x > y > t >

Plus en détail

Théorie des jeux, Master AE2 et magistère 2, 1ère série d exercices, Solutions

Théorie des jeux, Master AE2 et magistère 2, 1ère série d exercices, Solutions Théorie des jeux, Master AE2 et magistère 2, 1ère série d exercices, Solutions December 9, 2013 Question 1 Démontrer heuristiquement les énoncés suivants: (1) S il existe une unique combinaison de stratégies

Plus en détail

NC8 THEORIE DE L OLIGOPOLE (1 ère partie)

NC8 THEORIE DE L OLIGOPOLE (1 ère partie) NC8 THEORIE DE L OLIGOPOLE (1 ère partie) D après la définition de VARIAN dans Analyse microéconomique, «l oligopole est l étude des interactions d un petit nombre d entreprises sur un marché». Ce concept

Plus en détail

Economie de l Incertain et des Incitations

Economie de l Incertain et des Incitations Economie de l Incertain et des Incitations CHAPITRE 2 Eléments de théorie des jeux en information symétrique et asymétrique Equilibres Bayesiens - Université de Tours - M1 AGE - Arnold Chassagnon - Automne

Plus en détail

Chapitre II LES MONOPOLES NATURELS

Chapitre II LES MONOPOLES NATURELS Chapitre II LES MONOPOLES NATURELS 1) Rappels sur le monopole i) Hypothèses et notations Définition : Une entreprise est en position de monopole si elle est seule à fournir le marché d un bien pour lequel

Plus en détail

Théorie des Jeux Et ses Applications

Théorie des Jeux Et ses Applications Théorie des Jeux Et ses Applications De la Guerre Froide au Poker Clément Sire Laboratoire de Physique Théorique CNRS & Université Paul Sabatier www.lpt.ups-tlse.fr Quelques Définitions de la Théorie des

Plus en détail

La théorie des jeux. Les jeux séquentiels. Les jeux simultanés. Les jeux répétés. Simon Porcher 1

La théorie des jeux. Les jeux séquentiels. Les jeux simultanés. Les jeux répétés. Simon Porcher 1 La théorie des jeux Les jeux séquentiels Les jeux simultanés Les jeux répétés 1 La théorie des jeux Les jeux séquentiels Les jeux simultanés Les jeux répétés 2 Les jeux séquentiels Théorie des jeux Opposition

Plus en détail

Chapitre 2 - choix efficace et non-efficace des

Chapitre 2 - choix efficace et non-efficace des Chapitre 2 - choix efficace et non-efficace des firmes Arnold Chassagnon Université Paris-Dauphine (LEDA-SDFi) DU1 - Université Paris-Dauphine, 2009-2010 1 Analyse positive - analyse normative 1 Objectif

Plus en détail

Feuille 1 : représentation d interactions stratégiques, connaissance commune

Feuille 1 : représentation d interactions stratégiques, connaissance commune Université Paris-Dauphine, Departement MIDO. Théorie des jeux, L3, 2009/2010. Feuille 1 : représentation d interactions stratégiques, connaissance commune Exercice 1 ( Il y a deux joueurs. A la période

Plus en détail

Le duopole : introduction à la stratégie des entreprises et aux fondements de la concurrence

Le duopole : introduction à la stratégie des entreprises et aux fondements de la concurrence Le duopole : introduction à la stratégie des entreprises et aux fondements de la concurrence e chapitre est sont consacré à l étude d un marché en situation de duopole. Deux offreurs sont présents sur

Plus en détail

Examen d Introduction à la Microéconomie Giovanni Ferro-Luzzi et Federica Sbergami, 2014-2015 13 janvier 2015

Examen d Introduction à la Microéconomie Giovanni Ferro-Luzzi et Federica Sbergami, 2014-2015 13 janvier 2015 Nom: Prénom: N étudiant : Examen d Introduction à la Microéconomie Giovanni Ferro-Luzzi et Federica Sbergami, 2014-2015 13 janvier 2015 Nombre de pages au total: 10 pages + 1 grille réponse Durée de l

Plus en détail

Microéconomie 2 Le Comportement de l Entreprise

Microéconomie 2 Le Comportement de l Entreprise Microéconomie 2 Le Comportement de l Entreprise 1 ) Sur un marché en concurrence monopolistique, le monopole a) S'explique par l'existence de barrières à l'entrée. b) Est une situation de marché dans laquelle

Plus en détail

Jeux-Langages-Logique Jeux extensifs, jeux stratégiques

Jeux-Langages-Logique Jeux extensifs, jeux stratégiques Université de Bordeaux Master Informatique, 2015/2016 Jeux extensifs, à information complète Jeux-Langages-Logique Jeux extensifs, jeux stratégiques Exercice 2.1 Th. de Von Neumann Soit un graphe orienté

Plus en détail

Chapitre 5. Équilibre concurrentiel et bien-être

Chapitre 5. Équilibre concurrentiel et bien-être Chapitre 5 Équilibre concurrentiel et bien-être Microéconomie III 5 1 5.1 Qu est-ce qu un équilibre souhaitable socialement? E cacité versus équité Que nous permet de dire la science économique sur l e

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Doctorat en économique. Examen de synthèse en Théorie micro-économique 8 août 2011. Durée : 4 heures exactement

Doctorat en économique. Examen de synthèse en Théorie micro-économique 8 août 2011. Durée : 4 heures exactement Département d économie agroalimentaire et des sciences de la consommation Département d économique Université Laval NOM: Doctorat en économique Examen de synthèse en Théorie micro-économique 8 août 211

Plus en détail

Chapitre 2. La concurrence oligopolistique

Chapitre 2. La concurrence oligopolistique Chapitre 2. La concurrence oligopolistique Nicolas Carayol M1 MIMSE 17 mars 2015 Introduction La concurrence se fait fondamentalement en prix Mais, dans le modèle simple : cela conduit aux prix (et profits)

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction

Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction EXERCICE 1 : TAUX D ÉVOLUTION 5 points Le tableau ci-dessous présente le nombre de voitures neuves vendues en France en 1980,

Plus en détail

ECO L1 - - Qu est-ce que l économie? modèles micro et macroéconomiques. ECO L1 - Université de Tours, Arnold Chassagnon, Septembre 2013

ECO L1 - - Qu est-ce que l économie? modèles micro et macroéconomiques. ECO L1 - Université de Tours, Arnold Chassagnon, Septembre 2013 ECO L1 - - Qu est-ce que l économie? modèles micro et macroéconomiques - ECO L1 - Université de Tours, Arnold Chassagnon, Septembre 2013 PLAN DE LA CONFERENCE Introduction à l Analyse économique - Maximisation

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Organisation Industrielle

Organisation Industrielle Organisation Industrielle Chapitre 1 : Introduction Master 1 Université Lyon 2 Laurent Granier - Année 2011/2012 - Définition de l économie industrielle «Etude de la structure des entreprises et des marchés,

Plus en détail

Introduction à l analyse microéconomique Devoir Maison n o 1

Introduction à l analyse microéconomique Devoir Maison n o 1 Introduction à l analyse microéconomique Devoir Maison n o 1 10 novembre 2014 Marianne Tenand Monitorat ENS (2014-2015) marianne.tenand@ens.fr A rendre au plus tard dans mon casier du bâtiment B le mercredi

Plus en détail

Partie I Le consommateur et la demande

Partie I Le consommateur et la demande Partie I Le consommateur et la demande Chapitre 1 La fonction d utilité 1 Plan du cours 1. Le consommateur. 2. La notion d utilité. 3. Les courbes d indifférence. 4. L optimum du consommateur. 5. Exercices.

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

Règles du jeu officielles du Monopoly

Règles du jeu officielles du Monopoly Règles du jeu officielles du Monopoly Garanties presque sans erreurs BUT DU JEU : Etre le dernier joueur à rester en jeu, c'est-à-dire le dernier joueur n'ayant pas fait faillite. PREPARATION 1. Prenez

Plus en détail

Assurance maladie publique et «Opting out» - Réflexions théoriques

Assurance maladie publique et «Opting out» - Réflexions théoriques Assurance maladie publique et «Opting out» - Réflexions théoriques Carine Franc CREGAS INSERM - U 537 Une définition de «l opting out» «to opt out» : choisir de ne pas participer ; [hopital, school] choisir

Plus en détail

MICROSTRUCTURE DES MARCHES FINANCIERS. Comportements stratégiques Production de liquidité

MICROSTRUCTURE DES MARCHES FINANCIERS. Comportements stratégiques Production de liquidité MCROSTRUCTURE DES MARCHES FNANCERS Comportements stratégiques Production de liquidité Plan du cours Préambule : Comportements stratégiques et modèles de stock Le modèle de Ho et Stoll Le modèle de Kyle

Plus en détail

Routage dans Internet et théorie des jeux. Chahinez Hamlaoui chah@prism.uvsq.fr

Routage dans Internet et théorie des jeux. Chahinez Hamlaoui chah@prism.uvsq.fr Routage dans Internet et théorie des jeux Chahinez Hamlaoui chah@prismuvsqfr Contexte et motivation Les réseaux de l'interdomaine Réseaux interconnectant les réseaux des opérateurs Internet Modèle de communication

Plus en détail

Economie de l information

Economie de l information 1 Introduction Economie de l information Les méthodes de la microéconomie peuvent être appliquées à tout problème particulier de la vie économique De nombreuses études sont consacrées à des marchés ou

Plus en détail

Concurrence imparfaite

Concurrence imparfaite Concurrence imparfaite 1. Le monopole 2. Concurrence monopolistique 3. Hotelling et Salop 4. Concurrence à la Cournot 5. Concurrence à la Bertrand 6. Concurrence à la Stackelberg Monopole Un monopole,

Plus en détail

EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012. Corrigé

EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012. Corrigé EXAMEN D ECONOMIE INDUSTRIELLE Cours de Marc Bourreau et Marianne Verdier Master IREN Année 2012 Corrigé Tous les documents et les calculatrices sont interdits. PARTIE 1 : QUESTIONS DE COURS Précisez la

Plus en détail

S5 Info-MIAGE 2013-2014 Mathématiques Financières Les bases de l évaluation des investissements

S5 Info-MIAGE 2013-2014 Mathématiques Financières Les bases de l évaluation des investissements Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières LES BASES DE L EVALUATION DES INVESTISSEMENTS Les

Plus en détail

Bambus Spieleverlag. Le plateau de jeu :

Bambus Spieleverlag. Le plateau de jeu : Le plateau de jeu : Bambus Spieleverlag D. Augenbraun & G. Cornett GbR P.O. Box 360141 D-10971 Berlin Phone +49-30-6121884 e-mail : cornett@bambusspiele.de http://www.bambusspiele.de Traduction française

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Reputation, Prix Limite et Prédation

Reputation, Prix Limite et Prédation Reputation, Prix Limite et Prédation Economie Industrielle Laurent Linnemer Thibaud Vergé Laboratoire d Economie Industrielle (CREST-INSEE) 13 et 20 janvier 2009 Linnemer - Vergé (CREST-LEI) Reputation,

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

TD 2 Exercice 1. Un bûcheron a 100 hectares de bois de feuillus. Couper un hectare de bois et laisser la zone se régénérer naturellement coûte 10 kf par hectares, et rapporte 50 kf. Alternativement, couper

Plus en détail

PLAN DE TABLE. un exercice domestique. On a une table ronde autour de laquelle on doit disposer N couples. On s oblige à deux contraintes :

PLAN DE TABLE. un exercice domestique. On a une table ronde autour de laquelle on doit disposer N couples. On s oblige à deux contraintes : PLAN DE TABLE un exercice domestique POSITION DU PROBLÈME On a une table ronde autour de laquelle on doit disposer N couples. On s oblige à deux contraintes : 1) Alternance des hommes et des femmes. 2)

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES

COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES COORDINATION NON COOPÉRATIVE: MÉTHODES D ENCHÈRES Cours 6c Principe Protocole centralisé, un commissaire-priseur/vendeur (auctioneer) et plusieurs enchérisseurs/acheteurs (bidders) Le commissaire-priseur

Plus en détail

Recherche et développement

Recherche et développement Recherche et développement Armel JACQUES 4 janvier 2015 Contents 1 Introduction 4 2 Choix de R&D 4 2.1 Réduction de coût.......................................... 4 2.1.1 E et stratégique de la R&D.................................

Plus en détail

1 Le calcul économique du consommateur 4 1.1 Préférences et fonction d utilité... 4. 1.1.2 La théorie ordinale de l utilité... 6

1 Le calcul économique du consommateur 4 1.1 Préférences et fonction d utilité... 4. 1.1.2 La théorie ordinale de l utilité... 6 Microéconomie 1 Table des matières 1 Le calcul économique du consommateur 4 1.1 Préférences et fonction d utilité................................ 4 1.1.1 La théorie cardinale de l utilité............................

Plus en détail

Micro-économie approfondie Chapitre 2 : Rappels d économie industrielle : le monopole 1

Micro-économie approfondie Chapitre 2 : Rappels d économie industrielle : le monopole 1 Micro-économie approfondie Chapitre 2 : Rappels d économie industrielle : le monopole 1 Olivier Bos olivier.bos@u-paris2.fr 11.1 1 Bibliographie : Belflamme et Peitz 2.2.2, 2.2.3, 8.1, 8.2, 9.1, 9.2, 10.1,

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2011-2012 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Economie de l incertain et de l information Partie 2 : Asymétrie de l information Chapitre 4 : Sélection adverse et théorie du signal

Economie de l incertain et de l information Partie 2 : Asymétrie de l information Chapitre 4 : Sélection adverse et théorie du signal Economie de l incertain et de l information Partie 2 : Asymétrie de l information Chapitre 4 : Sélection adverse et théorie du signal Olivier Bos olivier.bos@u-paris2.fr Introduction Importance de l information

Plus en détail

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 6 le Rôle de l Information - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 Plan du cours 1. Probabilités subjectives 2. Arrivée symétrique de l information 3. Information asymétrique

Plus en détail

MONOPOLY Règles de Tournoi:

MONOPOLY Règles de Tournoi: MONOPOLY Règles de Tournoi: OBJECTIF L'objectif du jeu est de devenir le joueur le plus riche en achetant, en louant et en vendant des propriétés. Essayez d acheter toutes les propriétés appartenant à

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Temps Distance Vitesse

Temps Distance Vitesse Temps Distance Vitesse Jean-Noël Gers Février 2005 CUEEP Département Mathématiques p1/27 Ce dossier contient un certain nombre de problèmes classiques sur la rencontre de mobiles évoluant à vitesse constante.

Plus en détail

Combiner anticipations et optimisation : le modèle Black-Litterman

Combiner anticipations et optimisation : le modèle Black-Litterman Combiner anticipations et optimisation : le modèle Black-Litterman Université Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) PLAN Les raisons du modèle 1 Les raisons du modèle 2 1.

Plus en détail

Les Cartes et leur Valeur

Les Cartes et leur Valeur RÈGLES CANASTA Règle du Jeu de la Canasta Canasta est le nom d une combinaison de 7 cartes qui donne son nom à cette variante de Rami. Le but du Jeu: Le gagnant est le joueur qui est le premier à atteindre

Plus en détail

Cours de microéconomie Pré-rentrée de licence. Christelle Dumas

Cours de microéconomie Pré-rentrée de licence. Christelle Dumas Cours de microéconomie Pré-rentrée de licence Christelle Dumas Table des matières 1 Le consommateur 3 1.1 Préférences............................ 3 1.1.1 Espace des objets..................... 3 1.1.2

Plus en détail

Introduction à la Théorie des Jeux p.1/77

Introduction à la Théorie des Jeux p.1/77 Introduction à la Théorie des Jeux Sébastien Konieczny konieczny@cril.univ-artois.fr CRIL-CNRS Université d Artois - Lens Introduction à la Théorie des Jeux p.1/77 Théorie des Jeux Définition La théorie

Plus en détail

SEMAINE DES MATHEMATIQUES

SEMAINE DES MATHEMATIQUES SEMAINE DES MATHEMATIQUES Titre de l'activité Découverte de la suite de Fibonacci ou cinq activités à traiter simultanément : les billes, les escaliers, les étages peints, les fauxbourdons, les lapins

Plus en détail

Thème 3 : Marchés et prix

Thème 3 : Marchés et prix Thème 3 : Marchés et prix Séquence : Marché et prix Question 1 : Comment se forment les prix sur un marché? Détermination du contexte : Effectifs : 35 élèves Salles : grande salle dans laquelle les élèves

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

La théorie des jeux et l hypothèse de rationalité

La théorie des jeux et l hypothèse de rationalité La théorie des jeux et l hypothèse de Michael Eisermann www-fourier.ujf-grenoble.fr/ eiserm 8 novembre 2007 ir Séminaire Mathématiques et Applications Dans la série «comment écrire une thèse en maths puis

Plus en détail

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Le fonctionnement des marchés

Le fonctionnement des marchés Le fonctionnement des marchés Jean Magnan de Bornier Table des matières 1 Les modalités diverses de la concurrence 3 1.1 Formes d organisation....................... 3 1.2 Position et actions des agents....................

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide La constante d autoprotolyse de l eau, K W, est égale au produit de K a par K b pour un couple acide/base donné : En passant en échelle logarithmique, on voit donc que la somme du pk a et du pk b d un

Plus en détail

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7 Computix Matériel : grilles carrées comportant un nombre impair de cases. Quelques-unes sont données en annexe ; mais on peut aussi les construire soi-même, ou les faire construire par les élèves. Elles

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

2.2.1. La croissance et le commerce international

2.2.1. La croissance et le commerce international 2.2.1. La croissance et le commerce international Il existe une certaine interdépendance entre l'évolution des termes de l échange et la croissance des économies ouvertes. Cependant, les résultats de l'analyse

Plus en détail

La concurrence imparfaite

La concurrence imparfaite M. Vujisic Page 1 29/01/2007 La concurrence imparfaite Le cadre de concurrence pure et parfaite est un modèle que l'on retrouve rarement dans la réalité. Dès qu'une des conditions de la concurrence pure

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

dans les salles de De l économétrie pour vendre des vins ou des obligations Philippe Février et Michael Visser

dans les salles de De l économétrie pour vendre des vins ou des obligations Philippe Février et Michael Visser De l économétrie pour vendre des vins ou des obligations Philippe Février et Michael Visser Grands vins ou bons du Trésor font l objet de ventes aux enchères. Mais quel type d enchères faut-il pratiquer?

Plus en détail

chaînes de monopole : intégration, externalités et contraintes verticales

chaînes de monopole : intégration, externalités et contraintes verticales II. RELATIONS VERTICALES ENTRE FIRMES (2 ème partie) II.1 chaînes de monopole : intégration, externalités et contraintes verticales A Hypothèse : coûts de production nuls B1 B2 Demande globale : elle dépend

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail