Recherche par similarité dans les bases de données multimédia : application à la recherche par le contenu d images

Dimension: px
Commencer à balayer dès la page:

Download "Recherche par similarité dans les bases de données multimédia : application à la recherche par le contenu d images"

Transcription

1 UNIVERSITÉ MOHAMMED V AGDAL FACULTÉ DES SCIENCES Rabat N orre 460 THÈSE DE DOCTORAT Présentée par DAOUDI Imane Discipline : Sciences e l ingénieur Spécialité : Informatique & Télécommunications Titre : Recherche par similarité ans les bases e onnées multiméia : application à la recherche par le contenu images Soutenue le 17 juillet 009. Devant le jury Présient : D. ABOUTAJDINE Professeur à la Faculté es Sciences e Rabat Examinateurs : A. Baskurt Professeur à l Institut National es Sciences Appliquées e Lyon-LIRIS M. DAOUDI Professeur à Télécom Lille 1-ENIC H. Ibn El Haj Professeur Habilité à l Institut National es postes et télécommunication e Rabat K. Irissi Maître e conférence à l Institut National es Sciences Appliquées e Lyon-LIRIS S. Ouatik Professeur Habilité à la Faculté es Science Dhar El-Mahraz e Fès Faculté es Sciences, 4 Avenue Ibn Battouta B.P RP, Rabat Maroc Tel +1 (0) /35/38, Fax : +1 (0) ,

2

3 Table es matières Avant Propos Le travail présenté ans ce mémoire a été effectué ans le care 'une co-tutelle entre le laboratoire marocain LRIT (laboratoire e Recherche en Informatique et Télécommunications) e la Faculté es Sciences e Rabat sous la irection u Professeur Driss Aboutajine et le laboratoire français LIRIS (Laboratoire 'Informatique en Image et Systèmes information) sous la irection u Professeur Atilla Baskurt. Je remercie M. Driss Aboutajine Professeur enseignement supérieur à la faculté es Sciences e Rabat pour son suivi et ses encouragements tout au long e ce travail e thèse e octorat. Mes remerciements vont aussi à Mr Atilla Baskurt Professeur enseignement supérieur à l INSA e Lyon pour son encarement et son suivi rigoureux et patient urant ces années e thèse. Ensuite, je tiens à remercier Mr Mohame DAOUDI Professeur es universités à Télécom Lille 1 et Mr Ibn Lhaj El Hassan Professeur Habilité pour avoir consacré u temps à lecture e cette thèse ainsi pour avoir soumis leur précieux jugement sur la qualité et le contenu e ce travail. Je vourais exprimer ma profone reconnaissance envers mon co-irecteur Khali Irissi maitre e conférence à l INSA e Lyon pour toute l attention et le soutien qu il m a portés penant ces années e thèse et pour sa très grane isponibilité urant toute cette périoe. Mes remerciements vont aussi à mon co-encarant Mr Sai Ouatik professeur Habilité à la faculté es Sciences e Fès pour son suivi. Merci à mes parents et mes frères et sœurs pour leur soutien urant toutes ces années 'étues: je ne saurais être qu'infiniment reconnaissante quant aux sacrifices qu'ils ont consentis. Merci à tous les collègues u laboratoire LRIT et le laboratoire LIRIS pour leur amitié et bonne humeur qui ont égayé ma vie au laboratoire. Enfin merci à ceux et celles que je n'ai pas pu citer, mes sincères amitiés et remerciements.

4 Table es matières Table es matières Introuction Générale Chapitre 1 : Recherche par le contenu ans les bases images fixes 1 Introuction... 6 Représentation u contenu visuel es images 8.1 Descripteurs couleur Descripteurs texture Descripteurs forme Combinaison es escripteurs Mesure e similarité Similarités attentive et pré-attentive Similarité ans les moteurs recherche Similarité par approche noyau Astuce u noyau «Kernel Trick»...

5 Table es matières 4. Fonctions noyaux classiques Généralisation e la notion e istance à travers l astuce u noyau Synthèse... 5 Chapitre : inexation Multiimensionnelle 1 Introuction... 7 Méthoes inexation conventionnelles 8.1 Méthoes e partitionnement e onnées Méthoes e partitionnement e l espace Maléiction e la imension Problèmes inexation et e recherche ans les espaces e grane imension Techniques e réuction e la imension Méthoes inexation multiimensionnelles basées sur l approche approximation Approximation globale Approximation locale Synthèse... 63

6 Table es matières 5 Synthèse Chapitre 3: Méthoe proposée pour l'inexation et la recherche ans les espaces multiimensionnels : RA+-Blocks 1 Introuction KD-Tree Construction un KD-Tree Stratégies e subivision K-D-B-Tree et ses variantes RA-Blocks Approximation Inexation Recherche Synthèse RA + -Blocks Structuration es onnées Structure inex Interrogation e la base e onnées... 87

7 Table es matières 6 Synthèse Chapitre 4: Nouvelle méthoe multiimensionnelle par approche noyau pour l'inexation et la recherche ans les granes bases 'images basées sur le contenu : KRA+-Blocks 1 Introuction Techniques inexation par approche noyau 90.1 M-Tree à noyau KVA-File KRA + -Blocks : structure inexation multiimensionnelle pour la recherche par le contenu Réuction e la imension Propriétés e l ACPK Inexation Mesure e similarité Recherche Bouclage e pertinence Synthèse

8 Table es matières Chapitre 5 : Expérimentations 1 Evaluation es performances e RA + - Blocks Environnement expérimental Description es onnées Expérimentation 1 : Nombre e régions obtenues Expérimentation : Taux e remplissage Expérimentation 3 : Temps e réponse Evaluation es performances u KRA + - Blocks Environnement expérimental Description es onnées Expérimentation 1 : Estimation es paramètres u noyau Expérimentation : Qualité e la recherche par similarité Expérimentation 3 : Bouclage e pertinence Expérimentation 4 : Intérêt sur la combinaison es escripteurs globaux 15.7 Expérimentation 5 : Temps e la recherche Synthèse Conclusion Générale

9 Table es matières Annexe : Algorithmes 1 Construction e l inex KDB-Tree Construction e l inex KD-Tree Algorithme e recherche VA-NOA centrage es onnées ans l espace à noyau Références e l'auteur Références Bibliographiques

10 Table es figures Tables es figures 1.1 Schéma un système e recherche images par le contenu.. 1. Classification es escripteurs e formes D Parties réelles es fonctions e base ART Effet une transformation linéaire à une classification basée sur une istance Eucliienne les contours e ifférentes istances Structure u R-Tree 4. Structure géométrique u M-Tree. 6.3 Fonctionnement e l algorithme "Slim-own" La structure géométrique e la méthoe u pivot métrique PM le partitionnement e onnées selon (a) M-Tree (b) MH-Tree La corresponance entre les régions (b) et les pyramies (a) en eux imensions selon la technique e la pyramie 3.7 Exemple e requête e forme non-hyper cube Résultat u partitionnement un espace à eux imensions selon la méthoe iminmax où (a) θ = 0 (b) θ = 0. 5 (c) θ = Exemple e partitionnement e l espace e onnées (a) et (b) e construction e la structure space-tree Représentation géométrique e l inexation selon la méthoe ViTri La structure inex u Kpyr[Thi 05] Exemple estimation une istance géoésique entre eux point p 1 et p Principe e fonctionnement e l algorithme LLE Construction u VA-File Distance minimale est maximale par rapport au vecteur requête Coage es vecteurs selon LPC-File Calcul e la istance minimale et e la istance maximale entre un vecteur requête et l ensemble e vecteurs ayant la même approximation Exemple e VBR Structure inex u A-Tree. 5.0 structure inex IQ-Tree Partitionnement e l espace selon GC-Tree... Construction e l inex e l arbre GC. (a)partitionnent e l espace e onnées. 57 (b) la structure inex corresponante [Gua 0b] le principe e l approximation e la méthoe AV 58.4 Exemple e calcul e la istance minimal et maximal u vecteur requête par rapport à l approximation suivant la méthoe AV MBRs e l arbre PCR et u R-Tree La structure u KD-Tree et ses partitions ans le plan La subivision 'un espace e onnées par la méthoe stanar Application e a stratégie e ivision u point méian à l ensemble e points e l exemple précéent Partitionnement une page point. 73

11 Table es figures 3.5. Structure 'un -D-B-Tree écomposition une page région Exemple e coage es régions ans un espace e imension eux Structure inex u RA-Blocks Les istances minimales et maximales une région par rapport à un vecteur requête L algorithme e recherche es ppv k u RA-Blocks L algorithme e écoupage e l espace e onnées u RA+-Blocks Exemple e subivision es régions selon K-D-B-Tree Exemple e subivision es régions selon notre méthoe PCs for ifferent δ values. (a) Original ata. (b) PCA. (c) KPCA, δ = () KPCA, δ = (e) KPCA, = 0. 5 δ. (f) KPCA KRA+-Blocks approximations. (a) onnées originales. (b) les onnées projetées avec ACPK. (c) les bornes minimales et maximales 5.1 Le nombre e régions obtenues en fonction e la imension (a) pour es onnées 98 réelles (b) et uniformes Nombre e régions obtenues en fonction e la taille e la base e onnées La capacité e stockage u RA-Blocks et RA+-Blocks Temps e réponse en fonction e la imension Temps e réponse en fonction e la imension Temps e réponse en fonction e la taille e la base e onnées Temps e réponse en fonction e la taille e la base e onnées Un exemple (a) images e la base COIL-100 (b) classes e la base images (a) γ (, δ ) (b) σ (, δ ) (c) valeurs optimales es paramètres u noyau les courbes e rappel et e précision pour ifférentes valeurs es paramètres u noyau Les Coubes e rappel et e précision en utilisant (a) la base B1 (700) et (b) la base B (40000) Les résultats e la recherche avec la méthoe KRA+-Block ans la base COIL- 100 : la première image e chaque ligne représente l image requête et le 11 images représentent les résultats triés par orre croissant e similarité Les Coubes e rappel et e précision en utilisant (a) la base B1 (700) et (b) la base B 40000) Résultat e la recherche en utilisant a. KRA+-Block avec les paramètres optimaux et b. en utilisant une itération u bouclage e pertinence: la première image e chaque ligne représente l image requête et les autres 11 images sont les résultats retournés le temps e réponse en fonction e la imension pour la base (a) BD3. (b) BD Evolution u temps e réponse en fonction e la imension pour la base (a) BD3. (b) BD4. 18

12 Liste es tableaux Liste es tableaux.1 Récapitulatif es avantages et inconvénients es ifférentes méthoes citées Précéemment 9. Récapitulatif es avantages et inconvénients es ifférentes méthoes citées précéemment 37.3 Récapitulatif es avantages et inconvénients es méthoes inexation basée sur l approche approximation locale citées précéemment 64.4 Récapitulatif es avantages et inconvénients es méthoes inexation basée sur l approche approximation globale citées précéemment Récapitulatif e quelques propriétés générales es méthoes inexation basées sur l approximation locale citées précéemment Récapitulatif e quelques propriétés générales es méthoes inexation basées sur l approximation globale citées précéemment La variance cumulée ans les premières composantes principales en fonction e δ. Les zones en couleur grise corresponent à une variance cumulée supérieure ou égale à 98% Valiation es équations 5.1 et 5. pour les régions e la figure Les quatre méthoes utilisées pour la comparaison e la qualité e la recherche Comparaison e la précision (en %) utilisant la couleur et la couleur + la forme Comparaison e la précision (en %) utilisant la couleur et la couleur avec la forme.. 15

13 Introuction Générale Introuction Générale L une es conséquences irectes e la baisse es coûts es équipements informatiques, u éveloppement es télécommunications et e la isponibilité es techniques e numérisation e haute qualité, est la création et l échange e volumes e plus en plus importants e onnées multiméias numérisées. Ces onnées sont par essence hétérogènes et leur contenu préponérant est visuel. Les éveloppements récents ans les omaines u traitement u signal et es bases e onnées offrent tous les éléments nécessaires pour l extraction, l inexation et la recherche u contenu visuel es onnées multiméias, notamment es images. Dans cette thèse, nous nous intéressons aux techniques l inexation multiimensionnelles et la recherche es images fixes par le contenu. Ces techniques sont complémentaires et fonamentales pour une recherche rapie et efficace ans un système e recherche images par le contenu. Les techniques inexation image ont pour but organiser un ensemble e escripteurs (un escripteur étant un vecteur e réels écrivant le contenu visuel une image et pouvant être e très grane imension) afin que les procéures e recherche soient performantes en temps e réponse. Cette organisation se trauit généralement par une structuration es escripteurs en petits ensembles et par l application e stratégies e recherche capable e filtrer toutes les images non pertinentes qui seront évitées (non parcourues) penant la recherche garantissant ainsi un temps e recherche acceptable par l utilisateur. Les techniques e recherche par le contenu quant à elles, consistent à évelopper et à appliquer es outils qui permettent e sélectionner les images les plus pertinentes par leurs contenus. Lors une interrogation, un (ou plusieurs) escripteur, généralement hétérogène, est tout abor extrait à partir e l image requête. Ce escripteur requête est ensuite utilisé pour retrouver les escripteurs stockés ans la base qui lui sont les plus proches en terme e similarité. Les escripteurs trouvés permettent obtenir les images auxquelles ils sont associés et qui, e fait, sont censés être similaires à l image requête. La mise en œuvre e ces outils inexation et e recherche ans un contexte e très grane collection images fait appel à es techniques éveloppées ans eux omaines ifférents : l analyse images et les bases e onnées. Cette mise en œuvre s effectue ans le care un Système e Recherche Images par le Contenu (SRIC ou CBIR pour Content Base Image Retrieval). Objectif e la thèse Les techniques inexation et e recherche images basée sur le contenu visent à extraire automatiquement es caractéristiques visuelles es images et à les organiser ans es inex multiimensionnels pour ensuite faciliter la recherche ans les granes bases images. Ces techniques ont une complexité particulière liée à la nature es onnées manipulées. La littérature fait état e iverses approches inexation et e recherche e onnées e caractère multiimensionnelles. Parmi ces approches, certaines souffrent e la maléiction e la

14 Introuction Générale imension [Web 98][Ams 01]. D autres, par contre, sont spécifiques à une représentation particulière es onnées (istribution uniforme es onnées, espaces métriques ). Il parait onc nécessaire élaborer es techniques inexation multiimensionnelles qui soit aaptées aux applications réelles pour aier les utilisateurs à faire une recherche rapie et efficace. L inexation et la recherche basées sur le contenu comporte trois principales opérations relativement complexes 1. La escription automatique consistant à extraire es signatures compactes u contenu visuel e l image.. La structuration e l espace e escription (inexation), consistant à mettre en place une structure inex multiimensionnelle permettant une recherche efficace pour es milliers, voire es millions images. 3. La recherche par similarité ans laquelle une istance est associée à chaque type e escripteur, puis une recherche es k plus proches voisins est effectuée. Notre thèse consiste à traiter les ifférentes étapes citées ci-essus en se focalisant essentiellement sur l inexation multiimensionnelle et la recherche par le contenu ans les granes bases images fixes. En fait, il s agit e évelopper une méthoe rapie et efficace inexation et e recherche es k ppv qui soit aaptée aux applications inexation par le contenu et aux propriétés es escripteurs images. Nous nous intéressons ans un premier temps à l inexation multiimensionnelle. En effet, la problématique se complexifie lorsque la taille e la base evient conséquente et que les escripteurs eviennent e grane imension. La recherche est généralement effectuée une manière exhaustive sur la totalité e la base ce qui se trauit par un temps e réponse inacceptable par l utilisateur. Dans la littérature, plusieurs techniques conventionnelles inexation multiimensionnelles ont été proposées pour l optimisation u temps e réponse. Ces techniques permettent e réuire la recherche séquentielle à un sous ensemble e paquets e vecteurs en regroupant ces erniers ans es formes géométriques particulières (rectangle, sphère, etc.) et en utilisant es stratégies e filtrage. Ceci permet par conséquent e réuire le nombre E/S ainsi que le nombre e calculs e istance. Malheureusement, la performance es techniques conventionnelles inexation multiimensionnelle se égrae ramatiquement lorsque la imension es onnées augmente [Web 98], phénomène connu sous le nom e la maléiction e la imension qui ren la recherche séquentielle exhaustive bien meilleure qu une recherche sur les structures inex conventionnelles. Pour cela, es techniques inexation multiimensionnelles basées sur l approche approximation ont été proposées [SYUK 00][Ter 0], elles reposent sur la compression es onnées où un coage particulier es onnées est appliqué permettant améliorer la recherche séquentielle par es stratégies e filtrage. Les méthoes inexation basées sur l approche approximation sont consiérées comme efficaces pour gérer les vecteurs e grane imension [Web 98], mais leur intégration ans un système e recherche et inexation basé sur le contenu (très gran volume e onnées, très grane imension, aucune hypothèse sur la istribution es onnées, etc.) pose e sérieux problèmes. Notre objectif est améliorer l efficacité e ces techniques inexation et apporter es réponses au problème u passage à l échelle et e la maléiction e la imension pour pouvoir ensuite intégrer ces techniques ans un système e recherche par le contenu. Notre secon objectif consiste à appliquer une méthoe inexation multiimensionnelle basée sur l approche approximation, à la recherche images basée sur le contenu. Rappelons qu il s agit e mettre en place es techniques permettant e sélectionner les images les plus pertinentes par leur contenu relativement à une requête onnée selon ifférents types e escripteurs (couleur, texture, forme). L intégration e ces techniques ans un système SRIC est confrontée à e nombreux problèmes. Le premier se pose lors e l étape inexation. En effet,

15 Introuction Générale cette étape consiste à gérer les escripteurs caractéristiques es images auxquelles sont associés plusieurs types e onnées écrivant à la fois la couleur, la texture, la forme, etc. es images. Ces escripteurs possèent généralement un très gran nombre e composantes (>100), onc une grane imension ifficile à gérer par les méthoes inexation existantes en raison u problème e la maléiction e la imension. Le euxième problème se présente lors e la structuration e l espace e escription. Il s agit à ce stae e structurer et organiser en inex es vecteurs multiimensionnels composés es ifférents types attributs qu on ésignera par escripteurs hétérogène. Cette structure inex evrait regrouper les escripteurs ans es formes géométriques particulières e sorte que les escripteurs appartenant à la même forme soient similaires en termes une istance onnée. D où le troisième problème qui consiste à éfinir une istance permettant une part e mieux approximer la proximité entre les vecteurs attributs hétérogène ans l espace multiimensionnel et autre part estimer le plus fièlement possible la similarité visuelle entre les images. Notre objectif est onc élaborer une technique inexation multiimensionnelle qui répone efficacement à ces problématiques et permettant ainsi une recherche efficace et rapie ans un SRIC. Synthèse es contributions Notre travail a abor porté sur l amélioration es méthoes inexation basées sur l approche approximation, pour réponre aux problèmes e la maléiction e la imension et réuire le temps e la recherche ans les espaces e grane imension et au passage à l échelle. D abor, nous avons passé en revue les principales méthoes basées sur l approche approximation et nous avons ensuite comparé leurs principales caractéristiques. Sur la base e cette étue, nous avons choisi améliorer les performances e la méthoe RA-Blocks [Ter 0] en raison es avantages quelle présente. La méthoe proposée (RA + -Block) repose sur un nouvel algorithme e partitionnement qui permet améliorer notablement les performances e la structure inex u RA-Blocks en terme e capacité e stockage et e temps e recherche en générant es régions compactes et isjointes. Les résultats e ces travaux ont été publiés ans [1][8] La euxième contribution est la proposition une mesure e similarité aaptée aux onnées réelles lors e l inexation et e la recherche par le contenu. Nous avons opté pour une représentation e la similarité par fonction noyau. Ainsi, toutes les mesures e similarité et calculs e istance auxquels nous nous sommes intéressés sont entièrement basés sur ce formalisme. Nous avons étuié les ifférents paramètres e la fonction noyau et nous avons proposé une stratégie e sélection es paramètres qui permettent une meilleure estimation e la similarité entre escripteurs hétérogènes ainsi qu une représentation iscriminante es onnées ans l espace e caractéristiques. Les résultats e ces travaux ont été publiés ans [4]. La troisième et principale contribution est la conception une méthoe efficace inexation et e recherche par le contenu particulièrement aaptée aux onnées e nature hétérogènes (KRA + - Blocks). Cette méthoe permet accélérer consiérablement le temps e la recherche et améliorer significativement la qualité es résultats retournés, particulièrement pour les granes bases e escripteurs attributs hétérogènes. La méthoe proposée combine une méthoe non linéaire e la réuction e la imension et une méthoe inexation multiimensionnelle fonée sur l approche approximation pour faire face au problème e la maléiction e la imension et à celui e l inexation es onnées hétérogènes. La réuction non linéaire e la imension permet utiliser et exploiter les propriétés es fonctions noyau pour éfinir une mesure e similarité aaptée à la nature es onnées. Pour améliorer la qualité

16 Introuction Générale e la recherche, nous avons également implémenté un schéma e bouclage e pertinence avec une approche statistique. Nous avons moélisé le problème e la recherche par une classification binaire, ans laquelle nous avons créé un moèle pour iscriminer la classe es images pertinentes e celle es images non pertinentes, ceci à travers le calcul es probabilités es classes e vecteurs. Les résultats e ces travaux ont été publiés ans [5][6]. La quatrième contribution e cette thèse est l intégration e la méthoe inexation multiimensionnelle KRA + -Blocks au moteur e recherche par le contenu es images fixes IMALBUM, éveloppé au sein u LIRIS. Nous avons mené es expérimentations pour évaluer nos eux méthoes (RA + -Blocks et KRA + -Blocks) à très granes échelle (base e éléments) et avec es escripteurs visuelles e grane imension (=5), ce qui est rarement le cas ans la littérature. Cela nous a permis e montrer que l utilisation e l approche approximation e régions et l approche noyau permettent être très robuste à l augmentation e la taille e la base e onnées et e la imension es escripteurs utilisés aussi bien pour la qualité que pour le temps e recherche. Cela a également montré que la combinaison e plusieurs types e escripteurs en une seule structure inex est possible grâce à l approche e similarité que nous avons proposée. Description es chapitres Ce ocument écrit l ensemble es travaux menés ans le care e cette thèse sur la recherche par similarité ans les granes bases e onnées multiméias: application à la recherche par le contenu ans les bases images. Il comporte cinq chapitres écrits comme suit : Le premier chapitre propose un tour horizon es principales approches e la escription e l apparence visuelle. Nous commençons par la présentation es principales méthoes extraction automatiques es caractéristiques visuelles es images (couleur, texture, et forme) en précisant à chaque fois, les techniques mises en œuvre ans cette thèse pour la escription. Nous présentons ensuite les principales mesures e similarité qui existent ans la littérature et nous énumérons celles utilisées par les systèmes e recherche images basée sur le contenu. Enfin, nous introuisons la notion e similarité par l approche noyau, nous présentons quelque aspect e cette théorie ans notre contexte et nous proposons une généralisation e la notion e istance par cette approche. Le euxième chapitre est composé e trois paragraphes. Dans le premier, nous passons en revue les principales techniques conventionnelles inexation multiimensionnelle en étaillant respectivement les approches basées sur le partitionnement e onnées et sur le partitionnement e l espace. Le euxième présente brièvement les problèmes e la maléiction e la imension qui perturbent le fonctionnement es techniques inexation. Nous présentons ans le même paragraphe les principales techniques e la réuction e la imension qui ont été proposées ans la littérature pour contourner ces problèmes. Dans le ernier paragraphe e ce chapitre, sont présentées les nouvelles méthoes pour la recherche et l inexation es onnées multiimensionnelles basées sur l approche approximation ou filtrage Pour épasser les limites e la méthoe inexation basée sur l approche approximation RA- Blocks, particulièrement au niveau u écoupage e l espace e onnées, nous proposons ans le troisième chapitre une autre méthoe que nous avons appelée RA+-Blocks. Nous présentons abor les méthoes e partitionnement e l espace e onnées KD-Tree et KDB-Tree sur lesquelles sont basées respectivement les eux méthoes RA + -Blocks et RA-Blocks. Nous présentons ensuite la méthoe RA-Blocks. Enfin notre méthoe inexation et e recherche basée sur l approche approximation RA+-Blocks est étaillée.

17 Introuction Générale Le quatrième chapitre est consacré à la présentation e notre méthoe KRA + -Blocks. Nous présentons abor les principales méthoes inexation basée sur l approche noyau, puis nous étaillons notre nouvelle méthoe inexation. Dans le cinquième chapitre, estiné à la présentation et à la iscutions es résultats expérimentaux, nous présentons le contexte es évaluations, puis nous effectuons une série expérimentations qui permettent e valier nos eux méthoes inexation et e recherche sur es bases images réelles et synthétiques. La conclusion générale présente une synthèse es travaux effectués ans cette thèse. Elle écrit aussi les perspectives que nous proposons au prolongement e ce travail e recherche

18 Chapitre 1 : Recherche par le contenu ans les bases images fixes Chapitre 1 Recherche par le contenu ans les bases images fixes L objectif e ce chapitre est faire un tour horizon es principaux concepts e base relatifs à la recherche images basée sur le contenu. Nous présentons abor les principales approches pour la escription e l apparence visuelle es images fixes permettant une recherche efficace par le contenu. Ensuite, nous introuisons les ifférentes approches e mesure e similarité proposées ans la littérature, nous intéressant particulièrement à la notion e similarité par l approche noyau. 1 Introuction Comme l inique clairement leur nom, les "systèmes e recherche images par le contenu" (SRIC ou CBIR avec le vocable Anglais) ont pour fonction principale e permettre la recherche images en se basant non pas sur es mots clefs, mais sur le contenu propre es images. Les applications e tels systèmes sont très nombreuses et assez variées. Elles incluent es applications juiciaires : les services e police possèent e granes collections inices visuels (visages, empreintes) exploitables par es systèmes e recherche images. Les applications militaires, bien que peu connues u gran public, sont sans oute les plus éveloppées [Eak 99] : reconnaissance engins ennemis via images raars, systèmes e guiage, ientification e cibles via images satellites en sont quelques exemples. Bien autres applications existent telles que le iagnostic méical, les systèmes information géographiques, la gestion œuvres art, les moteurs e recherche images sur Internet et la gestion e photos personnelles, etc. Le besoin en recherche images par le contenu est réel, et les problématiques sont nombreuses et variées. Dans le omaine militaire par exemple, la recherche engins ennemis ans les bases images raars ne présentera pas les mêmes ifficultés que la recherche e voitures, voire une voiture en particulier, ans une base images généralistes. Toutefois, certaines phases relatives aussi bien à l inexation e la base qu à la recherche ans celle-ci vont être nécessaires ans tous les cas e figure. Les SRIC ont pour vocation e réponre efficacement aux requêtes e l utilisateurs, ils s appuient généralement sur une représentation e bas niveau u contenu e l image. La recherche se fait ainsi par comparaison es caractéristiques. Malheureusement, la conception

19 Chapitre 1 : Recherche par le contenu ans les bases images fixes un système permettant assister es utilisateurs ans leurs tâches e recherche images est confrontée à es problèmes très ivers. Parmi les ifficultés pouvant être rencontrées [Eak 99] : 1. Comprenre les utilisateurs images et leurs comportements : e quoi les utilisateurs ont-ils réellement besoin?. Ientifier une manière "convenable" pour écrire le contenu e l image. C est une tâche renue ifficile par l aspect sémiotique es images. 3. Comparer les requêtes et les images e la base e manière à refléter fièlement les jugements e similarité humains. Cette comparaison s effectue à travers une mesure e similarité, généralement explicité sous forme une istance 4. Fournir es interfaces conviviales : c est la vitrine u système permettant la représentation es résultats et qui peut s avérer fonamentale en présence un mécanisme e bouclage e pertinence. 5. Offrir es temps e réponse acceptables : cette contrainte requière une stratégie inexation et e recherche pour naviguer efficacement ans les granes bases images. Le schéma générique SRIC peut être représenté par le igramme e la figure 1.1. Deux processus principaux oivent exister. Un premier qui calcule les escripteurs es images e la base et un secon qui, à partir es escripteurs et es paramètres e la requête, recherche les images positives et les fournit à l utilisateur. Base images Base inex Inexation Calcul es escripteurs Requête e l utilisateur Descripteur e la requête Utilisateur Réponse Requête Pertinence Moteur e recherche Fig 1.1 Schéma un système e recherche images par le contenu Cette phase e recherche est souvent couplée avec une possibilité interaction u système avec l utilisateur, ce qui permet e raffiner le processus e recherche en iniquant au système les résultats pertinents et ceux qui ne le sont pas. Les informations fournies sont alors exploitées pour améliorer la recherche ans une phase ite e bouclage e pertinence (Relevance feeback). Toutes les images e la base sont écrites à l aie es escripteurs. Ceux-ci oivent contenir es attributs iscriminants permettant une bonne escription u contenu e l image et être associés à une mesure efficace e la similarité.

20 Chapitre 1 : Recherche par le contenu ans les bases images fixes Représentation u contenu visuel es images La performance es systèmes e recherche épen pour une grane partie u choix es escripteurs employés et es techniques associées à leur extraction. De nombreux escripteurs sont utilisés ans les systèmes e recherche pour écrire les images. Ceux-ci peuvent être ifférenciés selon eux niveaux : Les escripteurs e bas niveau : les plus utilisés ans les systèmes actuels sont la couleur, la texture et la forme, leur pouvoir e iscrimination étant limité au contenu visuel e l image. Les escripteurs e haut niveau : tenent à se rapprocher u contenu sémantique e l image, et peuvent être soit extraits automatiquement soit fournis par l utilisateur sous forme e mots-clefs lors e l inexation. Cepenant, l extraction automatique ne semble réaliste actuellement que sur es bases thématiques. La normalisation MPEG7 [Man 0] a justement pour objectif e stanariser la escription es contenus multiméia, en proposant pour chaque type e contenu (image, son, viéo), les attributs à écrire ainsi que les escripteurs associés à chaque attribut. Le but ici n est pas u tout être exhaustif, mais plutôt e présenter brièvement quelques escripteurs proposés pour l image, puis e revenir sur ceux que nous avons utilisés ans le care e ce travail..1 Descripteurs couleur Le fort pouvoir e iscrimination e la couleur en fait un attribut omniprésent ans la grane majorité es systèmes inexation et e recherche par le contenu. De nombreux escripteurs sont proposés ans la littérature et nous pouvons consiérer qu ils forment granes catégories : o Les escripteurs relatifs à l espace couleur, où il s agit e représenter les principales couleurs une image, tout en fournissant es informations sur leur importance, leur istribution colorimétrique, etc. o Les escripteurs incluant es informations spatiales relatives à la istribution ans le plan image e la couleur, à la connexité entre couleurs, etc. Ces classes e escripteurs sont complémentaires et généralement les systèmes font appel à ces eux aspects. MPEG7 propose naturellement es escripteurs pour les familles. Les couleurs ominantes, les quantifications es espaces couleur pour la première, et les escripteurs "Color Layout", "Color Structure" et "Scalable Color" pour la secone. Nous ne étaillerons pas ces escripteurs ici. Toute fois, l approche la plus courante et la plus rencontrée ans la littérature est l histogramme couleur. De très nombreux auteurs ont proposé iverses manières utiliser l histogramme comme escripteur, ainsi que iverses istances associées qui permettent e mesurer la similarité entre eux histogrammes. Dans [Swa 91], Swain et Ballar ont suggéré e écrire la couleur une image à l aie e son histogramme couleur et ont éfini l intersection histogrammes couleur comme mesure e similarité entre une image histogramme I et un moèle histogramme M par : n ( I, ) min (1.1) j= 1 j M j

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel Simulation Matlab/Simulink une machine à inuction triphasée Constitution un référentiel Capocchi Laurent Laboratoire UMR CNRS 6134 Université e Corse 3 Octobre 7 1 Table es matières 1 Introuction 3 Moélisation

Plus en détail

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 1/14 Manuel e Valiation Fascicule V6.04 : Statique non linéaire es structures volumiques Document V6.04.14 SSNV14

Plus en détail

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles 1 Chapitre Chapitre 1. Fonctions e plusieurs variables La TI-Nspire CAS permet e manipuler très simplement les onctions e plusieurs variables. Nous allons voir ans ce chapitre comment procéer, et éinir

Plus en détail

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL Proposé par BUMA Feinance Master en management e projets informatiques Consultant en système écisionnel I. COMPREHENSION DU CONTEXTE «L informatique

Plus en détail

LES EXTENSIONS RÉGIONALES ET LOCALES DE L ENQUÊTE LOGEMENT 2006 ÉCHANTILLONNAGE ET REPONDÉRATION

LES EXTENSIONS RÉGIONALES ET LOCALES DE L ENQUÊTE LOGEMENT 2006 ÉCHANTILLONNAGE ET REPONDÉRATION LES EXTENSIONS RÉGIONALES ET LOCALES DE L ENQUÊTE LOGEMENT 2006 ÉCHANTILLONNAGE ET REPONDÉRATION J. Le Guennec INSEE, pôle ingéniérie statistique ménages Problématique L INSEE réalise tous les quatre ans

Plus en détail

et les Trois Marches d'assurance

et les Trois Marches d'assurance The Geneva Papers on Risk an Insurance, 20 (juillet 98), 36-40 Asymétrie 'Information et les Trois Marches 'Assurance par Jean-Jacques Laffont * La proposition stimulante e Monsieur Ic Professeur Borch

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Arbre Binaire B. Jacob IC2/LIUM 27 février 2010 Plan 1 Introuction 2 Primitives u TDA Arbin 3 Réalisations u TDA Arbin par cellules chaînées par cellules contiguës par curseurs (faux pointeurs)

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Les deux points les plus proches

Les deux points les plus proches MPSI Option Informatique Année 2001, Deuxième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Les eux pots les plus proches Lors e cette séance, nous allons nous téresser au problème suivant :

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

Système d Information

Système d Information Système Information Système Information Rémy Courier Urbanisation es SI Système Information Urbanisme es SI 1 Rémy Courier Urbanisme es Systèmes Information Inytrouction De l Urbanisme à L Urbanisation

Plus en détail

CONTROLE D UN SIMULATEUR A BASE MOBILE À 3 DDL

CONTROLE D UN SIMULATEUR A BASE MOBILE À 3 DDL Zie Amara 1/8 CONTROLE D UN SIMULATEUR A BASE MOBILE À 3 DDL Zie AMARA 1 Directeur(s) e thèse: Joël BORDENEUVE-GUIBIE* et Caroline BERARD Laboratoire 'accueil: * Laboratoire Avionique & Système Ecole Nationale

Plus en détail

Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel

Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Recherche d'images par le contenu Application au monitoring Télévisuel à l'institut national de l'audiovisuel Alexis Joly alexis.joly@inria.fr INRIA - IMEDIA Alexis Joly cours monitoring p. 1 Plan de l'exposé

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2 CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en

Plus en détail

IMPROTEK : INTÉGRER DES CONTRÔLES HARMONIQUES POUR L IMPROVISATION MUSICALE DANS LA FILIATION D OMAX

IMPROTEK : INTÉGRER DES CONTRÔLES HARMONIQUES POUR L IMPROVISATION MUSICALE DANS LA FILIATION D OMAX IMPROTEK : INTÉGRER DES CONTRÔLES HARMONIQUES POUR L IMPROVISATION MUSICALE DANS LA FILIATION D OMAX Jérôme Nika Ircam - Paris, puis Télécom ParisTech 46 rue Barrault - 75013 Paris jerome.nika@telecom-paristech.fr

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Méthode d extraction des signaux faibles

Méthode d extraction des signaux faibles Méthode d extraction des signaux faibles Cristelle ROUX GFI Bénélux, Luxembourg cristelle.roux@gfi.be 1. Introduction Au début d une analyse stratégique, la première question posée est très souvent la

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

CHAPITRE. Les variables du mouvement CORRIGÉ DES EXERCICES

CHAPITRE. Les variables du mouvement CORRIGÉ DES EXERCICES CHAPITRE Les variables u mouvement CORRIGÉ DES EXERCICES 2 3 Exercices. Les variables liées à l espace et au temps. Une araignée grimpe le long une clôture. Elle parcourt abor 3 m vers le haut, puis 2

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Visibilité polygone à polygone :

Visibilité polygone à polygone : Introduction Visibilité polygone à polygone : calcul, représentation, applications Frédéric Mora Université de Poitiers - Laboratoire SIC 10 juillet 2006 1 La visibilité Introduction Contexte L espace

Plus en détail

Codage MPEG-4 de dessins animés

Codage MPEG-4 de dessins animés Codage MPEG-4 de dessins animés Jean-Claude Moissinac Cyril Concolato Jean-Claude Dufourd Ecole Nationale Supérieure des Télécommunications 46 rue Barrault 75013 Paris cyril.concolato@enst.fr, dufourd@enst.fr,

Plus en détail

Les principaux domaines de l informatique

Les principaux domaines de l informatique Les principaux domaines de l informatique... abordés dans le cadre de ce cours: La Programmation Les Systèmes d Exploitation Les Systèmes d Information La Conception d Interfaces Le Calcul Scientifique

Plus en détail

TP5 - Morphologie mathématique

TP5 - Morphologie mathématique TP5 - Morphologie mathématique Vincent Barra - Christophe Tilmant 5 novembre 2007 1 Partie théorique 1.1 Introduction La morphologie mathématique [1] est un outil mathématique permettant au départ d explorer

Plus en détail

Cours de Système d Information

Cours de Système d Information Cours e Système Information Système Information Rémy Courier Vision Technique De l Urbanisation l : L EAIL Système Information Urbanisme es SI 1 Rémy Courier Urbanisme es Systèmes Information Introuction

Plus en détail

Exercice 2 : Comment déterminer le relief du fond marin avec un sondeur? (5,5 pts) Les trois parties de l exercice sont indépendantes

Exercice 2 : Comment déterminer le relief du fond marin avec un sondeur? (5,5 pts) Les trois parties de l exercice sont indépendantes Exercice 2 : Comment éterminer le relief u fon marin avec un soneur? (5,5 pts) Amérique u nor 2007 http://labolycee.org Les trois parties e l exercice sont inépenantes 1. Étue e l one ultrasonore ans l

Plus en détail

III Caractérisation d'image binaire

III Caractérisation d'image binaire III Caractérisation d'image binaire 1. Généralités Les images binaires codent l'information sur deux valeurs. Rarement le résultat direct d'un capteur, mais facilement obtenues par seuillage dans certains

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO

Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO Détection des points d intérêt et Segmentation des images RGB-D Présentée par : Bilal Tawbe Semaine de la recherche de l UQO 25 Mars 2015 1. Introduction Les méthodes de détection de points d intérêt ont

Plus en détail

Bien se diriger. aprei AGISSONS POUR L ENTREPRENEURIAT INDIVIDUEL aprei (AGISSONS POUR L ENTREPRENEURIAT INDIVIDUEL 2014-2015

Bien se diriger. aprei AGISSONS POUR L ENTREPRENEURIAT INDIVIDUEL aprei (AGISSONS POUR L ENTREPRENEURIAT INDIVIDUEL 2014-2015 FORMATION Titre Accélérateur e compétences Bulletin inscription à compléter en lettres capitales Accélérateur e compétences es formations 2014-2015 Date session lieu PARTICIPANT Mme Melle Mr Nom Bien se

Plus en détail

Dérivées et intégrales non entières

Dérivées et intégrales non entières que "non entière". Dérivées et intégrales non entières. Notations. Outils Robert Janin La terminologie est plutôt "fractionnaire" On notera f (k) ou k x k f la érivée orre k e la fonction f et nous pourrons

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Object Removal by Exemplar-Based Inpainting

Object Removal by Exemplar-Based Inpainting Object Removal by Exemplar-Based Inpainting Kévin Polisano A partir d un article de A. Criminisi, P. Pérez & H. K. Toyama 14/02/2013 Kévin Polisano Object Removal by Exemplar-Based Inpainting 14/02/2013

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail

Mesure agnostique de la qualité des images.

Mesure agnostique de la qualité des images. Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) 87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation

Plus en détail

la référence vie scolaire INDEX-EDUCATION.COM DISPONIBLE EN MODE HÉBERGÉ NOS LOGICIELS FONT AVANCER L ÉCOLE

la référence vie scolaire INDEX-EDUCATION.COM DISPONIBLE EN MODE HÉBERGÉ NOS LOGICIELS FONT AVANCER L ÉCOLE la référence vie scolaire DISPONIBLE EN MODE HÉBERGÉ INDEX-EDUCATION.COM NOS LOGICIELS FONT AVANCER L ÉCOLE PRONOTE la référence vie scolaire Intégrant ans une même application tous les volets e la gestion

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Hydrodynamique des lits fluidisés en régime de bullage

Hydrodynamique des lits fluidisés en régime de bullage Hyroynamique es lits fluiisés en régime e ullage M. HEMATI Régime e ullage. La plupart es lits fluiisés inustriels fonctionnent en régime e ullage. Ce régime est oservé ès que la vitesse u gaz épasse la

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Géométrie discrète Chapitre V

Géométrie discrète Chapitre V Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Formats d images. 1 Introduction

Formats d images. 1 Introduction Formats d images 1 Introduction Lorsque nous utilisons un ordinateur ou un smartphone l écran constitue un élément principal de l interaction avec la machine. Les images sont donc au cœur de l utilisation

Plus en détail

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4.

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4. codage correcteur d erreurs convolutionnel. éfinition.... représentation en treillis...3 3. écodage : algorithme de Viterbi...3 4. istance libre...5 5. iagramme d état. Fonction de transfert...5 6. écodage

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Théorie des graphes et optimisation dans les graphes

Théorie des graphes et optimisation dans les graphes Théorie es graphes et optimisation ans les graphes Christine Solnon Tale es matières 1 Motivations 2 Définitions Représentation es graphes 8.1 Représentation par matrice ajacence......................

Plus en détail

6 Equations du première ordre

6 Equations du première ordre 6 Equations u première orre 6.1 Equations linéaires Consiérons l équation a k (x) k u = b(x), (6.1) où a 1,...,a n,b sont es fonctions continûment ifférentiables sur R. Soit D un ouvert e R et u : D R

Plus en détail

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette

Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon 1916 2001 Monsieur X 1951 2 Où

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

TP SIN Traitement d image

TP SIN Traitement d image TP SIN Traitement d image Pré requis (l élève doit savoir): - Utiliser un ordinateur Objectif terminale : L élève doit être capable de reconnaître un format d image et d expliquer les différents types

Plus en détail

Bases de données multimédia IV Description locale des images

Bases de données multimédia IV Description locale des images Bases de données multimédia IV Description locale des images ENSIMAG 2014-2015 Matthijs Douze & Karteek Alahari Schéma type d un système de description locale Image requête Ensemble de points/régions d

Plus en détail

Morphologie mathématique : introduction. Morphologie mathématique : introduction

Morphologie mathématique : introduction. Morphologie mathématique : introduction Morpologie matématique 2D et 3D Application en analyse d image Morpologie matématique : introduction Téorie de traitement non linéaire de l information introduite en France dans les années 60 par G. Materon

Plus en détail

ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE

ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE BAZEILLE Stéphane MOUGEL Baptiste IUP3 ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE EN Année 2003/2004 1 TABLE DES MATIERES Home... 3 Introduction.... 3 Marching Square... 4 Algorithme....4 Programmation...4

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

Journée Rencontres Académiques SCS

Journée Rencontres Académiques SCS Journée Rencontres Académiques SCS 24/01/2012 Prof. Frédéric Precioso Knowledge Extraction, Integration & Algorithms (KEIA) http://keia.i3s.unice.fr/ 2 /35 Permanents Célia Pereira da Costa, Christel Dartigues,

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 13 L exploration des données 13.1. Présentation de la semaine L exploration de données (ou data mining) est souvent associée à l intelligence

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La Synthèse d'images I Venceslas BIRI IGM Université de Marne La La synthèse d'images II. Rendu & Affichage 1. Introduction Venceslas BIRI IGM Université de Marne La Introduction Objectif Réaliser une image

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

N. Paparoditis, Laboratoire MATIS

N. Paparoditis, Laboratoire MATIS N. Paparoditis, Laboratoire MATIS Contexte: Diffusion de données et services locaux STEREOPOLIS II Un véhicule de numérisation mobile terrestre Lasers Caméras Système de navigation/positionnement STEREOPOLIS

Plus en détail

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP)

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Loris Marchal, Guillaume Melquion, Frédéric Tronel 21 juin 2011 Remarques générales à propos de l épreuve Organisation

Plus en détail

Segmentation et data mining pour l industrie.

Segmentation et data mining pour l industrie. Une solution industrielle complète de data mining Segmentation et data mining pour l industrie. Johan Baltié Franck Coppola Tristan Robet Promotion 2002 Specialisation S.C.I.A. Responsable M. Adjaoute

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Analyse d images (Image Analysis) : Informatique visuelle - Vision par ordinateur. Introduction. Plan du cours. Plan du cours

Analyse d images (Image Analysis) : Informatique visuelle - Vision par ordinateur. Introduction. Plan du cours. Plan du cours Analyse d images (Image Analysis) : Informatique visuelle - Vision par ordinateur Introduction Utilisation d un ordinateur pour interpréter le monde extérieur au travers d images. Elise Arnaud elise.arnaud@imag.fr

Plus en détail

Outils de visualisation de traces

Outils de visualisation de traces Outils de visualisation de traces Damien DOSIMONT 23 mars 2012 1/29 Sommaire 1 Introduction Complexité croissante des systèmes embarqués Visualisation de traces Thèse et travaux de Lucas Schnorr 2 Etat

Plus en détail

GAMMES BIEN RÉPARTIES ET TRANSFORMÉE DE FOURIER DISCRÈTE. Emmanuel AMIOT 1

GAMMES BIEN RÉPARTIES ET TRANSFORMÉE DE FOURIER DISCRÈTE. Emmanuel AMIOT 1 Math. & Sci. hum. / Mathematical Social Sciences (45 e année, n 178, 2007(2), p. 95 117) GAMMES BIEN RÉPARTIES ET TRANSFORMÉE DE FOURIER DISCRÈTE Emmanuel AMIOT 1 résumé Un es concepts les plus intŕessants

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Transformée de Fourier discrète.

Transformée de Fourier discrète. Université Bordeaux Transformée de Fourier discrète. Préliminaire : Téléchargement de Wavelab Wavelab est une toolbox matlab, c est à dire un ensemble de programmes matlab élaborés par une équipe de l

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac.

CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac. CED-ST 2013-2014 Liste des Sujets de Recherche Formation Doctorale : STIC Responsable de la Formation : Pr. L. OMARI (lahcen.omari@usmba.ac.ma) N.B. : Les étudiants qui ont déposé leurs demandes d'inscription

Plus en détail

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Calculer avec Sage. Revision : 417 du 1 er juillet 2010 Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1

Plus en détail

Moez HADJ KACEM #1, Souhir TOUNSI *2, Rfik NEJI #3

Moez HADJ KACEM #1, Souhir TOUNSI *2, Rfik NEJI #3 International Conference on Green Energy an Environmental Engineering (GEEE-04) ISSN: 56-5608 Sousse, Tunisia - 04 Dimensionnement e la chaîne e traction un véhicule électrique oez HADJ KACE #, Souhir

Plus en détail