Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Dimension: px
Commencer à balayer dès la page:

Download "Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher."

Transcription

1 Lycée Jean Bart PCSI Année février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple et sont des octets. 1) Combien peut-on former d octets différents? 2) On écrit au hasard un octet. Calculer la probabilité des évènements A : L octet contient 1 aux deux premières places et B : l octet se termine par 0. 3) Calculer la probabilité de l évènement A B. Exercice 2. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Une partie consiste, pour un joueur, à tirer au hasard une bille de l urne ; il note sa couleur et ne remet pas la bille dans l urne. Puis il tire une seconde bille de l urne et il note sa couleur. Calculer la probabilité des évènements suivants : E 1 : Le joueur a tiré deux billes rouges et E 2 : Le joueur a tiré exactement une bille verte. Exercice 3. Au poker, une main est une combinaison de 5 cartes parmi 52. 1) Combien y a-t-il de mains différentes? 2) Quelle est la probabilité d avoir une couleur (cinq cartes de la même couleur)? 3) Un carré? 4) Un brelan? Un full? Une quinte flush? Une paire? Deux paires? Exercice 4. Dans une classe de 24 étudiants, on compte 10 filles et 14 garçons. On doit élire deux délégués. 1) Quel est le nombre de choix possibles? 2) Quel est le nombre de choix si l on impose une fille et un garçon? 3) Quel est le nombre de choix si l on impose 2 garçons? Probabilités conditionnelles Exercice 5. Les statistiques ont permis d établir qu en période de compétition, pour un sportif pris au hasard, la probabilité d être déclaré positif au contrôle antidopage est égale à 0,02. La prise d un médicament m peut entraîner, chez certains sportifs, un contrôle antidopage positif. En période de compétition, ce médicament, qui diminue fortement les effets de la fatigue musculaire, est utilisé par 25% des sportifs. Pour un tel sportif, la probabilité d être déclaré positif au contrôle antidopage est alors de 0,05. Pour un sportif choisi au hasard en période de compétition, on note M et P les événements M = utiliser le médicament m et P = être déclaré positif au contrôle antidopage 1) Calculer la probabilité de l événement utiliser le médicament m et être déclaré positif au contrôle antidopage 2) Pour un sportif choisi au hasard en période de compétition calculer les probabilités P (M P ) et P ( P M ) Exercice 6. Un laboratoire pharmaceutique met au point un test de dépistage d une maladie et fournit les renseignements suivants : La population testé comporte 50 % de personnes malades. Si une personne est malade, le test est positif dans 98 % des cas ; si une personne n est pas malade, le test est positif dans 0,2 % des cas. On note M l évènement la personne est malade, et T l évènement le test est positif. 1) Donner les valeurs de P(M), P (T M), P ( T M ). 2) En déduire P(T ).

2 2 PCSI Année Probabilités 17 février 2014 Exercice 7. D après l INSEE, environ 4 millions de personnes habitent dans la région Nord - Pas de Calais. Sur ces 4 millions d habitants : De plus : habitent dans le département du Nord ; habitent dans le département du Pas de Calais. 2% des habitants du Nord vivent dans une commune de moins de 500 habitants ; 9% des habitants du Pas de Calais vivent dans une commune de moins de 500 habitants. On considère les deux évènements N : la personne habite dans le Nord et A : la personne vit dans une commune de moins de 500 habitants. 1) Calculer P (N A). 2) Quelle est la probabilité qu un habitant pris au hasard dans la région habite dans une commune de moins de 500 habitants? Exercice 8. La tour Burj-Dubaï, située à Dubaï (étonnant, non?), dont la construction a été achevée en janvier 2009, est la tour la plus haute du monde avec ses 818 mètres et ses 162 étages. Le groom peut-il raisonnablement parier que si 25 personnes montent au rez-de-chaussée dans son ascenseur, au moins 2 personnes descendront au même étage? En d autres termes, si 25 personnes sont initialement dans l ascenceur, quelle est la probabilité que 2 personnes descendent au même étage de la tour? (On suppose que les personnes descendent à un étage indépendamment les unes des autres) Exercice 9. Dans un stand de tir, un tireur effectue des tirs successifs pour atteindre plusieurs cibles. La probabilité que la première cible soit atteinte est 1 2. Lorsqu une cible est atteinte, la probabilité que la suivante le soit est 3 4. Lorsqu une cible n est pas atteinte, la probabilité que la suivante soit atteinte est 1 2. On note, pour tout entier naturel n non nul : A n l évènement : «la n-ième cible est atteinte». A n l évènement : «la n-ième cible n est pas atteinte. a n la probabilité de l évènement A n b n la probabilité de l évènement A n. 1) Donner a 1 et b 1. Calculer a 2 et b 2. On pourra utiliser un arbre pondéré. 2) Montrer que, pour tout n N, n 1 : a n+1 = 3 4 a n b n, puis : a n+1 = 1 4 a n ) Déduire de la question précédente l expression de a n en fonction de n, puis la limite de la suite (a n ). Exercice 10. Marche aléatoire sur un carré. ABCD est un carré de centre O. Un jeton posé sur l un des cinq points peut se déplacer de façon aléatoire vers l un des autres voisins suivant le mode suivant : tous les pas issus de l un sommets A, B, C et D ont pour probabilité 1/3 ; et tous les pas issus de O ont une probabilité de 1/4. Un chemin est une suite de pas successifs. Au départ le jeton est en A. 1) Le jeton fait deux pas. Calculer la probabilité qu il arrive en A, en B, en C, en D, en O? 2) Il fait un pas de plus. Quelle est la probabilité qu il arrive en O?

3 PCSI Année Probabilités 17 février ) Soit n N. On note p n la probabilité pour que le jeton arrive en O après n pas. Démontrer que 4) Expliciter p n en fonction de n et déterminer lim n p n. Exercice 11. n N, p n+1 = 1 3 (1 p n) Pour la kermesse de l école de son petit frère, Nadia prépare son stand de pêche aux canards. Elle a déjà placé 50 canards bleus dont 30 portent l étiquette Vous avez gagné un éléphant rose. Les autres donnent le droit à un autre lot. De plus, il y a six canards verts permettant de gagner un éléphant rose. Nadia souhaite que lorsqu un enfant pêche au hasard un canard, les évènements Gagner un éléphant rose et Pêcher un canard vert soient indépendants. Déterminer le nombre de canards verts ne portant pas d étiquette Vous avez gagné un éléphant rose qu elle doit ajouter. Exercice 12. On considère n équipes de football de L1 et n équipes de L2. On tire au sort n rencontres entre ces 2n équipes (chaque équipe joue un match et un seul). 1) Calculer la probabilité p n pour que tous les matchs opposent une équipe de L1 à une équipe de L2. 2) Calculer la probabilité q n pour que tous les matchs opposent 2 équipes de la même division. 2 2n 1 ( ) 2n 3) Montrer que : n 1, 2 2n ssk n n 4) Calculer lim p n et lim q n. n n Variables aléatoires Lois usuelles Exercice 13. Un tournoi sportif compte 16 équipes engagées. Chaque équipe doit rencontrer toutes les autres une seule fois. Combien doit-on organiser de matches? Exercice 14. Un questionnaire comporte cinq questions. Pour chacune des cinq questions posées, trois propositions de réponses sont faites (A, B et C), une seule d entre elles étant exacte. Un candidat répond à toutes les questions posées en écrivant un mot réponse de cinq lettres. Par exemple, le mot BBAAC signifie que le candidat a répondu B aux première et deuxième questions, A aux troisième et quatrième questions et C à la cinquième question. 1) a) Combien y a-t-il de mots-réponses possibles à ce questionnaire? b) On suppose que le candidat répond au hasard à chacune des cinq questions de ce questionnaire. Calculer la probabilité des évènements suivants : E : le candidat a exactement une réponse exacte ; F : le candidat n a aucune réponse exacte ; G : le mot-réponse du candidat est un palindrome (On précise qu un palindrome est un mot pouvant se lire indifféremment de gauche à droite ou de droite à gauche : par exemple, BACAB est un palindrome). 2) Un professeur soumet ce questionnaire à ses 24 étudiants en leur demandant de répondre au hasard à chacune des cinq questions de ce questionnaire. On note X le nombre d élèves dont le mot-réponse ne comporte aucune réponse exacte. a) Justifier que la variable aléatoire X suit la loi binomiale de paramètres n = 34 et p = b) Calculer la probabilité, arrondie à 10 2, qu au plus un élève n ait fourni que des réponses fausses. Exercice 15. La scène se passe en haut d une falaise au bord de la mer. Pour trouver une plage et aller se baigner, les touristes ne peuvent choisir qu entre deux plages, l une à l Est et l autre à l Ouest. On suppose que n touristes (n 3) se retrouvent un jour en haut de la falaise. Ces n touristes veulent tous se baigner et chacun d eux choisit au hasard et indépendamment des autres l une des deux directions. On note X la variable aléatoire donnant le nombre de ces touristes qui choisissent la plage à l Est. 1) Déterminer la probabilité que k touristes (0 k n) partent en direction de l Est.

4 4 PCSI Année Probabilités 17 février ) On suppose ici que les deux plages considérées sont désertes au départ. On dit qu un touriste est heureux s il se retrouve seul sur une plage. a) Peut-il y avoir deux touristes heureux? b) Démontrer que la probabilité (notée p) qu il y ait un touriste heureux parmi ces n touristes vaut : p = n 2 n 1. c) Application numérique : lorsque le groupe comprend 10 personnes, exprimer la probabilité, arrondie au centième, qu il y ait un touriste heureux parmi les 10. Exercice 16. Un joueur débute un jeu au cours duquel il est amené à faire successivement plusieurs parties. La probabilité que le joueur perde la première partie est de 0,2. Le jeu se déroule ensuite de la manière suivante : s il gagne une partie, alors il perd la partie suivante avec une probabilité de 0,05 ; s il perd une partie, alors il perd la partie suivante avec une probabilité de 0,1. On appelle : E 1 l événement «le joueur perd la première partie» ; E 2 l évènement «le joueur perd la deuxième partie» ; et E 3 l évènement «le joueur perd la troisième partie». Enfin, on appelle X la variable aléatoire qui donne le nombre de fois où le joueur perd lors des trois premières parties. 1) Traduire la situation décrite dans l énoncé par un arbre pondéré. 2) Montrer que la probabilité de l évènement (X = 2) est égale à 0,031 et que celle de l évènement (X = 3) est égale à 0,002. 3) Déterminer la loi de probabilité de X, puis calculer l espérance de X. Exercice 17. On dispose d un dé en forme de tétraèdre régulier, possédant une face bleue, deux faces rouges et une face verte ; on suppose le dé parfaitement équilibré. Une partie consiste à effectuer deux lancers sucessifs et indépendants de ce dé. A chaque lancer on note la couleur de la face cachée. On considère les évènements suivants : E : à l issue d une partie, les deux faces notées sont vertes ; F : à l issue d une partie, les deux faces notées sont de la même couleur. 1) Calculer les probabilités des évènements E et F ainsi que la probabilité de E sachant F. 2) On effectue dix parties identiques et indépendantes. Calculer la probabilité d obtenir au moins une fois l évènement F au cours de ces dix parties. Exercice 18. Randonnée en montagne. Pour rejoindre le sommet S d une montagne des Alpes à partir d un point de départ D, les randonneurs ont la possibilité d emprunter plusieurs parcours. La course n étant pas faisable en une journée, ils doivent passer une nuit dans l un des deux refuges se trouvant à la même altitude de mètres sur les parcours existants ; les deux refuges ne sont pas situés au même endroit. On les appelle R 1 et R 2. Le lendemain matin, pour atteindre le sommet qui se trouve à mètres d altitude, ils ont deux possibilités : ils peuvent atteindre le sommet en faisant une halte au refuge R 3, ou atteindre le sommet directement. La probabilité que les randonneurs choisissent de passer par R 1 est égale à 1 3. La probabilité de monter directement au sommet en partant de R 1 est égale à 3 4. La probabilité de monter directement au sommet en partant de R 2 est égale à ) Tracer un arbre pondéré représentant tous les trajets possibles du départ D jusqu au sommet S. 2) On donne les distances suivantes, exprimées en kilomètres : d(d, R 1 ) = 5 (la distance entre le point D et le point R 1 est 5 kms) d(d, R 2 ) = 4 d(r 1, R 3 ) = 4 d(r 2, R 3 ) = 4, 5 d(r 3, S) = 2 d(r 1, S) = 5, 5 d(r 2, S) = 6 Soit X la variable aléatoire qui représente la distance parcourue (exprimée en kilomètres) par les randonneurs pour aller du départ D au sommet S. 3) Décrire la loi de probabilité de X. 4) Calculer l espérance de X.

5 PCSI Année Probabilités 17 février Exercice 19. Dans une kermesse, un organisateur de jeux dispose de 2 roues de 10 cases chacune : la roue A comporte 9 cases noires et 1 cases rouges ; la roue B comporte 8 cases noires et 2 cases rouges. Lors du lancer d une roue toutes les cases ont la même probabilité d être obtenues. La règle du jeu est la suivante : Le joueur mise 1 AC et lance la roue A. S il obtient une case rouge, alors il lance la roue B, note la couleur de la case obtenue et la partie s arrête. S il obtient une case noire, alors il relance la roue A, note la couleur de la case obtenue et la partie s arrête. 1) Traduire l énoncé à l aide d un arbre pondéré. 2) Soient E et F les évènements : E : à l issue de la partie, les 2 cases obtenues sont rouges ; F : à l issue de la partie, une seule des deux cases est rouge. Montrer que P (E) = 0, 02 et P (F ) = 0, 17. 3) Si les 2 cases obtenues sont rouges, le joueur reçoit 10 AC ; si une seule des cases est rouge le joueur reçoit 2 AC ; sinon il ne reçoit rien. On appelle X la variable aléatoire égale au gain algébrique en euros du joueur. a) Déterminer la loi de probabilité de X. b) Calculer l espérance mathématique de X, et en donner une interprétation. Exercice 20. Singe écrivain? 1) Quelle est la probabilité qu un singe standard tapant au hasard sur une machine à écrire rédige la première page de Candide? 2) On admet qu un singe, installé à temps complet durant un an devant sa machine à écrire, rédige textes différents. Combien d années faut-il attendre pour être certain qu il ait rédigé la première page de Candide? 3) D après la Société Française de Primatologie, il reste environ 1 million de singes dans le monde. En installant tous les singes du monde à temps complet devant leurs machines à écrire, combien d années faut-il attendre pour être certain qu un singe ait rédigé la première page de Candide? On pourra supposer dans un premier temps, pour simplifier, que les singes se mettent d accord pour tous taper des textes différents. 4) A raison de 5 bananes par singe et par jour, combien de bananes faut-il alors prévoir? 5) Proposer une solution pratique pour réaliser l expérience décrite dans la question 3 (en particulier, on réfléchira à une méthode efficace pour retrouver la page correcte parmi toutes celles tapées par l ensemble des singes). 6) Comparer les résultats obtenus au nombre d atomes dans le corps humain ; au nombre d atomes dans l Univers.

Exercices supplémentaires : Loi binomiale

Exercices supplémentaires : Loi binomiale Exercices supplémentaires : Loi binomiale Partie A : Loi binomiale Dans une région pétrolifère, la probabilité qu un forage conduise à une nappe de pétrole est 0,1. 1) Justifier que la réalisation d un

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date P. condi- Variable Loi bino- Loi uni- Loi expo- Suite tionelle aléatoire

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points)

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points) SESSION 2006 France septembre 2005 (5 points) Parmi les stands de jeux d une fête de village, les organisateurs ont installé une machine qui lance automatiquement une bille d acier lorsque le joueur actionne

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires

Chapitre I. Probabilités. Bcpst 1 2 novembre 2015. I Exemples d expériences aléatoires Chapitre I Probabilités Bcpst 1 2 novembre 2015 I Exemples d expériences aléatoires Une expérience aléatoire est une expérience dont on ne peut pas prédire le résultat avant de l avoir réalisée... ce qui

Plus en détail

BACCALAURÉAT GÉNÉRAL Hiver 2015

BACCALAURÉAT GÉNÉRAL Hiver 2015 BACCALAURÉAT GÉNÉRAL Hiver 2015 Épreuve : MATHÉMATIQUES Séries SCIENCES ÉCONOMIQUES ET SOCIALES, toutes spécialités LITTÉRAIRE, spécialité Mathématiques Classes TES1, TES2, TES3, TES ET TL1ES Durée de

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

POKER ET PROBABILITÉ

POKER ET PROBABILITÉ POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Prétest A QUESTIONNAIRE

Prétest A QUESTIONNAIRE MATHÉMATIQUES MAT5103 Probabilités II Prétest A QUESTIONNAIRE NE PAS ÉCRIRE SUR CE DOCUMENT Version du 16 décembre 2004 Rédigé par Denise Martin (martindenise@csdgsqcca) Centre L Envol 1 Un jeu consiste

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

EXERCICES SUR LES PROBABILITÉS

EXERCICES SUR LES PROBABILITÉS EXERCICES SUR LES PROBABILITÉS Exercice 1 Dans un univers Ω, on donne deux événements A et B incompatibles tels que p(a) = 0,2 et p(b) = 0,7. Calculer p(a B), p(a B), p ( A ) et p ( B ). Exercice 2 Un

Plus en détail

L3-2014/2015 Mercredi 14 janvier Mathématiques Discrètes. Examen. Exercice 1.

L3-2014/2015 Mercredi 14 janvier Mathématiques Discrètes. Examen. Exercice 1. Examen Exercice 1. Soit N un entier naturel 2. On dispose de trois jeux de N cartes (numérotées de 1 à N), chaque jeu étant d une couleur différente : rouge, bleue et verte. On se propose de distribuer

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Exercices de probabilités et statistique

Exercices de probabilités et statistique Exercices de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi & Fabrice Le Lec Cette œuvre est mise à disposition

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Rallye Mathématiques de liaison 3 ème /2 nde et 3 ème /2 nde pro Epreuve finale Jeudi 21 mai 2015 Durée : 1h45

Rallye Mathématiques de liaison 3 ème /2 nde et 3 ème /2 nde pro Epreuve finale Jeudi 21 mai 2015 Durée : 1h45 Rallye Mathématiques de liaison 3 ème /2 nde et 3 ème /2 nde pro Epreuve finale Jeudi 21 mai 2015 Durée : 1h45 Précisions pour les problèmes 1 et 2 : Pour ces problèmes, on attend une narration de recherche

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Canevas théoriques du projet sur le poker Partie A

Canevas théoriques du projet sur le poker Partie A Partie A Dans une partie de poker, particulièrement au Texas Hold em Limit, il est possible d effectuer certains calculs permettant de prendre la meilleure décision. Quelques-uns de ces calculs sont basés

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

Épreuve d informatique 2011

Épreuve d informatique 2011 A 2011 INFO. MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

Probabilités sur un univers ni

Probabilités sur un univers ni POIRET Aurélien TD n o 21 MPSI Probabilités sur un univers ni 1 Événements et probabilités Exercice N o 1 : Dans un centre de loisirs, une personne peut pratiquer trois activités. On considère les événements

Plus en détail

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement

8 Probabilités. Les notions étudiées dans ce chapitre CHAPITRE. 1. Expérience aléatoire 2. Loi de probabilité 3. Probabilité d'un événement CHAPITRE Probabilités Les notions étudiées dans ce chapitre Le mot hasard vient de l'arabe al zhar qui désigne un dé à jouer. Les jeux de hasard sont connus depuis la plus haute Antiquité. Déjà les romains

Plus en détail

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015 Corrigé du baccalauréat ES Antilles Guyane 2 juin 2015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 1. La fonction f définie sur R par f (x)= x 3 + 6x

Plus en détail

Les trois sortes de tirages

Les trois sortes de tirages DERNIÈRE IMPRESSION LE 29 juin 2015 à 19:20 Les trois sortes de tirages Introduction Comme nous l avons vu, dans une loi équirépartie, il est nécessaire de dénombrer les cas favorables et les cas possibles.

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Métropole juin 2008..................................... 3 La Réunion 18 juin 2008................................. 6 Polynésie juin 2008......................................

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Combien existe-t-il de dominos dans un jeu complet? On pourra donner jusqu à cinq démonstrations diffétentes. Exercice 2 [ Indication

Plus en détail

Contrôle de statistiques Sujet 2 Corrigé

Contrôle de statistiques Sujet 2 Corrigé Contrôle de statistiques Sujet 2 Corrigé L2 d économie - Université Paris 1 Panthéon-Sorbonne Nom : Prénom : Les exercices sont indépendants. Le barème est indicatif. L utilisation de documents, calculatrices,

Plus en détail

Probabilités discrètes : exercices

Probabilités discrètes : exercices Université de Strasbourg Probabilités Département de mathématiques Agreg interne 2015-2016 Probabilités discrètes : exercices Vous pouvez me contacter à l adresse nicolas.juilletatmath.unistra.fr. J ai

Plus en détail

Poker. A rendre pour le 25 avril

Poker. A rendre pour le 25 avril Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : heures Coefficient : Dès que le sujet lui

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Exercices sur les lois de probabilités continues

Exercices sur les lois de probabilités continues Terminale S Exercices sur les lois de probabilités continues Exercice n 1 : X est la variable aléatoire de la loi continue et uniforme sur [0 ; 1]. Donner la probabilité des événements suivants : a. b.

Plus en détail

Baccalauréat STMG Antilles Guyane / 18 juin 2015

Baccalauréat STMG Antilles Guyane / 18 juin 2015 Exercice 1 Durée : 3 heures Baccalauréat STMG Antilles Guyane / 18 juin 2015 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de la question

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire Variables aléatoires. Exemple 1. (Jeu d argent) Exemple 2. Loi de

Plus en détail

Probabilités conditionelles

Probabilités conditionelles Probabilités conditionelles Exercice 1 Cet exercice est un questionnaire à choix multiples constitué de six questions ; chacune comporte trois réponses, une seule est exacte On notera sur la copie uniquement

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Dénombrement Probabilité uniforme sur un ensemble fini

Dénombrement Probabilité uniforme sur un ensemble fini UPV - MathsL1S1 1 II Dénombrement Dénombrement Probabilité uniforme sur un ensemble fini I Dénombrement 1) Factorielles : Pour n entier 1, il y a : n! = n.(n - 1). (n - 2) 2.1 façons d aligner n objets

Plus en détail

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 :

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 : Terminale S - ACP Ex1 : Antilles Septembre 2006 Partie A - Restitution organisée des connaissances On suppose connu le résultat suivant : Si est une variable aléatoire qui suit une loi exponentielle de

Plus en détail

PROBABILITES TRAVAUX DIRIGES

PROBABILITES TRAVAUX DIRIGES Université de Caen Basse-Normandie U.F.R. de Sciences Economiques et de Gestion Année universitaire 2009-2010 LICENCE ECONOMIE ET GESTION Semestre 3 L2 PROBABILITES TRAVAUX DIRIGES (18 heures) Hélène Ferrer

Plus en détail

Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion

Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion A. P. M. E. P. ÉPREUVE OBLIGATOIRE Durée : 3 heures Coefficient : 2 Exercice 1 7 points Les parties A et B de cet exercice

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Le jeu du Sèbi ou Craps

Le jeu du Sèbi ou Craps Le jeu du Sèbi ou Craps Professeur : Christian CYRILLE 7 mars 04 Le jeu du craps "Dieu ne joue pas aux dés! " (Lettre d Albert Einstein à Max Born à propos de la mécanique quantique). Etude du jet simultané

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de règles à appliquer dans un ordre déterminé à un nombre

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

TES Bac : Exercices types 2013-2014

TES Bac : Exercices types 2013-2014 Sommaire SUITES GEOMETRIQUES... 2 CONTINUITE... 4 FONCTION EXPONENTIELLE... 5 PROBABILITES CONDITIONNELLES... 7 FONCTION LOGARITHME NEPERIEN... 9 INTEGRATION... 10 LOIS A DENSITE... 11 INTERVALLE DE FLUCTUATION

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail