Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Dimension: px
Commencer à balayer dès la page:

Download "Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12"

Transcription

1 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont blonds. On choisit au hasard un élève de la classe. Tous les élèves ont la même probabilité d être choisis. On définit les évènements suivants. F : «l élève choisi est une fille» G : «l élève choisi est un garçon» B : «l élève choisi est blond (ou blonde)» Quelle est la probabilité de l évènement F? Rappelez la formule et expliquez pourquoi vous pouvez l utiliser. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) p(2) 1/6 ; p(3) 1/3 p(4) p(5) 1/12 1) Que signifie p(1)? 2) Calculer p(6). Exemple 3 : On lance deux pièces de monnaie équilibrées. 1) Utiliser un arbre pour déterminer les événements élémentaires, puis définir une loi de probabilité. L ensemble des événements élémentaires est appelé l univers. Ω 2) Déterminer un autre univers pour cette expérience puis définir une loi de probabilité. Quelle est la probabilité de l évènement G? Rappelez la formule utilisée. Que signifie l événement F B? Calculer sa probabilité. Que signifie l événement F B? Calculer sa probabilité. Rappelez la formule utilisée. Donner la signification des évènements suivants puis calculer leur probabilités. B ; ; G B ; G B ;.

2 II - Variables aléatoires. Définition : Lorsqu à chaque événement élémentaire d une expérience aléatoire on associe un nombre réel, on définit une variable aléatoire. Soit X une variable aléatoire prenant les valeurs x 1 ;.x n. L événement «X prend la valeur x i» est noté (X x i ). Définir une loi de probabilité de X, c est donner la valeur de p(x x i ), pour tout i, avec 1 i n. Exemple 1: On lance deux pièces de monnaie équilibrées. On définit une loi de probabilité X sur l univers Ω {PP ; PF ; FP ;FF} égale au nombre de fois que l on a obtenu «Face». Les valeurs prises par cette variable sont : 0, 1 et 2. On a : (X 0) {PP} ; (X1) {PF ;FP} ; (X2) {FF} Loi de probabilité : Valeur x i prises par X Probabilité Exemple 2 : Une urne contient 9 boules indiscernables au toucher. 5 boules noires, 3 boules blanches et 1 boule jaune. Une boule noire fait perdre 1 point. Une boule blanche fait gagner 2 point. La boule jaune fait gagner 3 points. 1) On tire une boule de l urne. Définir la loi de probabilité de la variable aléatoire X donnant le nombre de points. 2) On tire deux boules avec remise. Déterminer la loi de probabilité de la variable aléatoire X donnant le nombre de points. (on pourra faire une tableau ou un arbre pondéré pour avoir toutes les issues possibles) Exemple 3 : Une partie de «chance» coûte 2 à un stand ; La partie consiste à lancer trois pièces de monnaie équilibrées. Si on obtient trois fois Pile, on gagne 10. Sinon on perd. 1) Faire un arbre pour avoir toutes les issues 2) Déterminer la loi de probabilité de la variable aléatoire G donnant le Gain (algébrique) 3) Que fait cet algorithme? Algo simulation Début Entieraléatoire(0,1) A Entieraléatoire(0,1) B Entieraléatoire(0,1) C A + B + C N Si N 3 Alors afficher «vous avez gagné 8» Finsi Remarque : Sinon afficher «vous avez perdu 2» Si on remplace A + B + C N par A B C N que doit-on mettre après : Si N Peut-on remplacer les trois lignes Entieraléatoire ( ) par un ligne Entieraléatoire(0 ;3) Entieraléatoire(n ;p) Est une instruction qui renvoie un entier aléatoire entre n et p. TI : Math + PRB entalea ( Casio : OPTN + prob : RanInt(

3 4) Ecrire un algorithme qui simule plusieurs parties et qui donne le gain final. En entrée : le nombre de parties à simuler En sortie : Le gain final. 6) Programmation (livre p V) Sur TI Sur casio Algorithme n_parties_chance Début Fin Afficher "nombre de parties» Entrer N 0 G Pour i allant de 1 à N faire Entieraléatoire(0,1) A Entieraléatoire(0,1) B Entieraléatoire(0,1) C A +B + C D Si D 3 Alors G + 8 G Sinon G -2 G Finsi Finpour Afficher "le gain est : ", G TI : se trouve dans test Program gain moy gain moy : Disp nb de parties nb de parties : prompt N? N : 0 G 0 G : For ( i, 1,N) for 1 I to N step 1 : entalea (0,1) A ranint(0,1) A : entalea (0,1) B ranint(0,1) B : entalea (0,1) C ranint(0,1) C : A + B + C D A + B + C D : If D 3 If D 3 : Then Then G + 8 G : G + 8 G : Else else G 2 G : G 2 G : End Endif : End Next : Disp le gain est :, G le gain est :" : G : Disp " le gain moyen ", G/N " le gain moyen ", G/N 5) Modifier l algorithme pour qu il donne le gain moyen par partie. Remarques : Si on effectue un très grand nombre de fois cette partie, on pourrait voir que le gain moyen se rapproche de -0,75. On pourrait donc dire que l on peut espérer gagner -0,75 par partie on plutôt on dirait que l on peut espérer perdre 0,75 par partie!!! La valeur -0,75 est l espérance de la variable aléatoire du gain. L espérance est à une variable aléatoire ce que la moyenne est à une série statistique. L espérance est un des outils de base des assureurs, banquiers, joueurs de poker averti.

4 III - Espérance, variance et écart-type. Soit X une variable aléatoire. Valeur x i x 1 x 2. x n Probabilité p 1 p 2 p n Définitions : L espérance mathématique de la variable aléatoire X est le réel E(X) défini par : E(X) x 1 p 1 + x 2 p x n p n La variance de la variable aléatoire X est le réel positif V(X) défini par : V(X) p 1 (x 1 - E(X)) 2 + p 2 (x 2 - E(X)) p n (x n - E(X)) 2 V(X) L écart type σ est défini par : σ Exemple : Espérance de la partie «chance» Gain x i 8-2 Probabilité 1/8 7/8 E(X) 8 + (-2) - 0, 75 En moyenne, on peut espérer perdre 0,75 par partie. La variance est : V(X) 2 V(X) 10,9375 L écart type est : σ 3, 31 Notons Y la variable aléatoire définie par : Y ax + b avec a et b deux réels. Valeur de Y a x 1 + b a x 2 + b. a x n + b Probabilité p 1 p 2 p n Propriétés : Démonstration : p 187 E(aX + b) ae(x) + b V(aX) a 2 V(X) E(aX + b) p 1 (ax 1 +b) + p 2 (ax 2 +b)+ + p n (ax n +b) a (p 1 x 1 + p 2 x p n x n ) +b (p 1 + p p n ) a E(X) + b V(aX) Exemple : On lance deux dés. La variable aléatoire X donne la somme du nombre de points des deux dés. 1) Définir la loi de probabilité de la variable aléatoire X puis calculer l espérance de X. (On pourra faire un tableau pour avoir toutes les issues) 2) Chaque point rapporte deux euros. Calculer l espérance de la variable aléatoire G donnant le gain. 3) a) Si on fait payer 5 euros la partie. Calculer l espérance de la variable aléatoire B donnant le gain effectif. b) Combien doit-on faire payer une partie pour qu elle soit équitable?

5

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire Variables aléatoires. Exemple 1. (Jeu d argent) Exemple 2. Loi de

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Séquence 3. Probabilité : conditionnement et indépendance

Séquence 3. Probabilité : conditionnement et indépendance Séquence 3 Probabilité : conditionnement et indépendance Sommaire. Pré-requis. Conditionnement par un événement de probabilité non nulle 3. Indépendance 4. Synthèse Dans cette première séquence sur les

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

= constante et cette constante est a.

= constante et cette constante est a. Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

Cours d algorithmique pour la classe de 2nde

Cours d algorithmique pour la classe de 2nde Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Séquence 7. Probabilités Echantillonnage. Sommaire

Séquence 7. Probabilités Echantillonnage. Sommaire Séquence 7 Probabilités Echantillonnage Sommaire Pré-requis Variable aléatoire, Loi de probabilité, Espérance Répétitions d expériences identiques Loi de Bernoulli Loi binomiale Espérance de la loi binomiale

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende Que faire en algorithmique en classe de seconde? BEGIN Que dit le programme? Algorithmique (objectifs pour le lycée) La démarche algorithmique est, depuis les origines, une composante essentielle de l

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

TRIGONOMETRIE Algorithme : mesure principale

TRIGONOMETRIE Algorithme : mesure principale TRIGONOMETRIE Algorithme : mesure principale Déterminer la mesure principale d un angle orienté de mesure! 115" Problèmatique : Appelons θ la mesure principale, θ et! 115" sont deux mesures du même angle,

Plus en détail

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos olivier.bos@u-paris2.fr

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

Première S2 Chapitre 20 : probabilités. Page n 1 2007 2008

Première S2 Chapitre 20 : probabilités. Page n 1 2007 2008 Preière S2 Chapitre 20 : probabilités. Page n De tous teps, les hoes se sont intéressés aux jeux de hasard. La théorie des probabilités est une branche des athéatiques née de l'étude des jeux de hasard

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Ch. 1 : Bases de programmation en Visual Basic

Ch. 1 : Bases de programmation en Visual Basic Ch. 1 : Bases de programmation en Visual Basic 1 1 Variables 1.1 Définition Les variables permettent de stocker en mémoire des données. Elles sont représentées par des lettres ou des groupements de lettres

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Thème 19: Probabilités

Thème 19: Probabilités PROBABILITÉS 79 Thème 19: Probabilités Introduction: Blaise Pascal Andrey Nikolaevich Kolmogorov La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D ailleurs, le

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Probabilités. I - Expérience aléatoire. II - Evénements

Probabilités. I - Expérience aléatoire. II - Evénements Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Il faut connecter le câble fourni avec la calculatrice, sur la prise USB de son ordinateur et sur

Il faut connecter le câble fourni avec la calculatrice, sur la prise USB de son ordinateur et sur 1) Pour travailler avec une calculatrice virtuelle sur l ordinateur Il faut télécharger et installer le logiciel TIEmu3 à l adresse suivante : http://lpg.ticalc.org/prj_tiemu/win32.html (le fichier tiemu-3.01-win32-setup)

Plus en détail

POKER ET PROBABILITÉ

POKER ET PROBABILITÉ POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main

Plus en détail

S initier aux probabilités simples «Question de chance!»

S initier aux probabilités simples «Question de chance!» «Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

COMBINATOIRES ET PROBABILITÉS

COMBINATOIRES ET PROBABILITÉS COMBINATOIRES ET PROBABILITÉS ème année. Analyse combinatoire.. Outils.. Principe de décomposition.. Permutations.. Arrangements..5 Combinaisons 8.. Développement du binôme 9..7 Ce qu il faut absolument

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Algorithmique et programmation avec Java (NFA002)

Algorithmique et programmation avec Java (NFA002) Algorithmique et programmation avec Java (NFA002) Deuxième session 13 septembre 2012 Aucun document n est autorisé. Le barème est donné à titre indicatif. Exercice 1 : listes (4 points) Etudiez le programme

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Schéma de Bernoulli. Loi binomiale.

Schéma de Bernoulli. Loi binomiale. Fiche BAC S/ES 05 bis Terminale S/ES Loi binomiale et Calculatrices Schéma de Bernoulli. Loi binomiale. Ici il faut faire un (grand) effort de rédaction On considère une expérience aléatoire à deux issues.

Plus en détail

LES ALGORITHMES ARITHMETIQUES

LES ALGORITHMES ARITHMETIQUES LES ALGORITHMES ARITHMETIQUES I- Introduction Dans ce chapitre nous allons étudier quelques algorithmes relatifs à l arithmétique qui est une branche des mathématiques qui étudie les relations entre les

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Intelligence Artificielle Jeux

Intelligence Artificielle Jeux Intelligence Artificielle Jeux Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes Programmation

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,

Plus en détail

Sommaire de la séquence 1

Sommaire de la séquence 1 Sommaire de la séquence 1 t t t t t t t t t Séance 1...................................................................................................... 7 Je découvre la notion de probabilité.....................................................................

Plus en détail

201-DUA-05 Probabilités et statistique

201-DUA-05 Probabilités et statistique 1. La longueur de tiges usinées est une variable de moyenne 47,0 cm et d écart-type 0,36 cm. (a) Si l on prélève un échantillon aléatoire de taille 51, alors quelle est la probabilité que la moyenne échantillonnale

Plus en détail

Notions de probabilités

Notions de probabilités 44 Notions de probabilités Capacités Expérimenter, d abord à l aide de pièces, de dés ou d urnes, puis à l aide d une simulation informatique prête à l emploi, la prise d échantillons aléatoires de taille

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Seconde et première Exercices de révision sur les probabilités Corrigé

Seconde et première Exercices de révision sur les probabilités Corrigé I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

Le jeu de Nim. Spécification. Exemple d analyse/conception IFT 159 Analyse et Programmation Automne 2002

Le jeu de Nim. Spécification. Exemple d analyse/conception IFT 159 Analyse et Programmation Automne 2002 Exemple d analyse/conception IFT 159 Analyse et Programmation Automne 2002 Le jeu de Nim Spécification Le jeu de Nim est un jeu qui possède plusieurs variantes dont une qui possède une stratégie gagnante

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

2 de AP1 : utilisation de la calculatrice en mode «Programme» CORRECTION

2 de AP1 : utilisation de la calculatrice en mode «Programme» CORRECTION 2 de AP1 : utilisation de la calculatrice en mode «Programme» CORRECTION Algorithmes et programmes : Un algorithme est un ensemble d'instructions structuré de manière à atteindre un but. Ces instructions

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

Application 1- VBA : Test de comportements d'investissements

Application 1- VBA : Test de comportements d'investissements Application 1- VBA : Test de comportements d'investissements Notions mobilisées Chapitres 1 à 5 du cours - Exemple de récupération de cours en ligne 1ère approche des objets (feuilles et classeurs). Corps

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

Examen Médian - 1 heure 30

Examen Médian - 1 heure 30 NF01 - Automne 2014 Examen Médian - 1 heure 30 Polycopié papier autorisé, autres documents interdits Calculatrices, téléphones, traducteurs et ordinateurs interdits! Utilisez trois copies séparées, une

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail