Cours de Probabilités et de Statistique

Dimension: px
Commencer à balayer dès la page:

Download "Cours de Probabilités et de Statistique"

Transcription

1 Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est

2 Cours de Proba-Stat 2 L1.2 Science-Éco

3 Chapitre Notions de théorie des ensembles Ensembles et évènements L étude d une expérience aléatoire commence par la définition de l ensemble Ω de tous les résultats possibles. Exemple Une partie de pile ou face : Ω = {P, F }. 2. Un lancer de dé : Ω = {1, 2, 3, 4, 5, 6}. 3. Deux parties de pile ou face : Ω = {(P, P ); (P, F ); (F, P ); (F, F )}. Dans ce qui précède, il est important de distinguer l ensemble à deux éléments {P, F } et le couple ordonné (P, F ). Dans le premier cas on ne tiens pas compte de l ordre des éléments, alors que dans le second cas l ordre est important. Ainsi, on a {P, F } = {F, P } mais (P, F ) (F, P ). Définition 1.1 : Un ensemble est une collection d objets appelés éléments de l ensemble. On note souvent les ensembles avec des majuscules et leurs éléments avec des minuscules. Exemple La notation ω Ω signifie que ω est un élément de l ensemble Ω. 3

4 1.1. ENSEMBLES ET ÉVÈNEMENTS Définition 1.2 : On dit qu un ensemble E est inclus (ou contenu) dans un ensemble F, et on note E F, si les éléments de E sont tous des éléments de F. Exemple Avec les espaces usuels, on a les inclusions suivantes : N Z Q R. Définition 1.3 : Deux ensembles E et F sont égaux si et seulement si ils ont les mêmes éléments, ou encore si et seulement si E F et F E. Définition 1.4 : 1. Soit Ω un ensemble fini. Le nombre d éléments de Ω est alors appelé cardinal de Ω et noté card Ω. 2. L ensemble vide, noté, a un cardinal nul. 3. Un ensemble de cardinal égal à 1 (resp. 2) est appelé singleton (resp. paire). Remarque 1.5 : Soit E un ensemble, les inclusions suivantes sont toujours vérifiées : E. E E. Définition 1.6 : 1. Soient E et F deux ensembles. On appelle produit cartésien de E et F, et on note E F, l ensemble des couples de la forme (a, b) avec a E et b F. 2. Plus généralement, si E 1, E 2,..., E n sont n ensembles, leur produit cartésien est l ensemble E 1 E 2 E n ou forme (x 1, x 2,..., x n ) avec x i E i pour i = 1, 2,..., n. n E i des n-uplets de la Exemple R 2 = R R = {(x, y), x R, y R}. Cours de Proba-Stat 4 L1.2 Science-Éco

5 CHAPITRE 1. NOTIONS DE THÉORIE DES ENSEMBLES Propriété 1.7 : Soient E 1, E 2,..., E n des ensembles finis, on a : card (E 1 E 2 E n ) = n card (E i ). Définition 1.8 : En théorie des ensembles, l ensemble des parties d un ensemble Ω est noté P(Ω). Propriété 1.9 : Si E est un ensemble fini de cardinal n, alors card (P(E)) = 2 n. Exemple Pour Ω =, P(Ω) = { }. P(Ω) est alors un singleton. Pour Ω = {1}, P(Ω) = {, {1}}. Pour Ω = {P, F }, P(Ω) = { ; {P }; {F }; {P, F }}. Remarque 1.10 : On peut remarquer dans les exemples précédents que la Proposition 1.9 est vérifiée. 1.2 Opérations sur les parties d un ensemble Soit Ω un ensemble fixé. On définit les opérations suivantes sur les parties de Ω. Définition 1.11 : Soient A et B deux parties de Ω. 1. On appelle complémentaire (dans Ω) de A l ensemble, noté Ω A ou A c, des éléments de Ω qui ne sont pas des éléments de A : A c = {w Ω, w A}. 2. On appelle union (ou réunion) de A et B, et on note A B, l ensemble des éléments de Ω appartenant à A ou à B : A B = {w Ω, w A ou w B}. 3. On appelle intersection de A et B, et on note A B, l ensemble des éléments de Ω appartenant à A et à B : A B = {w Ω, ω A et ω B}. Cours de Proba-Stat 5 L1.2 Science-Éco

6 1.2. OPÉRATIONS SUR LES PARTIES D UN ENSEMBLE Remarque 1.12 : 1. La notation Ω A pour le complémentaire de A est utile lorsqu on peut être amené à considérer A comme sous-ensemble de plusieurs ensembles. Mais c est rarement le cas et on lui préfère la notation plus simple A c. 2. Le ou de la définition de la réunion n est pas un ou exclusif, c est-à-dire que des éléments de l union peuvent être à la fois dans A et dans B. On a donc l inclusion suivante : A B A B. Propriété 1.13 : Soit Ω un ensemble et A et B deux sous-ensembles de Ω. Alors, les propriétés suivantes sont vérifiées : 1. Ω c =, c = Ω, (A c ) c = A. 2. Commutativité de la réunion et de l intersection : 3. Associativité : A B = B A, A B = B A. (A B) C = A (B C) et (A B) C = A (B C). 4. A =, A Ω = A, A = A, A Ω = Ω. 5. Si A et B sont des ensembles finis, card (A B) = card (A) + card (B) card (A B). Remarque 1.14 : On définit aussi la réunion et l intersection d une famille finie A 1, A 2,..., A n d ensembles de la façon suivante : n A i = {ω Ω, i {1, 2,..., n} ω A i }, n A i = {ω Ω, i {1, 2,..., n} ω A i }, La proposition suivante énonce les propriétés de distributivité de l union par rapport à l intersection et de l intersection par rapport à l union. Proposition 1.15 : Si A, B et C sont des parties de Ω, A (B C) = (A B) (A C) et A (B C) = (A B) (A C). Démonstration : Pour montrer que A (B C) = (A B) (A C), il est nécessaire de montrer la double inclusion. Cours de Proba-Stat 6 L1.2 Science-Éco

7 CHAPITRE 1. NOTIONS DE THÉORIE DES ENSEMBLES Soit ω A (B C). Si ω A, comme on a A A B et A A C, on sait que ω (A B) (A C). Sinon, si ω B C, comme on a B A B et C A C, on a B C (A B) (A C). Donc, ω (A B) (A C). Par conséquent, dans tous les cas on a ω (A B) (A C). Ainsi, on a l inclusion suivante : A (B C) (A B) (A C). Soit ω (A B) (A C). Si ω A, alors ω A (B C). Sinon, si ω A, alors ω B C. Donc, ω A (B C). Par conséquent, dans tous les cas on a ω A (B C). On a donc l inclusion suivante : Ce qui montre l égalité : (A B) (A C) A (B C). A (B C) = (A B) (A C). L autre égalité est laissée en exercice. Proposition 1.16 : Si A et B sont deux parties de Ω, on a : (A B) c = A c B c et (A B) c = A c B c. Remarque 1.17 : Plus généralement, on a : ( n ) c ( n n ) c n A i = A c i et A i = A c i. Définition 1.18 : Soit Ω un ensemble et A 1, A 2,..., A n n sous-ensembles de Ω. On dit que ces sous-ensembles forment une partition de Ω si : 1. A i pour tout i = 1, 2,..., n. 2. A i A j = si i j. n 3. A i = Ω. 1.3 Dénombrement Soit E un ensemble de n éléments et k n. Cours de Proba-Stat 7 L1.2 Science-Éco

8 1.3. DÉNOMBREMENT Arrangements et permutations Définition 1.19 : On appelle arrangements de k éléments de E ou k- arrangements de E, et on note A k n, un k-uplet (ordonné) d éléments deux à deux distincts de E. Remarque 1.20 : Le nombre n dans la notation A k n renvoie au cardinal de E. Il est évident que si n < k alors A k n = 0. Sinon, pour le premier élément du k-uplet on a n choix possibles, on a n 1 choix pour le second,...ce qui nous donne l expression suivante pour A k n : Propriété 1.21 : Le nombre d arrangements de k éléments d un ensemble à n éléments est donné par : A k n = n (n 1) (n k + 1). Remarque 1.22 : Quand k = n, on parle plutôt de permutation que d arrangement. On a donc que le nombre de permutations d un ensemble à n éléments est égal à : A n n = n (n 1) 2 1 = n!. Exercice 1.23 : Dans une course de chevaux avec 15 partants, combien y a-t-il de tiercés dans l ordre différents possibles? Remarque 1.24 : A k n est en fait le nombre d injections que l on peut faire d un ensemble à k éléments vers un ensemble à n éléments. Propriété 1.25 : L expression de A k n peut aussi être donnée par : A k n = n! (n k)!, 0 k n, avec 0! = 1 et n! = n (n 1) Combinaisons Définition 1.26 : On appelle combinaison ( ) de k éléments de l ensemble E, ou n k-combinaison de E, et on note Cn k ou, tout sous-ensemble de E ayant k k éléments. Remarque 1.27 : Ici, contrairement aux arrangements, l ordre des éléments n a pas d importance. Cours de Proba-Stat 8 L1.2 Science-Éco

9 CHAPITRE 1. NOTIONS DE THÉORIE DES ENSEMBLES Exemple On tire au hasard 5 cartes d un jeu de 32 cartes (main de poker). Le résultat de cette expérience est une combinaison de 5 cartes parmi 32. Il est évident que si n < k, C k n = 0. Sinon, à chaque k-combinaison, on fait correspondre k! k-arrangements distincts. Exemple À la 3-combinaison {a, b, c}, on fait correspondre les 3! = 6 arrangements : (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a). On a donc la propriété suivante : Propriété 1.28 : Le nombre de combinaisons à k éléments pris parmi n est donné par : C k n k! = A k n, soit C k n = n! (n k)!k!. Exercice 1.29 : 1. Combien y a-t-il de mains de poker différentes? 2. Combien y a-t-il de tiercés dans l ordre ou non sur une course avec 15 partants? Propriété 1.30 : 1. C 0 n = C n n = 1, C 1 n = C n 1 n = n, C 2 n = n(n 1)/2. 2. C k n = C n k n, 0 k n. 3. C k 1 n 1 + C k n 1 = C k n, 1 k n. Remarque 1.31 : La dernière porpriété permet de construire le triangle de Pascal, dont la n ième ligne donne les coefficients C k n pour k = 0,..., n Théorème 1.32 (Binôme de Newton) : Pour tous nombres réels a et b et pour tout entier naturel n 1, on a :... (a + b) n = Cna k k b n k. Cours de Proba-Stat 9 L1.2 Science-Éco

10 1.3. DÉNOMBREMENT Démonstration : On raisonne par récurrence sur n. 1. Pour n = 1, on a (a + b) 1 = a + b et C 0 1a 0 b 1 + C 1 1a 1 b 0 = b + a. L égalité est donc bien vérifiée au rang n = On suppose que l égalité est satisfaite pour un certain entier n : (a + b) n = Cna k k b n k. 3. On va maintenant montrer qu elle est aussi vraie au rang n + 1. On écrit : (a + b) n+1 = (a + b) (a + b) n ( ) = (a + b) Cna k k b n k = Cna k k+1 b n k + Cna k k b n k+1 n+1 = Cn j 1 a j b n+1 j + j=1 = a n+1 + j=1 n+1 = Cn+1a j j b n+1 j. j=0 Cna k k b n k (C j 1 n + C j n)a j b n+1 j + b n+1 Cours de Proba-Stat 10 L1.2 Science-Éco

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Analyse combinatoire

Analyse combinatoire Mathématiques Générales B Université de Genève Sylvain Sardy 6 mars 2008 Le but de l analyse combinatoire (techniques de dénombrement est d apprendre à compter le nombre d éléments d un ensemble fini de

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Chapitre 1 : Analyse Combinatoire

Chapitre 1 : Analyse Combinatoire Chapitre 1 : Analyse Combinatoire L2 éco-gestion, option AEM (L2 éco-gestion, option AEM) Chapitre 1 : Analyse Combinatoire 1 / 23 Question du jour Pensez-vous que dans cette assemblée, deux personnes

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Fondamentaux pour les Mathématiques et l Informatique :

Fondamentaux pour les Mathématiques et l Informatique : Université Bordeaux 1 Licence de Sciences, Technologies, Santé Mathématiques, Informatique, Sciences de la Matière et Ingénierie M1MI1002 Fondamentaux pour les Mathématiques et l Informatique Fondamentaux

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Chapitre 1. Ensembles et sous-ensembles

Chapitre 1. Ensembles et sous-ensembles Chapitre 1 Ensembles et sous-ensembles 1. Notion d ensemble - Elément d un ensemble Un ensemble est une collection d objets satisfaisant un certain nombre de propriétés et chacun de ces objets est appelé

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

B03. Ensembles, applications, relations, groupes

B03. Ensembles, applications, relations, groupes B03. Ensembles, applications, relations, groupes Bernard Le Stum Université de Rennes 1 Version du 6 janvier 2006 Table des matières 1 Calcul propositionnel 2 2 Ensembles 5 3 Relations 7 4 Fonctions, applications

Plus en détail

1 Exercices d introdution

1 Exercices d introdution 1 Exercices d introdution Exercice 1 (Des cas usuels) 1. Combien y a-t-il de codes possibles pour une carte bleue? Réponse : 10 4. 2. Combien y a-t-il de numéros de téléphone commençant par 0694? Réponse

Plus en détail

TD: Ensembles, applications, dénombrement

TD: Ensembles, applications, dénombrement Université de Provence Année 011/1 Licence Math Info ème année S3 Fondements de l Informatique 1 Ensembles et fonctions TD: Ensembles, applications, dénombrement 1. On suppose que l ensemble de tous les

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Leçon 1: les entiers

Leçon 1: les entiers Leçon 1: les entiers L ensemble N des entiers naturels Compter, dresser des listes, classer et comparer des objets interviennent dans de multiples activités humaines. Les nombres entiers naturels sont

Plus en détail

Dénombrement Probabilité uniforme sur un ensemble fini

Dénombrement Probabilité uniforme sur un ensemble fini UPV - MathsL1S1 1 II Dénombrement Dénombrement Probabilité uniforme sur un ensemble fini I Dénombrement 1) Factorielles : Pour n entier 1, il y a : n! = n.(n - 1). (n - 2) 2.1 façons d aligner n objets

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

Cours d algebre pour la licence et le Capes

Cours d algebre pour la licence et le Capes Cours d algebre pour la licence et le Capes Jean-Étienne ROMBALDI 6 juillet 007 ii Table des matières Avant-propos Notation v vii 1 Éléments de logique et de théorie des ensembles 1 11 Quelques notions

Plus en détail

Probabilités et statistiques dans le traitement de données expérimentales

Probabilités et statistiques dans le traitement de données expérimentales Probabilités et statistiques dans le traitement de données expérimentales S. LESECQ, B. RAISON IUT1, GEII 1 Module MC-M1 2009-2010 1 Contenu de l enseignement Analyse combinatoire Probabilités Variables

Plus en détail

1. Probabilités élémentaires

1. Probabilités élémentaires 1. Probabilités élémentaires MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: probabilités 1/48 Plan 1. Expériences aléatoires et événements 2. Probabilités 3. Analyse combinatoire

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements...

PROBABILITÉS. I Vocabulaire des événements 2 I.1 Vocabulaire... 2 I.2 Intersection et réunion d événements... 2 I.3 Représentation des évenements... PROBABILITÉS Table des matières I Vocabulaire des événements 2 I.1 Vocabulaire.............................................. 2 I.2 Intersection et réunion d événements................................ 2

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité

PROBABILITÉS. I) Introduction, aperçu historique. Loi de probabilité Table des matières PROBABILITÉS Résumé de cours I) Introduction, aperçu historique 1 II) Loi de probabilité 1 III)Probabilité d évènement 2 1. Le vocabulaire des probabilités................................

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Mathématiques pour l'informatique? Au programme. Objectif du semestre

Mathématiques pour l'informatique? Au programme. Objectif du semestre Mathématiques pour l'informatique? Calcul des Ensembles David Teller 09/02/2007 Q L'informatique, au juste, c'est quoi? A L'informatique, c'est : de l'électronique de la théorie des processus de la linguistique

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch

Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) benjamin@leroy-beaulieu.ch Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Mathématiques discrètes Probabilités discrètes Cours 30, MATH/COSC 1056F

Mathématiques discrètes Probabilités discrètes Cours 30, MATH/COSC 1056F Mathématiques discrètes Probabilités discrètes Cours 30, MATH/COSC 1056F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne 27 novembre 2008, Sudbury Julien Dompierre

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Éléments de logique et de théorie des ensembles

Éléments de logique et de théorie des ensembles 1 Éléments de logique et de théorie des ensembles Pour les exemples et exercices traités dans ce chapitre les ensembles usuels de nombres entiers, rationnels réels et complexes sont supposés connus, au

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail

le triangle de Pascal - le binôme de Newton

le triangle de Pascal - le binôme de Newton 1 / 51 le triangle de Pascal - le binôme de Newton une introduction J-P SPRIET 2015 2 / 51 Plan Voici un exposé présentant le triangle de Pascal et une application au binôme de Newton. 1 2 3 / 51 Plan

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

L2-S4 : 2014-2015. Support de cours. Statistique & Probabilités Chapitre 1 : Analyse combinatoire

L2-S4 : 2014-2015. Support de cours. Statistique & Probabilités Chapitre 1 : Analyse combinatoire L2-S4 : 2014-2015 Suort de cours Statistique & Probabilités Chaitre 1 : Analyse combinatoire R. Abdesselam UFR de Sciences Economiques et de Gestion Université Lumière Lyon 2, Camus Berges du Rhône Rafik.abdesselam@univ-lyon2.fr

Plus en détail

Ensembles et applications. Motivations. Exo7

Ensembles et applications. Motivations. Exo7 o7 nsembles et applications Vidéo partie 1. nsembles Vidéo partie 2. Applications Vidéo partie 3. Injection, surjection, bijection Vidéo partie 4. nsembles finis Vidéo partie 5. Relation d'équivalence

Plus en détail

Thème 3 : ensembles, espaces de probabilités finis

Thème 3 : ensembles, espaces de probabilités finis Thème 3 : ensembles, espaces de probabilités finis Serge Cohen, Monique Pontier, Pascal J. Thomas Septembre 2004 1 Généralités : ensembles et parties d un ensemble Définition 1.1 On appelle ensemble une

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Cahier de textes Mathématiques

Cahier de textes Mathématiques Cahier de textes Mathématiques Mercredi 6 janvier : cours 2h Début du chapitre 12 - Convergence de suites réelles : 12.1 Convergence de suites : suites convergentes, limites de suites convergentes, unicité

Plus en détail

Espaces de probabilités.

Espaces de probabilités. Université Pierre et Marie Curie 2010-2011 Probabilités et statistiques - LM345 Feuille 2 Espaces de probabilités. 1. Donner un exemple d'une famille de parties d'un ensemble qui ne soit pas une tribu.

Plus en détail

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30 Table des matières 1 Généralités 3 1.1 Un peu de logique................................. 3 1.1.1 Vocabulaire................................ 3 1.1.2 Opérations logiques............................ 4 1.1.3

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités.

LEÇON N 5 : 5.1 Probabilité conditionnelle. Pré-requis : Opérations sur les ensembles, cardinaux ; Espaces probabilisés ; Calcul de probabilités. LEÇON N 5 : Probabilité conditionnelle, indépendance de deux événements (on se limitera au cas où l ensemble d épreuves des fini). Applications à des calculs de probabilité. Pré-requis : Opérations sur

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1 Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................

Plus en détail

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen Cours de DEUG Probabilités et Statistiques Avner Bar-Hen Université Aix-Marseille III 3 Table des matières Table des matières i Analyse combinatoire 1 1 Arrangements................................ 1 1.1

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités Master Génie des Systèmes Industriels, mentions ACCIE et RIM Université du Littoral - Côte d Opale, La Citadelle Laurent SMOCH (smoch@lmpa.univ-littoral.fr)

Plus en détail

DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations.

DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations. DOSSIER N 01 Question : Présenter un choix d exercices sur le thème suivant : Exemples simples de problèmes de dénombrement dans différentes situations. Consignes de l épreuve : Pendant votre préparation

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud Cours de mathématiques ECS 1 ère année BÉGYN Arnaud 12/11/2012 2 Introduction Ce manuscrit regroupe des notes de cours de mathématiques pour une classe d ECS première année. J ai écris ces notes lors de

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

Théorie des ensembles et combinatoire

Théorie des ensembles et combinatoire Théorie des ensembles et combinatoire Valentin Vinoles 24 janvier 2012 Table des matières 1 Introduction 2 2 Théorie des ensembles 3 2.1 Définition............................................ 3 2.2 Aartenance

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

UN PEU DE DÉNOMBREMENT TABLE DES MATIÈRES

UN PEU DE DÉNOMBREMENT TABLE DES MATIÈRES UN PEU DE DÉNOMBREMENT D. SAMBOU TABLE DES MATIÈRES 1. Sur la Théorie des ensembles 2 2. Sur les p-listes 4 3. Sur les Arrangements 6 4. Sur les Combinaisons 10 1.Outre des lacunes sur la maîtrise des

Plus en détail

Feuille TD 1 : Probabilités discrètes, dénombrement

Feuille TD 1 : Probabilités discrètes, dénombrement Université de Nice-Sophia Antipolis -L2 MASS - Probabilités Feuille TD 1 : Probabilités discrètes, dénombrement Exercice 1 : 1. On doit choisir 2 représentants dans une classe de 40 élèves. Quel est le

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff

Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations. Serge Iovleff Mathématiques Pour l Informatique I : Théorie des Ensembles et Relations Serge Iovleff 13 septembre 2004 Quelques références Ma Page http ://www.iut-info.univ-lille1.fr/ iovleff Un Cours réalisé par des

Plus en détail

Probabilités et statistique

Probabilités et statistique Probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon les termes de la licence

Plus en détail

Statistique et Informatique (LI323)

Statistique et Informatique (LI323) Statistique et Informatique (LI323) Nicolas Baskiotis - Hugues Richard Université Pierre et Marie Curie (UPMC) Laboratoire d Informatique de Paris 6 (LIP6) (Supports de cours : N. Usunier) N. Usunier N.

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Ensembles. Fonctions. Cardinaux

Ensembles. Fonctions. Cardinaux Université Lens Année 2003-2004 MIAS 1 ère année feuille n 1 Ensembles. Fonctions. Cardinaux Exercice 1 Montrer par contraposition les assertions suivantes, E étant un ensemble : 1. A, B P(E) (A B = A

Plus en détail

indépendance, indépendance conditionnelle

indépendance, indépendance conditionnelle Plan du cours 1.2 RFIDEC cours 1 : Rappels de probas/stats (2/3) Christophe Gonzales LIP6 Université Paris 6, France 1 probabilités : événements, définition 2 probabilités conditionnelles 3 formule de

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Combien existe-t-il de dominos dans un jeu complet? On pourra donner jusqu à cinq démonstrations diffétentes. Exercice 2 [ Indication

Plus en détail

Corrigé de l examen partiel du 19 novembre 2011

Corrigé de l examen partiel du 19 novembre 2011 Université Paris Diderot Langage Mathématique (LM1) Département Sciences Exactes 2011-2012 Corrigé de l examen partiel du 19 novembre 2011 Durée : 3 heures Exercice 1 Dans les expressions suivantes, les

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Relations d ordre et relations d équivalence

Relations d ordre et relations d équivalence CHAPITRE 1 Relations d ordre et relations d équivalence 1.1 Définition Une relation sur un ensemble E est un sous-ensemble R de l ensemble E E, produit cartésien de E par lui-même. Par exemple, si E =

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Base : une axiomatique

Base : une axiomatique Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail

NOTES DE COURS (SUPPLÉMENTAIRES) POUR LE COURS MATHÉMATIQUES DISCRÈTES MAT1500. References

NOTES DE COURS (SUPPLÉMENTAIRES) POUR LE COURS MATHÉMATIQUES DISCRÈTES MAT1500. References NOTES DE COURS (SUPPLÉMENTAIRES) POUR LE COURS MATHÉMATIQUES DISCRÈTES MAT1500 ABRAHAM BROER References [R] Kenneth H. Rosen, Mathématiques discrètes, Édition révisée Chenelière McGraw-Hill, 2002. 1. But

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail

(3.22) Interchangeabilité mutuelle : p q r p q r

(3.22) Interchangeabilité mutuelle : p q r p q r Préséance (priorité) des opérateurs (1) [x := e] (substitution textuelle) (prioritéélevée) (2). (application de fonction) (3) + P (opérateurs unaires préfixes) (4) / mod pgcd (5) + (opérateurs binaires)

Plus en détail

RAPPELS D ANALYSE COMBINATOIRE

RAPPELS D ANALYSE COMBINATOIRE CHAPITRE 2 RAPPELS D ANALYSE COMBINATOIRE Lorsque l univers Ω d une expérience est fini, on utilise l équiprobabilité sur (Ω, P(Ω)) chaque fois qu aucun événement simple n a de privilège sur les autres.

Plus en détail

L3-2014/2015 Mercredi 14 janvier Mathématiques Discrètes. Examen. Exercice 1.

L3-2014/2015 Mercredi 14 janvier Mathématiques Discrètes. Examen. Exercice 1. Examen Exercice 1. Soit N un entier naturel 2. On dispose de trois jeux de N cartes (numérotées de 1 à N), chaque jeu étant d une couleur différente : rouge, bleue et verte. On se propose de distribuer

Plus en détail

Intervalles Cours. Intervalles Cours. SOS DEVOIRS CORRIGES (marque déposée)

Intervalles Cours. Intervalles Cours. SOS DEVOIRS CORRIGES (marque déposée) Intervalles Cours CHAPITRE 1 : Notion d intervalle 1) Définition 2) Représentations d intervalles 3) Vocabulaire 4) Notations d ensembles CHAPITRE 2 : Intersection d intervalles 1) Définition 2) Intervalles

Plus en détail