BACCALAUREAT GENERAL MATHÉMATIQUES

Dimension: px
Commencer à balayer dès la page:

Download "BACCALAUREAT GENERAL MATHÉMATIQUES"

Transcription

1 BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la réglementation en vigueur Le sujet est composé de 4 exercices indépendants Le candidat doit traiter tous les exercices Dans chaque exercice, le candidat peut admettre un résultat précédemment donnés dans le texte pour aborder les questions suivantes, à condition de l indiquer clairement sur la copie Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura développée Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l'appréciation des copies Page 1 / 5

2 Exercice 1 (6 points) La courbe C ci-dessous représente, dans un repère orthonormé, une fonction f définie et dérivable sur 0; On note la fonction dérivée de La courbe C passe par les points ;0 et 1;1 La courbe C admet une tangente parallèle à l axe des abscisses au point d abscisse 1 et la tangente au point d abscisse e passe par le point 0; 1 Déterminer une équation de la droite (AD) Aucune justification n est exigée pour les réponses à la question 2 2 Par lectures graphiques : a) Déterminer 1 et 1 b) Dresser le tableau de signes de sur 0 ; 5 c) Dresser le tableau de signes de sur 0 ; 5 d) Soit une primitive de sur ]0 ; + [ Déterminer les variations de sur 0 ; 5 e) Encadrer par deux entiers consécutifs l aire (en unités d aire) du domaine délimité par l axe des abscisses, la courbe C et les droites d équation 4 et 5 Page 2 / 5

3 Exercice 2 (8 points) Candidats de la série SES n ayant pas suivi l enseignement de spécialité et candidats de la série L Une entreprise fabrique des appareils électroniques La probabilité pour qu un appareil ainsi fabriqué fonctionne parfaitement est On note l événement «l appareil fonctionne parfaitement» et l événement contraire de 1 Calculer la probabilité de l événement 2 On fait subir à chaque appareil un test avant sa livraison Quand un appareil est en parfait état, il est toujours accepté à l issue du test Quand un appareil n est pas en parfait état de fonctionnement, il peut être néanmoins accepté avec une probabilité de On note T l événement «l appareil est accepté à l issue du test» (a) Construire un arbre pondéré résumant la situation (b) Montrer que la probabilité de est (c) Déterminer la probabilité de l événement «l appareil n est pas en parfait état de fonctionnement et il est accepté à l issue du test» (d) Montrer que la probabilité de est (e) L appareil vient d être accepté Calculer la probabilité qu il est en parfait état Page 3 / 5

4 Exercice 2 (8 points) Candidats de la série SES ayant suivi l enseignement de spécialité Une grande ville a créé un parc pédagogique sur le thème de l écologie, jardin qui doit être visité par la suite par la majorité des classes de cette ville Ce jardin comporte six zones distinctes correspondant aux thèmes : A Eau B Économie d énergies C Plantations et cultures locales D Développement durable E Biotechnologies F Contes d ici (et d ailleurs) Ces zones sont reliées par des passages (portes) où sont proposés des questionnaires Le jardin et les portes sont représentés par le graphe ci contre (chaque porte et donc chaque questionnaire est représenté par une arête) 1 Si un visiteur répond à tous les questionnaires, à combien de questionnaires aura-t-il répondu? 2 Donner, sans justifier, la matrice d adjacence M associée à ce graphe 3 Qu est-ce qu un graphe connexe? Ce graphe est-il connexe? 4 Qu est-ce qu un graphe complet? Ce graphe est-il complet? 5 Peut-on parcourir le jardin en répondant à tous les questionnaires et sans repasser deux fois devant le même questionnaire : (a) en commençant la visite par n importe quelle zone? (Justifier votre réponse) (b) en commençant la visite par la zone C (plantations et cultures)? Dans ce cas, si la réponse est positive, quelle sera la dernière zone visitée (Justifier votre réponse) 6 Combien y a-t-il de trajets permettant d aller de la zone A à la zone E en répondant exactement à trois questionnaires? On indiquera précisément comment ce nombre a été trouvé et on donnera les trajets Page 4 / 5

5 Exercice 3 (7 points) Un site de poker en ligne possédait, en 2010, abonnés dans le monde Un administrateur remarque que, chaque année, nouvelles personnes s abonnent tandis que 10% ne se réabonnent pas On note, pour tout nombre entier naturel, le nombre d abonnés en milliers en 2010 Ainsi Calculer et! 2 Exprimer " en fonction de 3 On note, pour tout entier naturel, # 200 (a) Montrer que, pour tout entier naturel, # " 0,9 # Que peut-on en déduire pour la suite #? (b) Exprimer # en fonction de (c) Montrer que '0,9 pour tout entier naturel 4 Dans les questions qui suivent, toute trace de recherche, même incomplète, ou d initiative, même non fructueuse, sera prise en compte dans l évaluation (a) Étudier le sens de variation de la suite et interpréter le résultat obtenu en terme de nombre d abonnés (b) Étudier la limite de la suite et interpréter le résultat obtenu en terme de nombre d abonnés Exercice 4 (9 points) Dans une entreprise, le résultat mensuel, exprimé en milliers d'euros, réalisé en vendant centaines d'objets fabriqués, est modélisé par la fonction ( définie et dérivable sur l'intervalle 1;15 par (5 )* 2 avec 0,02²0,20,5 Si ( est positif il s'agit d'un bénéfice, s'il est négatif il s'agit d'une perte 1 On note ( la fonction dérivée de la fonction ( et la fonction dérivée de la fonction (a) Calculer + et démontrer que, pour tout de l'intervalle 1;15, on a : ( 0,04²0,4 )* (b) Étudier le signe de ( sur l'intervalle 1;15 puis dresser le tableau de variations de la fonction ( 2 Dans cette question, toute trace de recherche, même incomplète ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation (a) Déterminer le nombre minimum d'objets que l'entreprise doit vendre pour réaliser un bénéfice (b) Pour quel nombre d'objets ce bénéfice est-il maximal? Et quel est alors ce bénéfice maximal (arrondi à l'euro près)? 3 (a) Vérifier que (25' )* 2 (b) Démontrer que la primitive de ( qui s annulle en 5 est 25 )* 215 (c) En déduire l'arrondi au millième de la valeur moyenne de ( sur 1;15 Interpréter ce résultat pour l'entreprise Page 5 / 5

6 Bac blanc de Mathématiques Série ES Date : Corrigé Durée 3h Exercice 1 (6 points) La courbe C ci-dessous représente, dans un repère orthonormé, une fonction f définie et dérivable sur -; On note la fonction dérivée de La courbe C passe par les points /0;- et 12;2 La courbe C admet une tangente parallèle à l axe des abscisses au point d abscisse 1 et la tangente au point d abscisse e passe par le point 3-;0 1 Déterminer une équation de la droite (AD) On a ;0 et 0; D où 4 56 avec : * 8 9* : 99; ;9 ; ; 1 Comme 0; alors 5 Donc 4 Aucune justification n est exigée pour les réponses à la question 2 2 Par lectures graphiques : a) Déterminer 2 et 2 L ordonnée du point de C d abscisse 1 est 1 donc 11 C a une tangente horizontale au point d abscisse 1 donc 10 b) Dresser le tableau de signes de sur - ; = Entre O et A, C est en dessous de l axe des abscisses donc pour > 0;?0 Au-delà de A, C est au dessus de l axe des abscisses donc pour > c) Dresser le tableau de signes de sur - ; = La fonction est décroissante sur [0 ;1] et croissante sur 1; d) Soit A une primitive de sur ]0 ; + [ Déterminer les variations de A sur - ; = D après la question b), est décroissante sur 0; et croissante sur ;5 e) Encadrer par deux entiers consécutifs l aire (en unités d aire) du domaine délimité par l axe des abscisses, la courbe C et les droites d équation B C et B = F 2?D E G? 3 Page 6 / 5

7 Exercice 2 (8 points) Candidats de la série SES n ayant pas suivi l enseignement de spécialité et candidats de la série L Une entreprise fabrique des appareils électroniques La probabilité pour qu un appareil ainsi fabriqué fonctionne parfaitement est H 2- On note A l événement «l appareil fonctionne parfaitement» et AI l événement contraire de A 1 Calculer la probabilité de l événement AI Comme l événement contraire de Alors 6161 Donc 6 2 On fait subir à chaque appareil un test avant sa livraison Quand un appareil est en parfait état, il est toujours accepté à l issue du test Quand un appareil n est pas en parfait état de fonctionnement, il peut être néanmoins accepté avec une probabilité de 2 22 On note T l événement «l appareil est accepté à l issue du test» (a) Construire un arbre pondéré résumant la situation (b) Montrer que la probabilité de JA est H 2- On a 66'6 K '1 On obtient bien 6 (c) Déterminer la probabilité de l événement «l appareil n est pas en parfait état de fonctionnement et il est accepté à l issue du test» On cherche 6 Alors 66'6 K ' On obtient que la probabilité que«l appareil n est pas en parfait état de fonctionnement et il est accepté à l issue du test» est de (d) Montrer que la probabilité de J est 2-22 On sait que et I forment une partition de l univers D après la formule des probabilités totales On obtient 6L6 Donc 6 (e) L appareil vient d être accepté Calculer la probabilité qu il est en parfait état On cherche 6 M Alors 6 M NKM NM O PQ PQ PP ' On obtient que la probabilité que «l appareil est parfait état de fonctionnement sachant qu il vient d être accepté» est de Page 7 / 5

8 Exercice 2 (8 points) Candidats de la série SES ayant suivi l enseignement de spécialité Une grande ville a créé un parc pédagogique sur le thème de l écologie, jardin qui doit être visité par la suite par la majorité des classes de cette ville Ce jardin comporte six zones distinctes correspondant aux thèmes : A Eau B Économie d énergies C Plantations et cultures locales D Développement durable E Biotechnologies F Contes d ici (et d ailleurs) Ces zones sont reliées par des passages (portes) où sont proposés des questionnaires Le jardin et les portes sont représentés par le graphe ci contre (chaque porte et donc chaque questionnaire est représenté par une arête) 1 Si un visiteur répond à tous les questionnaires, à combien de questionnaires aura-t-il répondu? Chaque questionnaire est une arête, il suffit donc de compter le nombre d arêtes, ou bien d additionner les degrés des sommets dont le résultat est le double du nombre d arêtes : Sommet A B C D E F Total Degré Il y a donc 10 arêtes donc 10 questionnaires 2 Donner, sans justifier, la matrice d adjacence M associée à ce graphe U X R T W S V 3 Qu est-ce qu un graphe connexe? Ce graphe est-il connexe? Un graphe est connexe si on peut relier deux sommets quelconque de ce graphe par une chaîne Ce graphe est connexe En effet, la chaîne F-A-B-C-D-E-B passe par tous les sommets, et donc elle permet de relier deux sommets quelconques l un à l autre 4 Qu est-ce qu un graphe complet? Ce graphe est-il complet? Un graphe est complet si chaque sommet est relié par une arête à tous les autres sommets Ce graphe n est pas un graphe complet car aucune arête ne relie les sommets E et F 5 Peut-on parcourir le jardin en répondant à tous les questionnaires et sans repasser deux fois devant le même questionnaire? Si oui, en commençant la visite par n importe quelle zone ou d une zone particulière?(justifier votre réponse) Examinons si le graphe contient une chaîne eulérienne Nous avons vu dans la question 1 que le graphe est connexe et comporte exactement deux sommets impairs D après le théorème d Euler, il contient donc une chaîne eulérienne (et pas de cycle) dont les extrémités sont forcément les sommets impairs : B et C Il n est donc pas possible de répondre à tous les questionnaires sans repasser deux fois devant le même en commençant par n importe quelle zone puisqu il faut débuter en B ou en C 6 Combien y a-t-il de trajets permettant d aller de la zone A à la zone E en répondant exactement à trois questionnaires? On indiquera précisément comment ce nombre a été trouvé et on donnera les trajets Il s agit de déterminer le nombre de chaînes comportant trois arêtes dont les extrémités sont A et E R Y donne le nombre de chaînes de longueur 3 entre les différents sommets D après la calculatrice, le coefficient ligne 1 colonne 5 (ou ligne 5 colonne 1) de R Y est 5 Il y a donc 5 chaînes de longueur 3 entre les sommets A et E qui sont : AFBE, ABDE, ACDE, ADBE, ACBE Page 8 / 5

9 Exercice 3 (7 points) Un site de poker en ligne possédait, en 2010, abonnés dans le monde Un administrateur remarque que, chaque année, nouvelles personnes s abonnent tandis que 10% ne se réabonnent pas On note, pour tout nombre entier naturel Z, [ Z le nombre d abonnés en milliers en \-2-Z Ainsi [ - =-- 1 Calculer [ 2 et [ \ ']1 ^20500'0,920470! '0,920470'0, ! Exprimer [ Z"2 en fonction de [ Z On sait que chaque année, nouvelles personnes s abonnent : tandis que 10% ne se réabonnent pas, ce qui correspond à 0,9' Ce qui donne : " 0,9' 20 3 On note, pour tout entier naturel Z, `Z [ Z \-- (a) Montrer que, pour tout entier naturel Z, `Z"2 -,H `Z Que peut-on en déduire pour la suite `Z? On sait que, pour tout,# 200 Donc # " " 200 Or " 0,9 20 On a donc : # " 0, # " 0,9 180 # " 0,9 200 Comme # 200 Donc pour tout, # " 0,9# Et # La suite # est une suite géométrique de raison 0,9 et de premier terme est : # 300 (b) Exprimer `Z en fonction de Z La suite `Z est une suite géométrique de raison 0,9 et de premier terme : # 300 Donc pour tout, # 300'0,9 (c) Montrer que [ Z \--b--'-,h Z pour tout entier naturel Z On sait que pour tout, # 300'0,9 Comme # 200, Alors # 200 Donc 300'0, Dans les questions qui suivent, toute trace de recherche, même incomplète, ou d initiative, même non fructueuse, sera prise en compte dans l évaluation (a) Étudier le sens de variation de la suite [ Z et interpréter le résultat obtenu en terme de nombre d abonnés On sait que la suite # est une suite géométrique de raison 0,9 Comme 0 cdc1 et # 300e0 Donc la suite # est décroissante Alors # "?# " 200? 200 "? 20 Donc la suite est décroissante D où le nombre d abonnés du site ne va faire que baisser d une année à l autre (b) Étudier la limite de la suite [ Z et interpréter le résultat obtenu en terme de nombre d abonnés On sait que 300'0,9 200 Comme 0 cdc1, d va tendre vers 0 quand tend vers l infini Donc va tendre vers '0200 D où le nombre d abonnés du site va tendre vers 200 milliers d abonnés Page 9 / 5

10 Exercice 4 (9 points) Nouvelle Calédonie 2008 Dans une entreprise, le résultat mensuel, exprimé en milliers d'euros, réalisé en vendant x centaines d'objets fabriqués, est modélisé par la fonction 1 définie et dérivable sur l'intervalle 2;2= par fbb=0 [B \ avec [B-,-\B²-,\B-,= Si fb est positif il s'agit d'un bénéfice, s'il est négatif il s'agit d'une perte 1 On note f la fonction dérivée de la fonction f et [ la fonction dérivée de la fonction [ a) Calculer [ + B et démontrer que, pour tout B de l'intervalle 2;2=, on a : f B-,-CB²-,CB0 [B On sait que 0,02²0,20,5 D où + 0,02'20,20,040,2 De plus (5 )* 2 D où ( est dérivable sur 1;15 comme somme de produit de fonctions dériable sur 1;15 Alors ( #' ) 2 avec #5 # + 1 0,02²0,20,5 0,040,2 Donc ( + # + ' ) #' + ' ) 0# + #' + ' ) D où ( + 15'0,040,2' )* ( + 10,04! 0,20,21' )* Donc ( + 0,04! 0,4' )* b) Étudier le signe de f B sur l'intervalle 2;2= puis dresser le tableau de variations de la fonction f On sait que ( + 0,04! 0,4' )* Comme pour tout )* e0 Alors ( est du signe de 0,04! 0,4 0,0410 Comme pour tout > 1;15 e0 Alors ( est du signe de Signe de 0,040,4 Signe de ( + 0 5,033 Variation de ( 0,9 3,353 Et (101 9,!'",!'9,F 2g0,9 ( ,!'²",!'9,F 2g5,033 ( ,!'F²",!'F9,F 2g3,353 2 Dans cette question, toute trace de recherche, même incomplète ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation Déterminer le nombre minimum d'objets que l'entreprise doit vendre pour réaliser un bénéfice Pour quel nombre d'objets ce bénéfice est-il maximal? Et quel est alors ce bénéfice maximal (arrondi à l'euro près)? (a) D'après le tableau des variations, sur l'intervalle 10;15, ( est positif Sur l'intervalle 1;10, la fonction ( est continue, strictement croissante et (1c0c(10 Page 10 / 5

11 Alors, d'après le théorème de la valeur intermédiaire, l'équation (0 admet une solution unique h >1;10 Or ( est strictement croissante sur h >1;10, Donc sur cet intervalle, ( est positif pour e h À l'aide de la calculatrice, par encadrements successifs, déterminons une valeur approchée de α : 2g0,5 3g0,15 Donc 2ch c3 2,7g0,07 2,8g0,003 Donc 2,7chc2,8 2,79 g0,004 2,80 g0,003 Donc 2,79ch c 2,80 2,795 g0,0007 2,796 g0,00005 Donc 2,795 ch c 2,796 Par conséquent, pour réaliser un bénéfice, l'entreprise doit vendre au moins 280 objets (b) D'après le tableau des variations, le maximum de la fonction ( est atteint pour 10 et 105 9,F 2g5,033 Par conséquent, le bénéfice maximal est de 5033 obtenu avec la vente de 1000 objets 3 a) Vérifier que fb\='[ B0 [B \ On a 25' )* 2250,040,2 )* 2 25'0,0425'0,2 )* 2 5 )* 2 ( Donc (25' )* 2 b) Démontrer que la primitive 1 de f qui s annulle en = est 1B\=0 [B \B2= On sait que (25' )* 2 Or une primitive de la fonction j: l + )* est la fonction m: l )* D où 25 )* 2n Or 50 D où 525' 9,!'Fo ",!'F9,F 2'5n 525' 10n 52510n Alors 015n n 15 Donc la primitive de ( qui s annulle en 5 est 25 )* 215 c) En déduire l'arrondi au millième de la valeur moyenne de f sur 2;2= Interpréter ce résultat pour l'entreprise On sait que 5 p F (E F9 5 G F 5 G G 25)F 2' ) 2'115 5 G 259! ,Y! G 259! 25 9,Y! ,055 Donc l'arrondi au millième de la valeur moyenne de ( sur [1;15] est 3,055 D où le bénéfice moyen de cette entreprise est de 3055 Page 11 / 5

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE LIBAN 2014 On considère la fonction f définie sur l intervalle [0 ; 5] par f(x) = x+1+e

Plus en détail

BACCALAURÉAT GÉNÉRAL Hiver 2015

BACCALAURÉAT GÉNÉRAL Hiver 2015 BACCALAURÉAT GÉNÉRAL Hiver 2015 Épreuve : MATHÉMATIQUES Séries SCIENCES ÉCONOMIQUES ET SOCIALES, toutes spécialités LITTÉRAIRE, spécialité Mathématiques Classes TES1, TES2, TES3, TES ET TL1ES Durée de

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014 BA BLAN DE MATHÉMATIQUES TERMINALES ES et L ORRETION SUINTE oefficients, ou Année scolaire - Durée heures Page sur 8 pages Année EXERIE. ommun à tous les candidats sur points Un club de remise en forme

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Commun à tous les candidats

Commun à tous les candidats BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS

CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS CORRECTION BACCALAUREAT BLANC N 1 - Séries ES et L EXERCICE 1 (4 points) COMMUN A TOUS LES CANDIDATS Extrait Bac. ES - 2008 1) Une baisse de 25 % est compensée par une hausse, arrondie à l unité, de :

Plus en détail

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013

T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 T ES/L DEVOIR SURVEILLE 4 23 JANVIER 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Baccalauréat ES Asie 19 juin 2013 Corrigé

Baccalauréat ES Asie 19 juin 2013 Corrigé accalauréat E sie 19 juin 201 orrigé EXERIE 1 ommun à tous les candidats On ne demandait aucune justification dans cet exercice. 4 points 1. b. 2. a.. c. 4. c. La longueur de l intervalle [ 1; 1] est 2

Plus en détail

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité Fiche d eercices : Continuité, Dérivabilité et Etude de fonctions Continuité Eercice On considère la fonction f définie sur [ ; + [ par : f() E() pour [ ; 4[ f() 4 + 4 pour [ 4 ; + [ a. Tracer la représentation

Plus en détail

Baccalauréat ES Amérique du Nord 30 mai 2013

Baccalauréat ES Amérique du Nord 30 mai 2013 Baccalauréat ES Amérique du Nord 30 mai 03 EXERCICE 4 points Cet exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles. Pour chacune de ces questions,

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SESSION 014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL STS DURÉE DE L ÉPREUVE : heures COEFFICIENT : 3 Ce sujet comporte 5 pages numérotées de 1

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Baccalauréat STG CGRH Polynésie corrigé

Baccalauréat STG CGRH Polynésie corrigé EXERCICE 1 Baccalauréat STG CGRH Polynésie corrigé 8 points Le tableau ci-dessous donne les dépenses, en millions d euros, des ménages en France de 2000 à 2009 pour les programmes audio-visuels. cinéma

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficient : 2 Dès que le sujet

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

b) Est-il possible d avoir un trajet partant et arrivant du même lieu et passant une fois et une seule par toutes les rues?

b) Est-il possible d avoir un trajet partant et arrivant du même lieu et passant une fois et une seule par toutes les rues? T ES DEVOIR SURVEILLE 6 - SPE 23 MAI 2014 Durée : 1h Calculatrice autorisée Exercice 1-7 points - Dans la ville de GRAPHE, on s intéresse aux principales rues permettant de relier différents lieux ouverts

Plus en détail

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 Durée : 3 heures Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 EXECICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : heures Coefficient : Dès que le sujet lui

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Epreuve de spécialité de Mathématiques Série L

Epreuve de spécialité de Mathématiques Série L Epreuve de spécialité de Mathématiques Série L Durée de l'épreuve: 3 heures. Le candidat doit traiter tous les exercices. La qualité de la rédaction, la clarté et la précision des raisonnements entrent

Plus en détail

Généralités sur les graphes

Généralités sur les graphes Généralités sur les graphes Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Notion de graphe 3 1.1 Un peu de vocabulaire.......................................... 3 1.2 Ordre d un graphe,

Plus en détail

Baccalauréat L spécialité Métropole La Réunion septembre 2008

Baccalauréat L spécialité Métropole La Réunion septembre 2008 Baccalauréat L spécialité Métropole La Réunion septembre 2008 L usage d une calculatrice est autorisé Ce sujet ne nécessite pas de papier millimétré 3 heures EXERCICE 1 4 s Un magasin de matériels informatiques

Plus en détail

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 2012 France métropolitaine - Antilles - Guyane - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Option : Toutes Durée : 2 heures Matériel(s)

Plus en détail

B A C C A L A U R E A T G E N E R A L

B A C C A L A U R E A T G E N E R A L B A C C A L A U R E A T G E N E R A L SESSION 2006 MATHÉMATIQUES SERIE : ES DUREE DE L EPREUVE: 3 heures - COEFFICIENT : 7 Ce sujet comporte 6 pages dont feuille ANNEXE L utilisation d une calculatrice

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Métropole juin 2008..................................... 3 La Réunion 18 juin 2008................................. 6 Polynésie juin 2008......................................

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

Baccalauréat STMG Antilles Guyane / 18 juin 2015

Baccalauréat STMG Antilles Guyane / 18 juin 2015 Exercice 1 Durée : 3 heures Baccalauréat STMG Antilles Guyane / 18 juin 2015 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de la question

Plus en détail

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé Baccalauréat ES/L Métropole 12 septembre 2014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Avant de réaliser une opération marketing en début de saison, un revendeur de piscines

Plus en détail

Baccalauréat ES 2011. L intégrale d avril à novembre 2011

Baccalauréat ES 2011. L intégrale d avril à novembre 2011 Baccalauréat ES 2011 L intégrale d avril à novembre 2011 Pour un accès direct cliquez sur les liens bleus Pondichéry 13 avril 2011.............. 5 Amérique du Nord 27 mai 2011......12 Liban 30 mai 2011...................

Plus en détail

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 2013 Antilles - Guyane - Polynésie BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre de maladies professionnelles ayant entrainé un arrêt de travail de 2003 à 2010 : Année

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

Baccalauréat L Enseignement de spécialité Asie Juin 2010

Baccalauréat L Enseignement de spécialité Asie Juin 2010 Baccalauréat L Enseignement de spécialité Asie Juin 2010 EXERCICE 1 Il s agit de remplir la grille suivante dont chaque case blanche doit contenir exactement un chiffre (entre 0 et 9). 1. Pour y parvenir,

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG

SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014 Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée,

Plus en détail

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués Baccalauréat Polynésie juin 0 Sciences et technologies du design et des arts appliqués EXERCICE points Cet exercice est un Questionnaire à Choix Multiples. Pour chaque question, une seule réponse est exacte.

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction Baccalauréat SMTG Pondichéry 8 avril 0 Sciences et technologies du management et de la gestion correction EXERCICE points Les deux parties de cet exercice peuvent être traitées de manière indépendante.

Plus en détail

3. La suite ( un)a pour terme général un

3. La suite ( un)a pour terme général un NOM : Terminale ES Devoir n vendredi 9 octobre 0 Eercice : sur.5 points Des questions indépendantes. Résoudre l équation ² + 4 = 0. Calculer la dérivée de f dans chacun des cas suivants : a) f ( ) 4 8

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Baccalauréat blanc nº1 - ES - décembre 2011

Baccalauréat blanc nº1 - ES - décembre 2011 Sujet obligatoire - durée : 3 heures - calculatrice autorisée - coefficient 5 - le sujet comporte 5 pages. Baccalauréat blanc nº - ES - décembre 0 EXERCICE 4points On considère une fonction f définie et

Plus en détail

BACCALAUREAT TECHNOLOGIQUE - BAC BLANC AVRIL 2013 MATHEMATIQUES

BACCALAUREAT TECHNOLOGIQUE - BAC BLANC AVRIL 2013 MATHEMATIQUES BACCALAUREAT TECHNOLOGIQUE - BAC BLANC AVRIL 203 MATHEMATIQUES L usage de la calculatrice est autorisé. Durée de l épreuve : 3 heures EXERCICE (6 points) La feuille de calcul ci-dessous présente les indices

Plus en détail

r SID \PARIS mculré JEAN MONNET Droit - Économie - Gestion FORMULAIRB .E UNIVERSITÉ Diplôme de D.A.E.IJ - Option A Année universitaire 2012-2013

r SID \PARIS mculré JEAN MONNET Droit - Économie - Gestion FORMULAIRB .E UNIVERSITÉ Diplôme de D.A.E.IJ - Option A Année universitaire 2012-2013 .E UNIVERSITÉ \PARIS r SID mculré JEAN MONNET Droit - Économie - Gestion Année universitaire 2012-2013 Diplôme de D.A.E.IJ - Option A 2ème session - Septembre 2013 Intitulé de la matière : MATHEMATIQUES

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015 Corrigé du baccalauréat ES Antilles Guyane 2 juin 2015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 1. La fonction f définie sur R par f (x)= x 3 + 6x

Plus en détail

Baccalauréat ST2S Antilles Guyane juin 2013 Correction

Baccalauréat ST2S Antilles Guyane juin 2013 Correction Baccalauréat ST2S Antilles Guyane juin 2013 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre d abonnements au service de téléphonie mobile en France entre fin 2001 et fin 2009, exprimé

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail