Dénombrement. Chapitre Enoncés des exercices

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Dénombrement. Chapitre 1. 1.1 Enoncés des exercices"

Transcription

1 Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet. Les ouvelles plaques fraçaises sot formées de la faço suivate : elles comportet 2 lettres, puis 3 chiffres, puis 2 lettres. 1. Combie u départemet pouvait-il immatriculer de véhicules avec l acie système? 2. Das u départemet, combie y avait-il de plaques dot les 4 chiffres étaiet différets? 3. E supposat que la Frace a 96 départemets, combie pouvait-o immatriculer de véhicules? 4. Combie le ouveau système permet-il d immatriculer de véhicules? Exercice 2 Ue etreprise fabrique des stylos qui, sortis des chaîes, sot ragés par lots de 100 das des cartos qui comportet tous 3 stylos défectueux parmi les 100. Le service qualité de l usie choisit alors stylos das u carto pour vérifier s il y a des stylos défectueux. Le but de l exercice est de calculer la probabilité de découvrir au mois u stylo défectueux. 1. Doer le résultat. 2. U étudiat a doé à cette questio la répose suivate :

2 8 Chapitre 1 : Déombremet ( ) 100 Il y a résultats possibles. U résultat favorable est u tirage qui ( 3 cotiet au mois u stylo défectueux, il y a faços de le choisir et 1) ( ) 99 faços de choisir les 1 autres stylos. La probabilité cherchée 1 ( )( ) est doc ( ). L étudiat se trompe-t-il, et si oui e quoi? Exercice 3 O rappelle le pricipe du Loto : ue série de 6 uméros, choisis au hasard parmi 49 ombres, est le tirage gagat. O tire u autre ombre, différet des 6 premiers : c est le uméro complémetaire. Chaque joueur coche quat à lui 6 uméros, sas que l ordre des 6 uméros cochés soit importat. Esuite, d après le règlemet de la Fraçaise des Jeux, o a : Les gagats de 1 er rag sot ceux dot les 6 uméros cochés sot les 6 bos uméros. Les gagats de 2 e rag sot ceux dot les 6 uméros cochés sot le complémetaire + 5 des 6 bos uméros. Les gagats de 3 e rag sot ceux dot les 6 uméros cochés comportet exactemet 5 des 6 bos uméros. les gagats de 5 e rag sot ceux qui ot 4 des 6 bos uméros. 1. Quelle est la probabilité d être u gagat de premier rag? 2. Quelle est la probabilité d être u gagat de 2 e rag? 3. Quelle est la probabilité d être u gagat de 3 e rag? 4. S il est possible de faire ue grille à 8 uméros, combie y a-t-il de grilles à 8 uméros cochés comportat exactemet 4 bos uméros? Exercice 4 U éditeur souhaite orgaiser so stad das u salo. Il a 22 livres, 12 livres (différets) de maths et 10 livres (différets) de physique. Les livres serot ragés côte à côte, comme sur ue étagère. 1. Combie y a-t-il de ragemets possibles s il souhaite rager ses livres de faço à ce que les livres de maths soiet groupés esemble et les livres de physique esemble? 2. Combie y a-t-il de ragemets possibles si la seule chose qui compte est que les livres de maths soiet groupés esemble?

3 Eocés 9 Exercice 5 O cosidère u groupe de persoes. 1. Quelle est la probabilité que deux d etre elles aiet le même jour d aiversaire, e supposat qu il y a pas d aées bissextiles? 2. Predre =30et calculer cette probabilité. Exercice 6 Le Chevalier de Méré, adepte des jeux de hasard, posa u jour cette questio à Pascal : Quel est le plus probable : obteir au mois u 6 e laçat 4 fois de suite u dé, ou obteir au mois u double 6 e laçat 24 fois de suite 2 dés? Que répodre au Chevalier de Méré? Exercice 7 Le Chevalier de Méré retoure voir Pascal. Voici le ouveau problème qu il lui pose : Deux joueurs jouet à u jeu de hasard e plusieurs parties : celui qui, le premier, gage trois parties gage le jeu et la totalité de la mise. Malheureusemet, le jeu est iterrompu alors que le premier a déjà gagé 2 parties, et le deuxième joueur 1 partie. Commet répartir équitablemet la mise? Que répodre au Chevalier de Méré? Exercice 8 4 persoes participet à ue course. Combie peut-il y avoir de classemets possibles, e admettat qu il puisse y avoir des ex-aequo? Exercice 9 O dispose d u lot de objets sortis d ue usie. Das ce lot, m objets possèdet u défaut, les autres sot coformes. O effectue u tirage sas remise de r objets das le lot. Calculer la probabilité de tirer k objets défectueux das u tel tirage : 1. Sas predre e compte l ordre das lequel ot été tirés les objets. 2. E preat e compte l ordre das lequel ot été tirés les objets.

4 10 Chapitre 1 : Déombremet Exercice 10 U joueur de Poker reçoit ue mai de 5 cartes d u jeu de 32. Quelle est la probabilité que sa mai cotiee : 1. Ue seule paire? (La mai comporte seulemet 2 cartes de même valeur et 3 autres de valeurs différetes.) 2. Deux paires? (2 cartes de la même valeur, et 2 autres cartes d ue autre valeur, et ue carte d ue troisième valeur.) 3. U brela? (3 cartes de la même valeur, et 2 cartes e format pas ue paire.) 4. U carré? Exercice 11 Ue etreprise de cosmétiques souhaite créer à l itetio de ses vedeurs u paier test de démostratio. L etreprise a 4 gammes de produits : La gamme 1 qui comporte 7 produits. La gamme 2 qui comporte 3 produits. La gamme 3 qui comporte 5 produits. La gamme 4 qui comporte 4 produits. U paier est u esemble de 4 boites, pour être valable, la i-ème boite du paier doit coteir u produit de la gamme i. 1. Combie y a-t-il de paiers valables possibles? 2. U employé peu scrupuleux costitue u paier e choisissat 4 produits différets au hasard das le catalogue. Calculer, par 2 méthodes, la probabilité qu il costitue u paier valable. 3. Le service qualité de l usie, peu scrupuleux lui aussi, pour vérifier qu u paier sortat de l usie soit correct, regarde les 2 premiers produits et valide le paier si ces produits appartieet bie à la gamme 1 et à la gamme 2. Quelle est la probabilité qu u paier soit validé par erreur? Exercice 12 Ue etreprise fabrique des mousquetos pour l escalade. Pour être das les ormes iteratioales, les mousquetos doivet résister à certaies forces qui leur sot appliquées. Ue série de 100 prototypes de mousquetos, tous idépedats, sot soumis aux tests. O atted d eux qu ils résistet à ue force de 22 kn. Il y a 4 issues lorsqu o teste u mousqueto : Catégorie 1 : il casse alors que la force est iférieure à 10 kn. Catégorie 2 : il casse alors que la force est comprise etre 10 kn et 20 kn. Catégorie 3 : il casse alors que la force est comprise etre 20 kn et 22 kn. Catégorie 4 : il résiste à ue force supérieure à 22 kn.

5 Eocés 11 Si o cosidère u mousqueto, o otera C i ="le mousqueto est das la catégorie i". O suppose que pour u mousqueto, o a :P (C 1 )=0.1, P (C 2 )=0.1, P (C 3 )=0.5, P (C 4 )= Quelle est la probabilité que sur les 100 mousquetos, tous résistet à ue force supérieure à 22kN? 2. Quelle est la probabilité de l évéemet A= "sur la série de 100 mousquetos, 20 sot das la catégorie 1, 30 das la catégorie 2, 40 das la catégorie 3 et le reste das la catégorie 4"? Exercice 13 O cosidère les lettres du mot : "ANNIVERSAIRE". 1. Combie de mots peut-o former avec ces lettres? (o e se préoccupera pas du ses des mots formés.) 2. Combie de mots commeçat et fiissat par ue voyelle peut-o former? 3. Combie de mots peut-o former si o veut que toutes les voyelles soiet groupées esemble? Exercice 14 Robert fait ses affaires pour aller skier. So armoire est remplie de 10 paires de gats. Il décide de predre 4 gats, mais, état das la lue, il choisit les gats au hasard. Quelle est la probabilité qu il tire : 1. Deux paires complètes? 2. Au mois ue paire? 3. Ue paire et ue seule? Exercice 15 Soiet A 1,A 2,...,A des évéemets. 1. Démotrer la formule classique P (A 1 A 2 )=P (A 1 )+P (A 2 ) P (A 1 A 2 ). 2. E déduire ue formule similaire pour P (A 1 A 2 A 3 ). 3. Démotrer par récurrece sur la formule P (A 1 A 2... A )= ( 1) k+1 k=1 1 i 1<i 2<...<i k P (A i1... A ik ).

6 12 Chapitre 1 : Déombremet 4. Applicatio. U groupe de amis fot ue soirée esemble et poset leur veste das ue chambre à leur arrivée. Au momet du départ, l esprit plus très clair, o suppose qu ils choisisset leur veste au hasard das le tas. Quelle est la probabilité qu au mois u étudiat ait récupéré sa propre veste? 5. Vérifier le résultat obteu. Exercice 16 Le service après vete d ue etreprise possède 3 cetres téléphoiques pour répodre aux cliets. O suppose que persoes, de faço idépedate, cherchet à joidre le SAV de cette etreprise et que leurs appels sot routés au hasard sur u cetre. 1. Quelle est la probabilité que les appels soiet dirigés vers le même cetre? 2. O pred =5. Calculer, par 2 méthodes, la probabilité que les 3 cetres reçoivet au mois u appel. 3. Gééralisatio : ici, est quelcoque. Calculer la probabilité que les 3 cetres reçoivet au mois u appel. Exercice 17 Après leur match historique à Wimbledo e 2010, les teisme Joh Iser et Nicolas Mahut ot vu le sort les opposer à ouveau lors du 1 er tour e Le but est de calculer la probabilité de cet évéemet. 1. O suppose que le tirage au sort du 1er tour (64 matches pour 128 cocurrets) s effectue etièremet au hasard. (a) Combie y a-t-il de tableaux possibles du 1er tour, du poit de vue du spectateur? (Pour u spectateur, deux tableaux sot idetiques si les matches proposés sot les mêmes!) (b) Combie y a-t-il de tableaux possibles au 1er tour, du poit de vue de l orgaisateur cette fois? (Pour l orgaisateur, l ordre des matches est importat, car il détermiera l edroit où aura lieu le match ; l ititulé de la recotre est aussi importat, u match Joueur 1-Joueur 2 est pas le même que Joueur 2-Joueur 1, pour des raisos de vestiaires par exemple.) (c) E déduire, par deux méthodes, la probabilité pour qu il y ait u tableau opposat Iser et Mahut. 2. O suppose maiteat que parmi les 128 joueurs, il y a 32 têtes de série (les meilleurs joueurs) qui e s affrotet pas au 1 er tour.nimahut,iiser, état tête de série, quelle est la probabilité qu ils s affrotet?

7 Corrigés Correctio des exercices Correctio de l exercice 1 1. Il y a 10 choix pour chacu des chiffres, et 26 choix pour chacue des lettres. Par cotre, le uméro du départemet est pas à choisir. Les choix se multipliet etre eux (structure d arbre). U départemet pouvait doc immatriculer =6, véhicules. 2. Il y a plus 10 4 chiffres possibles mais = 5040 possibilités pour les 4 chiffres. Il y avait doc = plaques possibles avec les 4 premiers chiffres différets. 3. O pouvait doc immatriculer 96 2, = 264, véhicules. 4. Avec le ouveau système, o peut immatriculer = 456, véhicules. Correctio de l exercice 2 1. L expériece aléatoire cosiste ( à) choisir ue partie à élémets de l esemble 100 des 100 stylos. Il y a doc résultats possibles. U résultat favorable ( est ue partie qui ( cotiet ) 1, 2 ou 3 stylos défectueux Ilya parties avec u stylo 1) 1 }{{} } {{ } choix du stylo défectueux choix des stylos foctioat défectueux. ( ( ) 3 97 Ilya parties avec deux stylos défectueux. ( ) 2) 2 }{{} } {{ } choix des 2 stylos défectueux choix des stylos foctioat 3 3) Ilya }{{} choix des 3 stylos défectueux ( 97 3 } {{ } choix des stylos foctioat parties avec trois stylos défectueux. Le ombre total de résultats favorables est doc la somme des résultats précédets, car ce sot des évetualités disjoites. E effet, il existe pas de partie coteat e même temps u stylo défectueux et deux stylos défectueux. La probabilité cherchée est doc ( )( ) ( )( ) ( )( ) ( )

8 14 Chapitre 1 : Déombremet Remarque : 97 O peut aussi utiliser l évéemet cotraire, o trouve alors La solutio éocée est fausse... parce qu elle e doe pas les mêmes résultats que la solutio doée ci-dessus! (Predre par exemple =3, o trouve que la probabilité est , alors que l étudiat trouve ) Mais il est importat, et pas si évidet, de compredre pourquoi l étudiat se trompe. E fait, avec sa techique, l étudiat compte certais "tirages" plusieurs fois. Preos u exemple pour bie compredre. Avec = 3, otos D 1,D 2,D 3 les 3 stylos défectueux et C 1,C 2,...,C 97 les stylos corrects. L étudiat compte les tirages favorables e imagiat u choix à 2 étapes (u arbre) : lors de la première étape, il choisit u stylo défectueux, puis esuite u esemble de 2 autres stylos quelcoques choisis parmi les 99 stylos restats. Avec cette techique, le tirage {D 1,D 2,C 1 }, par exemple, est compté 2 fois : lorsque le stylo défectueux choisi est D 1, et lorsque esuite les deux autres stylos sot {D 2,C 1 }. Ue autre fois, lorsque le stylo défectueux choisi est D 2, et lorsque esuite les deux autres stylos sot {D 1,C 1 }. Néamois, si l étudiat se red compte du problème, il peut retomber sur le bo résultat e retrachat à ce qu il a obteu (14553 tirages favorables) les tirages qu il a comptés 2 fois (les tirages à 2 stylos défectueux, il y e a 291) et e retrachat 2 fois ceux qu il a comptés 3 fois (les tirages avec 3 stylos défectueux, il y e a 1). Or = 14260, lecompteestbo! Cet exercice met e évidece ue erreur classique e déombremet, assez pericieuse : compter plusieurs fois u même objet.. Correctio de l exercice 3 1. Calculos d abord le ombre de grilles pouvat être cochées par le ( joueur ) : il 49 choisit 6 uméros par hasard, l ordre état idifféret. Il y a doc grilles 6 possibles. Par ailleurs, il y a qu ue seule grille de 6 uméros formée par les uméros gagats. La probabilité cherchée est doc ( ). Soit ue chace sur

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE J. 3 398 CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE ANNÉE 04 ÉPREUVE ÉCRITE D ADMISSIBILITÉ N 3 Durée : 3 heures

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

S initier aux probabilités simples «Un jeu de cartes inédit»

S initier aux probabilités simples «Un jeu de cartes inédit» «Un jeu de cartes inédit» 29-31 Niveau 3 Entraînement 1 Objectifs S entraîner à estimer une probabilité par déduction. Applications (exemples) En classe : tout ce qui réclame une lecture attentive d une

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Un peu de dénombrement

Un peu de dénombrement Araud de Sait Julie Trempli pour la prépa Thème 3 : trempli biomial Itroductio Voici quelques objectifs de ce thème : recotrer quelques exemples de déombremet se familiariser avec les coefficiets biomiaux

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé?

Sujet 1. Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Sujet 1 Problème 1 [2p] Lors d une course de chevaux, il y a 10 chevaux au départ. Combien de possibilités pour le tiercé? Il faut choisir 3 chevaux parmi 10, et l ordre compte. Il y a 10 possibilités

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Combien existe-t-il de dominos dans un jeu complet? On pourra donner jusqu à cinq démonstrations diffétentes. Exercice 2 [ Indication

Plus en détail

ProbaStat1 Quelques rudiments de dénombrement...

ProbaStat1 Quelques rudiments de dénombrement... ProbaStat Quelques rudimets de déombremet... OBJECTIFS DU CHAPITRE ProbaStat- Utiliser des arbres, des cases, des diagrammes, des tableaux pour déombrer ProbaStat-2 Maipuler et utiliser à bo esciet les

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Automates 1 Présentation

Automates 1 Présentation Automates Présetatio Présetatio d u automate 2 Ue maière de désiger l automate de l exemple 3 Défiitio géérale 4 U exemple d automate 5 Mot costruit sur l alphabet C 6 L esemble de tous les mots das u

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire Rappels Symboles Combinatoires Tirage de p parmi n éléments avec remise sans remise ordre important Bn p n p A p n n! pn pq! ordre non-important - Cn p n! pn pq!p! Coefficients Binomiaux

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

LA PARTIE CLASSIQUE par Amandine Stock & Maxime Lemaire

LA PARTIE CLASSIQUE par Amandine Stock & Maxime Lemaire LA PARTIE CLASSIQUE par Amandine Stock & Maxime Lemaire La partie classique est la base du jeu de dames pour les débutants. La stratégie est la suivante : jouer de telle manière qu en fin de partie, l

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

LES MESURES CLéS DU PROJET DE LOI économie SOCIALE ET SOLIDAIRE

LES MESURES CLéS DU PROJET DE LOI économie SOCIALE ET SOLIDAIRE LES MESURES CLéS DU PROJET DE LOI économie SOCIALE ET SOLIDAIRE Qu est-ce que l écoomie sociale et solidaire? Qu est-ce que l écoomie sociale et solidaire? Scop Scic Coopératives Etreprises sociales Fiaceurs

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Feuille TD 1 : Probabilités discrètes, dénombrement

Feuille TD 1 : Probabilités discrètes, dénombrement Université de Nice-Sophia Antipolis -L2 MASS - Probabilités Feuille TD 1 : Probabilités discrètes, dénombrement Exercice 1 : 1. On doit choisir 2 représentants dans une classe de 40 élèves. Quel est le

Plus en détail

DENOMBREMENTS ET PROBABILITES

DENOMBREMENTS ET PROBABILITES I Cardiaux des esembles O décompte ici les élémets d u esemble, d ue itersectio, d ue réuio. Rappels : Le cardial d u esemble est le ombre de ses élémets. Soit u esemble E de cardial, et deux sous-esembles

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité Table des matières PROBABILITÉS Résumé de cours I) Introduction, aperçu historique 1 II) Loi de probabilité 1 III)Probabilité d évènement 2 1. Le vocabulaire des probabilités................................

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Aperçu. Matériel. But du jeu. 3 à 10 joueurs. A partir de 10 ans. 15 minutes. scores)

Aperçu. Matériel. But du jeu. 3 à 10 joueurs. A partir de 10 ans. 15 minutes. scores) Aperçu 3 à 10 joueurs A partir de 10 ans 15 minutes Matériel - 40 cartes dessins - 6 cartes votes (A à F) - 54 mini-cartes scores (de 1 à 3 en triple exemplaire pour chaque carte vote) - 1 Pochette à fenêtres,

Plus en détail

B B A C U C C U C G 2 E 0 B 0

B B A C U C C U C G 2 E 0 B 0 Test psychotechnique ISI : Mastermind Test psychotechnique ISI : Mastermind Le Mastermind est un jeu de société, créé danss les années 70, opposant deux adversaires et dans lequel l un des joueurs doit

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson. Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière

Plus en détail

LM206 : Initiation à Scilab

LM206 : Initiation à Scilab Université Pierre et Marie Curie Année 2013-2014 Licence période 2 7 Au hasard LM206 : Initiation à Scilab Cette séance traite de quelques possibilités de simulation en probabilités et statistiques. Après

Plus en détail

Exercice n 1. Exercice n 2

Exercice n 1. Exercice n 2 Exercice n Un sac contient une boule verte, une boule rouge et une boule bleue. On tire successivement deux boules du sac. Mais avant de tirer la deuxième boule, on remet dans le sac la première boule

Plus en détail

Ce type de compresseur est aussi appelée compresseur volumetrique.

Ce type de compresseur est aussi appelée compresseur volumetrique. Chapitre 4 Compresseurs Buts 1. Savoir que das ce cas if faut se redre compte qu il y a des effets thermique 2. Savoir qu il y a ue limite á l augmetatio de la pressio de gaz 3. Savoir quelles istabilités

Plus en détail

Les p tits problèmes pour chercher

Les p tits problèmes pour chercher fiche n Emma danse. Elle fait pas en avant, pas en arrière et pas en avant. A-t-elle avancé ou reculé? Lucas veut fabriquer une tour avec trois cubes de couleurs différentes : jaune, bleu et vert. Dessine

Plus en détail

COMMENT CRÉER UN «DOODLE»?

COMMENT CRÉER UN «DOODLE»? COMMENT CRÉER UN «DOODLE»? Pour arriver à trouver LA date qui convient le mieux à de nombreuses personnes (pour une réunion, une sortie, etc.) rien de tel que l outil «Doodle»! Il vous permettra d éviter

Plus en détail

LES PROBABILITÉS DE GAINS

LES PROBABILITÉS DE GAINS LES PROBABILITÉS DE GAINS JOUER À DES JEUX DE HASARD La seule chose que tous les jeux de hasard ont en commun, c est que le fait de gagner ou de perdre se fait de façon aléatoire. Même si le rêve de gagner

Plus en détail

Guide. des paris. Comment ça marche? www.pmur.ch

Guide. des paris. Comment ça marche? www.pmur.ch www.pmur.ch Comment ça marche? Cayenne.ch Illustrations: Alain Robert des paris 9 Guide Pari Mutuel Urbain Romand Société de la Loterie de la Suisse Romande Rue Marterey 13, Case postale 6744, 1002 Lausanne

Plus en détail

COMMENT JOUER? Emplacements possibles : dans cet exemple, il existe cinq emplacements possibles pour positionner l homme.

COMMENT JOUER? Emplacements possibles : dans cet exemple, il existe cinq emplacements possibles pour positionner l homme. COMMENT JOUER? Le premier joueur à être seul dans un tour à avoir posé sa dernière carte est déclaré vainqueur. A chaque fois que c est à son tour de jouer, un joueur doit tenter de poser l une de ses

Plus en détail

Outil d Aide au Développement et à l Organisation des Clubs

Outil d Aide au Développement et à l Organisation des Clubs Outil d Aide au Développement et à l Organisation des Clubs Programme de la formation Rappel général Le Paramétrage Gestion des adhérents: différence entre adhérent et licencié Les licences Réforme des

Plus en détail

Mathématiques Le 22/03/2013. TS DS 5 4 heures

Mathématiques Le 22/03/2013. TS DS 5 4 heures Mathématiques Le /03/03 TS DS 4 heures Tous les élèves traiterot les exercices, et 3 Seuls les élèves o spécialistes traiterot l exercice 4 Les élèves spécialistes traiterot, sur ue copie séparée, u autre

Plus en détail

VARIABLE ALÉATOIRE ET LOI BINOMIALE

VARIABLE ALÉATOIRE ET LOI BINOMIALE VARIABLE ALÉATOIRE ET LOI BINOMIALE Première S - Chapitre 9 Table des matières I Variable aléatoire et loi de probabilité 2 I Variable aléatoire.......................................... 2 I 2 Loi de probabilité..........................................

Plus en détail

Ce rêve est devenu réalité!

Ce rêve est devenu réalité! Vous venez de trouver une règle mise en ligne par un collectionneur qui, depuis 1998, partage sa collection de jeux de société et sa passion sur Internet. Imaginez que vous puissiez accéder, jour et nuit,

Plus en détail

Matériel de jeu. Déroulement et but du jeu

Matériel de jeu. Déroulement et but du jeu Un jeu de Kimmo Sorsamo Au bazar du Caire, le marché bat déjà son plein très tôt le matin. Des tapis, des huiles et des épices fines sont prêts à être vendus. Mais seul un stand aura du succès. 2 à 4 joueurs,

Plus en détail

Probabilités. I - Expérience aléatoire. II - Evénements

Probabilités. I - Expérience aléatoire. II - Evénements Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir

Plus en détail

Décalage de paie : position de l URSSAF

Décalage de paie : position de l URSSAF Pégase 3 Décalage de paie : position de l URSSAF Dernière révision le 19/11/2007 http://www.micromegas.fr pegase3@micromegas.fr Sommaire Principe... 4 Historique... 4 Décret de mars 1972... 4 Décret novembre

Plus en détail

a)390 + 520 + 150 b)702 + 159 +100

a)390 + 520 + 150 b)702 + 159 +100 Ex 1 : Calcule un ordre de grandeur du résultat et indique s il sera supérieur à 1 000 L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail