Dénombrement. Chapitre Enoncés des exercices

Dimension: px
Commencer à balayer dès la page:

Download "Dénombrement. Chapitre 1. 1.1 Enoncés des exercices"

Transcription

1 Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet. Les ouvelles plaques fraçaises sot formées de la faço suivate : elles comportet 2 lettres, puis 3 chiffres, puis 2 lettres. 1. Combie u départemet pouvait-il immatriculer de véhicules avec l acie système? 2. Das u départemet, combie y avait-il de plaques dot les 4 chiffres étaiet différets? 3. E supposat que la Frace a 96 départemets, combie pouvait-o immatriculer de véhicules? 4. Combie le ouveau système permet-il d immatriculer de véhicules? Exercice 2 Ue etreprise fabrique des stylos qui, sortis des chaîes, sot ragés par lots de 100 das des cartos qui comportet tous 3 stylos défectueux parmi les 100. Le service qualité de l usie choisit alors stylos das u carto pour vérifier s il y a des stylos défectueux. Le but de l exercice est de calculer la probabilité de découvrir au mois u stylo défectueux. 1. Doer le résultat. 2. U étudiat a doé à cette questio la répose suivate :

2 8 Chapitre 1 : Déombremet ( ) 100 Il y a résultats possibles. U résultat favorable est u tirage qui ( 3 cotiet au mois u stylo défectueux, il y a faços de le choisir et 1) ( ) 99 faços de choisir les 1 autres stylos. La probabilité cherchée 1 ( )( ) est doc ( ). L étudiat se trompe-t-il, et si oui e quoi? Exercice 3 O rappelle le pricipe du Loto : ue série de 6 uméros, choisis au hasard parmi 49 ombres, est le tirage gagat. O tire u autre ombre, différet des 6 premiers : c est le uméro complémetaire. Chaque joueur coche quat à lui 6 uméros, sas que l ordre des 6 uméros cochés soit importat. Esuite, d après le règlemet de la Fraçaise des Jeux, o a : Les gagats de 1 er rag sot ceux dot les 6 uméros cochés sot les 6 bos uméros. Les gagats de 2 e rag sot ceux dot les 6 uméros cochés sot le complémetaire + 5 des 6 bos uméros. Les gagats de 3 e rag sot ceux dot les 6 uméros cochés comportet exactemet 5 des 6 bos uméros. les gagats de 5 e rag sot ceux qui ot 4 des 6 bos uméros. 1. Quelle est la probabilité d être u gagat de premier rag? 2. Quelle est la probabilité d être u gagat de 2 e rag? 3. Quelle est la probabilité d être u gagat de 3 e rag? 4. S il est possible de faire ue grille à 8 uméros, combie y a-t-il de grilles à 8 uméros cochés comportat exactemet 4 bos uméros? Exercice 4 U éditeur souhaite orgaiser so stad das u salo. Il a 22 livres, 12 livres (différets) de maths et 10 livres (différets) de physique. Les livres serot ragés côte à côte, comme sur ue étagère. 1. Combie y a-t-il de ragemets possibles s il souhaite rager ses livres de faço à ce que les livres de maths soiet groupés esemble et les livres de physique esemble? 2. Combie y a-t-il de ragemets possibles si la seule chose qui compte est que les livres de maths soiet groupés esemble?

3 Eocés 9 Exercice 5 O cosidère u groupe de persoes. 1. Quelle est la probabilité que deux d etre elles aiet le même jour d aiversaire, e supposat qu il y a pas d aées bissextiles? 2. Predre =30et calculer cette probabilité. Exercice 6 Le Chevalier de Méré, adepte des jeux de hasard, posa u jour cette questio à Pascal : Quel est le plus probable : obteir au mois u 6 e laçat 4 fois de suite u dé, ou obteir au mois u double 6 e laçat 24 fois de suite 2 dés? Que répodre au Chevalier de Méré? Exercice 7 Le Chevalier de Méré retoure voir Pascal. Voici le ouveau problème qu il lui pose : Deux joueurs jouet à u jeu de hasard e plusieurs parties : celui qui, le premier, gage trois parties gage le jeu et la totalité de la mise. Malheureusemet, le jeu est iterrompu alors que le premier a déjà gagé 2 parties, et le deuxième joueur 1 partie. Commet répartir équitablemet la mise? Que répodre au Chevalier de Méré? Exercice 8 4 persoes participet à ue course. Combie peut-il y avoir de classemets possibles, e admettat qu il puisse y avoir des ex-aequo? Exercice 9 O dispose d u lot de objets sortis d ue usie. Das ce lot, m objets possèdet u défaut, les autres sot coformes. O effectue u tirage sas remise de r objets das le lot. Calculer la probabilité de tirer k objets défectueux das u tel tirage : 1. Sas predre e compte l ordre das lequel ot été tirés les objets. 2. E preat e compte l ordre das lequel ot été tirés les objets.

4 10 Chapitre 1 : Déombremet Exercice 10 U joueur de Poker reçoit ue mai de 5 cartes d u jeu de 32. Quelle est la probabilité que sa mai cotiee : 1. Ue seule paire? (La mai comporte seulemet 2 cartes de même valeur et 3 autres de valeurs différetes.) 2. Deux paires? (2 cartes de la même valeur, et 2 autres cartes d ue autre valeur, et ue carte d ue troisième valeur.) 3. U brela? (3 cartes de la même valeur, et 2 cartes e format pas ue paire.) 4. U carré? Exercice 11 Ue etreprise de cosmétiques souhaite créer à l itetio de ses vedeurs u paier test de démostratio. L etreprise a 4 gammes de produits : La gamme 1 qui comporte 7 produits. La gamme 2 qui comporte 3 produits. La gamme 3 qui comporte 5 produits. La gamme 4 qui comporte 4 produits. U paier est u esemble de 4 boites, pour être valable, la i-ème boite du paier doit coteir u produit de la gamme i. 1. Combie y a-t-il de paiers valables possibles? 2. U employé peu scrupuleux costitue u paier e choisissat 4 produits différets au hasard das le catalogue. Calculer, par 2 méthodes, la probabilité qu il costitue u paier valable. 3. Le service qualité de l usie, peu scrupuleux lui aussi, pour vérifier qu u paier sortat de l usie soit correct, regarde les 2 premiers produits et valide le paier si ces produits appartieet bie à la gamme 1 et à la gamme 2. Quelle est la probabilité qu u paier soit validé par erreur? Exercice 12 Ue etreprise fabrique des mousquetos pour l escalade. Pour être das les ormes iteratioales, les mousquetos doivet résister à certaies forces qui leur sot appliquées. Ue série de 100 prototypes de mousquetos, tous idépedats, sot soumis aux tests. O atted d eux qu ils résistet à ue force de 22 kn. Il y a 4 issues lorsqu o teste u mousqueto : Catégorie 1 : il casse alors que la force est iférieure à 10 kn. Catégorie 2 : il casse alors que la force est comprise etre 10 kn et 20 kn. Catégorie 3 : il casse alors que la force est comprise etre 20 kn et 22 kn. Catégorie 4 : il résiste à ue force supérieure à 22 kn.

5 Eocés 11 Si o cosidère u mousqueto, o otera C i ="le mousqueto est das la catégorie i". O suppose que pour u mousqueto, o a :P (C 1 )=0.1, P (C 2 )=0.1, P (C 3 )=0.5, P (C 4 )= Quelle est la probabilité que sur les 100 mousquetos, tous résistet à ue force supérieure à 22kN? 2. Quelle est la probabilité de l évéemet A= "sur la série de 100 mousquetos, 20 sot das la catégorie 1, 30 das la catégorie 2, 40 das la catégorie 3 et le reste das la catégorie 4"? Exercice 13 O cosidère les lettres du mot : "ANNIVERSAIRE". 1. Combie de mots peut-o former avec ces lettres? (o e se préoccupera pas du ses des mots formés.) 2. Combie de mots commeçat et fiissat par ue voyelle peut-o former? 3. Combie de mots peut-o former si o veut que toutes les voyelles soiet groupées esemble? Exercice 14 Robert fait ses affaires pour aller skier. So armoire est remplie de 10 paires de gats. Il décide de predre 4 gats, mais, état das la lue, il choisit les gats au hasard. Quelle est la probabilité qu il tire : 1. Deux paires complètes? 2. Au mois ue paire? 3. Ue paire et ue seule? Exercice 15 Soiet A 1,A 2,...,A des évéemets. 1. Démotrer la formule classique P (A 1 A 2 )=P (A 1 )+P (A 2 ) P (A 1 A 2 ). 2. E déduire ue formule similaire pour P (A 1 A 2 A 3 ). 3. Démotrer par récurrece sur la formule P (A 1 A 2... A )= ( 1) k+1 k=1 1 i 1<i 2<...<i k P (A i1... A ik ).

6 12 Chapitre 1 : Déombremet 4. Applicatio. U groupe de amis fot ue soirée esemble et poset leur veste das ue chambre à leur arrivée. Au momet du départ, l esprit plus très clair, o suppose qu ils choisisset leur veste au hasard das le tas. Quelle est la probabilité qu au mois u étudiat ait récupéré sa propre veste? 5. Vérifier le résultat obteu. Exercice 16 Le service après vete d ue etreprise possède 3 cetres téléphoiques pour répodre aux cliets. O suppose que persoes, de faço idépedate, cherchet à joidre le SAV de cette etreprise et que leurs appels sot routés au hasard sur u cetre. 1. Quelle est la probabilité que les appels soiet dirigés vers le même cetre? 2. O pred =5. Calculer, par 2 méthodes, la probabilité que les 3 cetres reçoivet au mois u appel. 3. Gééralisatio : ici, est quelcoque. Calculer la probabilité que les 3 cetres reçoivet au mois u appel. Exercice 17 Après leur match historique à Wimbledo e 2010, les teisme Joh Iser et Nicolas Mahut ot vu le sort les opposer à ouveau lors du 1 er tour e Le but est de calculer la probabilité de cet évéemet. 1. O suppose que le tirage au sort du 1er tour (64 matches pour 128 cocurrets) s effectue etièremet au hasard. (a) Combie y a-t-il de tableaux possibles du 1er tour, du poit de vue du spectateur? (Pour u spectateur, deux tableaux sot idetiques si les matches proposés sot les mêmes!) (b) Combie y a-t-il de tableaux possibles au 1er tour, du poit de vue de l orgaisateur cette fois? (Pour l orgaisateur, l ordre des matches est importat, car il détermiera l edroit où aura lieu le match ; l ititulé de la recotre est aussi importat, u match Joueur 1-Joueur 2 est pas le même que Joueur 2-Joueur 1, pour des raisos de vestiaires par exemple.) (c) E déduire, par deux méthodes, la probabilité pour qu il y ait u tableau opposat Iser et Mahut. 2. O suppose maiteat que parmi les 128 joueurs, il y a 32 têtes de série (les meilleurs joueurs) qui e s affrotet pas au 1 er tour.nimahut,iiser, état tête de série, quelle est la probabilité qu ils s affrotet?

7 Corrigés Correctio des exercices Correctio de l exercice 1 1. Il y a 10 choix pour chacu des chiffres, et 26 choix pour chacue des lettres. Par cotre, le uméro du départemet est pas à choisir. Les choix se multipliet etre eux (structure d arbre). U départemet pouvait doc immatriculer =6, véhicules. 2. Il y a plus 10 4 chiffres possibles mais = 5040 possibilités pour les 4 chiffres. Il y avait doc = plaques possibles avec les 4 premiers chiffres différets. 3. O pouvait doc immatriculer 96 2, = 264, véhicules. 4. Avec le ouveau système, o peut immatriculer = 456, véhicules. Correctio de l exercice 2 1. L expériece aléatoire cosiste ( à) choisir ue partie à élémets de l esemble 100 des 100 stylos. Il y a doc résultats possibles. U résultat favorable ( est ue partie qui ( cotiet ) 1, 2 ou 3 stylos défectueux Ilya parties avec u stylo 1) 1 }{{} } {{ } choix du stylo défectueux choix des stylos foctioat défectueux. ( ( ) 3 97 Ilya parties avec deux stylos défectueux. ( ) 2) 2 }{{} } {{ } choix des 2 stylos défectueux choix des stylos foctioat 3 3) Ilya }{{} choix des 3 stylos défectueux ( 97 3 } {{ } choix des stylos foctioat parties avec trois stylos défectueux. Le ombre total de résultats favorables est doc la somme des résultats précédets, car ce sot des évetualités disjoites. E effet, il existe pas de partie coteat e même temps u stylo défectueux et deux stylos défectueux. La probabilité cherchée est doc ( )( ) ( )( ) ( )( ) ( )

8 14 Chapitre 1 : Déombremet Remarque : 97 O peut aussi utiliser l évéemet cotraire, o trouve alors La solutio éocée est fausse... parce qu elle e doe pas les mêmes résultats que la solutio doée ci-dessus! (Predre par exemple =3, o trouve que la probabilité est , alors que l étudiat trouve ) Mais il est importat, et pas si évidet, de compredre pourquoi l étudiat se trompe. E fait, avec sa techique, l étudiat compte certais "tirages" plusieurs fois. Preos u exemple pour bie compredre. Avec = 3, otos D 1,D 2,D 3 les 3 stylos défectueux et C 1,C 2,...,C 97 les stylos corrects. L étudiat compte les tirages favorables e imagiat u choix à 2 étapes (u arbre) : lors de la première étape, il choisit u stylo défectueux, puis esuite u esemble de 2 autres stylos quelcoques choisis parmi les 99 stylos restats. Avec cette techique, le tirage {D 1,D 2,C 1 }, par exemple, est compté 2 fois : lorsque le stylo défectueux choisi est D 1, et lorsque esuite les deux autres stylos sot {D 2,C 1 }. Ue autre fois, lorsque le stylo défectueux choisi est D 2, et lorsque esuite les deux autres stylos sot {D 1,C 1 }. Néamois, si l étudiat se red compte du problème, il peut retomber sur le bo résultat e retrachat à ce qu il a obteu (14553 tirages favorables) les tirages qu il a comptés 2 fois (les tirages à 2 stylos défectueux, il y e a 291) et e retrachat 2 fois ceux qu il a comptés 3 fois (les tirages avec 3 stylos défectueux, il y e a 1). Or = 14260, lecompteestbo! Cet exercice met e évidece ue erreur classique e déombremet, assez pericieuse : compter plusieurs fois u même objet.. Correctio de l exercice 3 1. Calculos d abord le ombre de grilles pouvat être cochées par le ( joueur ) : il 49 choisit 6 uméros par hasard, l ordre état idifféret. Il y a doc grilles 6 possibles. Par ailleurs, il y a qu ue seule grille de 6 uméros formée par les uméros gagats. La probabilité cherchée est doc ( ). Soit ue chace sur

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE J. 3 398 CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE ANNÉE 04 ÉPREUVE ÉCRITE D ADMISSIBILITÉ N 3 Durée : 3 heures

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

B) CHAÎNES DE SOLIDES

B) CHAÎNES DE SOLIDES Chaîes de solides B) CHAÎNES DE SOLIDES Objectifs Cette théorie a pour but d'aalyser les comportemets statique et ciématique d'u mécaisme à partir d'u modèle défii par le schéma ciématique du mécaisme.

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

XV. Probabilités. Pour le second exemple, le dénombrement de toutes les issues possibles (un schéma en arbre peut nous y aider),

XV. Probabilités. Pour le second exemple, le dénombrement de toutes les issues possibles (un schéma en arbre peut nous y aider), . Itroductio XV. robabilités. L'étude des probabilités couvre toutes les situatios de phéomèes ayat plusieurs issues possibles, la réalisatio de chaque résultat état due au hasard. Des exemples de calcul

Plus en détail

GRAPHES. 0 1 1 0 0 1 1 0 0 0 Les graphes ci-dessous peuvent-ils être associés à A? Exercice n 6. Ecrivez la matrice associé à chaque graphe :

GRAPHES. 0 1 1 0 0 1 1 0 0 0 Les graphes ci-dessous peuvent-ils être associés à A? Exercice n 6. Ecrivez la matrice associé à chaque graphe : Exercice. Détermier le degré de chacu des sommets du graphe suivat : GRAPHES Exercice 6. Ecrivez la matrice associé à chaque graphe : Exercice. Trois pays evoiet chacu à ue coférece deux espios ; chaque

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson. Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Probabilités exercices corrigés

Probabilités exercices corrigés Termiale S Probabilités Exercices corrigés Combiatoire avec démostratio Ragemets Calcul d évéemets Calcul d évéemets Calcul d évéemets 6 Dés pipés 7 Pièces d or 8 Agriculteur pas écolo 9 Boules Jeux 6

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

MAT1085 Chapitre 2 Probabilités Solutions

MAT1085 Chapitre 2 Probabilités Solutions MAT0 Chapitre Probabilités Solutios. Soit A et B deux évéemets tels que P(A) 0,, P(B) 0,. Détermier P(A B) pour chacue des hypothèses suivates. a) P(A B) 0, 0, b) A et B sot disjoits 0,7 c) B A 0, d) P(A

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008 Prépa HEC Sait-Jea de Douai Probabilités Poly des exercices ECS1 2007-2008 Christia Skiada 4 septembre 2008 Spriger-Verlag Berli Heidelberg NewYork Lodo Paris Tokyo Hog Kog Barceloa Budapest Préface Voici

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

Terminale S. 1. Divers

Terminale S. 1. Divers Termiale S 1 Divers Bézout 3 Quadratique 4 Divisibilité 5 Equatio diophatiee 6 Equatio diophatiee (, Caracas 01_04) 7 Base de umératio 8 Base de umératio 3 9 Somme des cubes 10 PGCD 11 Somme des diviseurs

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Probabilités et Statistiques: Eléments de cours et exercices

Probabilités et Statistiques: Eléments de cours et exercices Uiversité Paris Villetaeuse Aée 2013/2014 Clémet Foucart 1 Probabilités Probabilités et Statistiques: Elémets de cours et exercices Prépa Capes Les programmes de mathématiques das l'eseigemet secodaire

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Fiche standardisée pour plan tarifaire mobile à prépayement

Fiche standardisée pour plan tarifaire mobile à prépayement Fiche stadardisée pour pla tarifaire mobile à prépayemet Opérateur Mobile Vikigs Pla tarifaire 10 Date de derière mise à jour 27/05/2015 Date de limite de validité Ne s applique pas Valeur de recharge

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

Kaizen & Kanban. Réalisé par : ELBARAKA Abdelkader Club industrielle AIAC

Kaizen & Kanban. Réalisé par : ELBARAKA Abdelkader Club industrielle AIAC Kaize & Réalisé par : ELBARAKA Abdelkader Club idustrielle AIAC Itroducti o Itroductio: vidéo Kai ze coclusio 1 Itroducti o Kai ze La méthode du coclusio 2 Itroducti o Kai ze A- Les types d étiquettes

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Suggestions d activités d animation de la lecture du magazine

Suggestions d activités d animation de la lecture du magazine Suggestios d activités d aimatio de la lecture du magazie 7A D epuis 2005, le Cetre fraco-otarie de ressources pédagogiques élabore et produit ue ressource qui répod aux besois et aux champs d itérêt des

Plus en détail

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR

Application «Calculs» Application «Graphiques» Application «Tableur et listes» FR TI Nspire Documet de Formatio T3 Walloie TI-Nspire Le tout e u des mathématiques Suites umériques La loi de Verhulst Applicatio «Calculs» Applicatio «Graphiques» Applicatio «Tableur et listes» FR Formatios

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

SIDEX, soutien individualisé aux démarches à l export pour les PME/TPE

SIDEX, soutien individualisé aux démarches à l export pour les PME/TPE SIDEX, soutie idividualisé aux démarches à l export pour les PME/TPE SIDEX est ue aide spécifiquemet destiée aux PME et TPE fraçaises. Souple et très simple d accès, elle leur permet de fialiser u projet

Plus en détail

La Méthode de Monte Carlo

La Méthode de Monte Carlo La Méthode de Mote Carlo Etiee Pardoux UMR 6632 Laboratoire d Aalyse, Topologie, Probabilités et EA 3781 Evolutio Biologique Uiversité de Provece Etiee Pardoux (LATP) Marseille, 13/09/2006 1 / 33 Cotets

Plus en détail

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION Des PROBABILITES à la STATISTIQUE - APPLICATIONS - Jea-Marie MARION 1 STATISTIQUE DESCRIPTIVE (décrire ue populatio à l aide de caractéristiques et graphiques) STATISTIQUE INFERENTIELLE (étedre des résultats

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

relatif à la transmission d ordres par fax et téléphone

relatif à la transmission d ordres par fax et téléphone Règlemet Télé-Equity relatif à la trasmissio d ordres par fax et téléphoe (Cliets de détail) 02541 Pour des raisos d efficacité et de rapidité, le Cliet peut trasmettre ses ordres par fax et/ou téléphoe

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites ANNALES BACCALAURÉAT 03 MATHÉMATIQUES TERMINALE S ANNALES 03 TERMINALE S Suites Foctios 9 3 Probabilités 4 Géométrie 9 8 5 Spécialité 34 6 Cocours 44 Suites - : Amérique du Nord 03, 5 poits, o spécialistes

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011 Déombremet ECE Lycée Carot 0 ovembre 2011 Itroductio La combiatoire, sciece du déombremet, sert comme so om l idique à comter Il e s agit bie etedu as de reveir au stade du CP et d aredre à comter sur

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

DENOMBRER INTRODUCTION II L'UNIVERS III LE PRODUIT CARTESIEN 1 3 6 10 LES NOMBRES TRIANGULAIRES CONNUS DES BABYLONIENS 2000 ANS AVANT J.C.

DENOMBRER INTRODUCTION II L'UNIVERS III LE PRODUIT CARTESIEN 1 3 6 10 LES NOMBRES TRIANGULAIRES CONNUS DES BABYLONIENS 2000 ANS AVANT J.C. 1 3 6 10 LES NOMBRES TRIANGULAIRES CONNUS DES BABYLONIENS 2000 ANS AVANT J.C. I INTRODUCTION Les problèmes de déombremet semblet avoir été abordés vers les deriers siècles de l'atiquité. Dès le début de

Plus en détail

ANNALES BACCALAURÉAT 2014 MATHÉMATIQUES TERMINALE S 1

ANNALES BACCALAURÉAT 2014 MATHÉMATIQUES TERMINALE S 1 ANNALES BACCALAURÉAT 014 MATHÉMATIQUES TERMINALE S ANNALES BACCALAURÉAT 014 MATHÉMATIQUES TERMINALE S 1 1 Suites 1 Foctios 11 3 Probabilités 4 Géométrie 4 33 5 Spécialité 41 6 Cocours 53 1 Suites 1-1 :

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Commet utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Survol du compte Mauvie U La majorité des Caadies gèret leurs fiaces comme suit : 1. Ils déposet leur reveu et autres actifs à court

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail