LES PROBABILITÉS EN FINANCE

Dimension: px
Commencer à balayer dès la page:

Download "LES PROBABILITÉS EN FINANCE"

Transcription

1 LES PROBABILITÉS EN FINANCE A quoi servent l maths en finance? DES ODÈLES PERETTANT D ESTIER LA VALEUR DES ACTIFS DES CAS OÙ ON PEUT DÉTERINER DES STRATÉGIES OPTIALES : QUAND ACHETER, QUAND VENDRE? QUEL RISQUE? ESTIATION D ACTIFS L AVERSION AU RISQUE L évolution d actifs financiers t gouvernée par la loi de l offre et de la demande sur un marché. Comme il t impossible de connaître à l avance l décisio de tous l agents, on la modélise avec d équatio où interviennent d term aléatoir, comme le mouvement brownien ci-dsous Préférez-vous gagner 0e à coup sûr ou gagner 00e avec 1 chance sur de gagner? Le gn moyen (rationnel) t supérieur da le second cas (0e au lieu de 0), ms l choix sont partagés... L agents, même parftement rationnels, ne sont pas tous prêts à prendre l mêm risqu. L aversion au risque modélise cette tendance. Ce phénomène souligne un intérêt d marchés dérivés, où cert agents achètent du risque à d autr, da la perspective d obtenir d rendements plus élevés. La financiarisation du marché de l assurance (de crédit, vie, immobilière...) en t une illustration. ouvement brownien linére vs. cours de l action BNP Paribas sur a C modèl sont couramment utilisés par l opérateurs de marché : savoir timer à terme la valeur d actio ou de devis permet d timer la valeur de produits plus complex (produits dérivés d actio, optio...) qui cotituent euxmêm un marché, créé par l existence même de c modèl. C marchés permettent par exemple d traferts de risqu entre agents C modèl sont fondés sur certn hypothès (information complète, marché complet, absence d opportunité d arbitrage...). Si ell ne sont pas vérifié, ils peuvent être en défaut. Une autre cause d itabilité : l existence de produits dérivés basés non pas sur d actio, ms sur d indic dont la valeur n t pas bien timée par c méthod. QUELLES STRATÉGIES POUR VENDRE/ACHETER? Pour savoir quand acheter ou vendre un actif, on peut cotruire d indicateurs simpl (ms peu performants): l moyenn mobil. On compare à chaque itant la moyenne du cours sur une courte période passée (m c ) et sur une période plus longue (m l ). Si m c > m l, on achète, et on vend lorsque m c < m l. POURQUOI DES "PORTEFEUILLES"? Pour un produit financier, deux grandeurs pertinent sont le revenu et le risque : Le revenu t le gn moyen auquel on peut s attendre au bout d une période déterminée. Le risque donne une idée de l écart possible entre le gn moyen et le gn réellement obtenu, qui peut être négatif! Lorsqu on utilise plusieurs produits financiers, l revenus et l risqu ne s additionnent pas : on peut, en jouant sur l proportio de chaque produit da un portefeuille, maximiser s revenus en minimisant l risqu... Courbe revenu/risque pour un portefeuille de produits financiers L traders utilisent d techniqu de couverture ou de réplication basé sur d produits dérivés (optio...), fonctionnant comme d assuranc contre l variatio de l actif. Exemple : Le 0 juin, le trader A achète au trader B l option d acheter 0 actio de l entreprise XYZ à 0e et à la date du 1 décembre suivant. Au moment de la traaction, l action s échange à e. A pe, pour s 0 optio (appelé calls), une prime de e chacun. Le 1 décembre, si l action s échange à 0e, A exerce s calls : B lui vend 0 actio de XYZ à 0e et touche 0e * 0 = 000e. A, s il revend immédiatement c actio da le marché, reçoit 0e * 0 = 000e. Son profit t de (0e - 0e - e ) * 0 = 100e. B, s il doit acheter l actio pour honorer sa part du contrat, perd 100e : (0e + e - 0e ) * 0 = -100e ; si l action s échange à 0e, A n exerce pas s optio. Sa perte t de e * 0 = 00e. Symétriquement, B gagne 00e.

2 ODÈLES DE PERCOLATION ÉTUDE DE LA PERÉABILITÉ D UNE ROCHE. On coidère une roche volcanique (par exemple la pierre ponce) et on veut déterminer en fonction de sa porosité* si l eau peut la traverser (perméable) ou bien si elle forme une barrière étanche (imperméable). Pour mener cette étude on coidère la roche en coupe (dimeion ) et on la modèlise par d gr (carrés) situés sur l sit du réseau Z. Fig. 1: roche imperméable Roche Fig. : Roche perméable *porosité: l eemble d interstic (connectés ou non) d une roche ou d un autre matériau pouvant contenir d fluid (liquide ou gaz). Il s agit aussi d une valeur numérique da [0,1] qui caractérise c interstic, le rapport du volume d vid du matériau divisé par le volume total. On cotruit à présent un modèle mathématique pour étudier ce phénomène. UN ODÈLE DE PERCOLATION EN DIENSION PERCOLATION CRITIQUE odèle probabiliste: Z joue le rôle du réseau sur lequel l gr de matière sont placés. En chaque site de ce résau (i.e., chaque (i,j) Z ) on place, indépendemment d autr sit, un grn de matière avec probabilité p (i.e., le site rte vide avec probabilité 1 p). On appelle tirage de percolation le résultat de cette opération. La porosité* t donc donnée par 1 p. Deux sit occupés sont plus proche voisi si ils sont à distance1l un de l autre (par ex: (i,j) et (i+1,j)). On dit que deux sit communiquent entre eux si ils sont occupés et qu ils peuvent être reliés par une suite de sit occupés et coécutivement plus proche voisi; On forme l sous eembl maximaux (amas) de sit qui communiquent entre eux. Il existe une probabilité critique p c ]0,1[ telle que: sip < p c, tous l amas sont de tlle finie. De plus, pour un amas particulier, la probabilité qu il contienne plus de k sit décroît très rapidement (i.e., exponentiellement vite en k). si p > p c, parmi tous l amas, un seul contient une infinité de sit. La deité de cet amas infini (i.e., la probabilité qu un site en particulier lui appartienne) t strictement positive et croissante en p. L résultats rigoureux sur le plan mathématiqu permettent seulement d encadrerp c entre 0. et0.. Fig. : p=0. Fig. : p=0. Fig. : p=0. Fig. : p=0. Fig..: amas sur une partie finie de Z Cependant, à l de de simulatio numériqu, on time que p c se situe aux enviro de 0.. On peut le cotater sur l figur,, et sur lquell on représente à la fois l sit occupés (en gris) et l plus gros amas d un tirage de percolation sur une boîte contenant 10 sit et pour différent valeurs dep. INTERPRÉTER LES RÉSULTATS OBTENUS AVEC LE ODÈLE La roche que l on souhte modéliser t de tlle finie ms contient un très grand nombre de gr. Aii, sur une grande boîte carrée du réseau Z, on réalise un tirage de percolation de probabilité p. On obtient l imperméabilité si l un d amas au moi traverse la boîte Λ N horizontalement. On présente ci-dsous plusieurs simulatio sur lquell tous l amas en contact avec le côté gauche apparssent en violet. L imperméabilité t obtenue quand p dépasse p c 0.. Aii d après notre modèle en dimeio, une roche t imperméable lorsque sa porosité t inférieure a1 p c 0.0. Fig. : p=0. Fig. : p=0. Fig. : p=0. Fig. 11: p=0.

3 LES ATHÉATIQUES DU POKER TEXAS HOLD'E Chaque joueur reçoit cart qu'il t seul à voir (mn de départ). Premier tour d'enchèr, Flop : cart sont dévoilé au centre à tous l joueurs, Deuxième tour d'enchèr, Turn : une quatrième carte t dévoilée au centre, Troisième tour d'enchèr, River : une cinquième carte t dévoilée au centre, Dernier tour d'enchèr. La meilleure combinson de cart remporte la partie. VALEURS DES AINS DE DÉPART joueurs A R D V joueurs A R D V A D V assorti m dépareillé Pre de,% de chance de victoire Décroissance lente de la probabilité avec l valeurs d cart as so rti assorti > m dépareillé Pre de 1% de chance de victoire Décroissance rapide de la probabilité avec l valeurs d cart da l m dépareillé R D V as s or ti joueurs dé pa re illé A joueurs R dé pa re illé AIDE À LA DÉCISION : LES COTES turn ou river Cote du pot = ontant du pot ontant à invtir Cote d'amélioration = Nombre d'outs % de gn Cote contre 1 % de gn Cote contre 1 1,%,,%,0,%,,%,0 1,%,,% 1, 1,%,,%, 1,%,,%,,%, 1,0%, 0,1%, 1,%,,% 1, 1,%,,% 1, 1,%,1,0% 1, 1,%, 11,% 1,1,%, brelan 1 1,% 0,,1%, 1,% 0,,%, quinte 1 0,% 0, 0,%, 1,% 0,,%,1 quinte 1,% 0,,% 1, 1,1% 0,,0% 1, 1,% 0,,1% 1, 1 1,% 0, 1,% 1, 0,0% 0,,% 1, EN PRATIQUE THÉORIE DES COTES Probabilité de perdre Probabilité de gagner Si Cote du pot > Cote d'amélioration, il t intérsant de jouer, sinon il vaut mieux s'arrêter. 1. Calcul de la cote du pot. Calcul de la cote d'amélioration : on compte le nombre d'outs (cart qui peuvent nous fre gagner) on lit la cote corrpondante da le tableau. Pour un calcul rapide, on a l approximatio : - turn ou river, proba gn x nb d'outs % - river, proba gn x nb d'outs % EXEPLE n : Tableau : Pot : 00 euros ontant pour suivre : 0 euros 00 Cote du pot = = contre 1 0 Outs : outs Conclusion : cote du pot > cote d'amélioration river Cote d'amélioration =, contre 1 il t intérsant de jouer!

4 ALÉA DANS LES ENQUÊTES D OPINION Que cache l affirmation suivante? "L E CANDIDAT A EST CRÉDITÉ DE 1% DES INTENTIONS DE VOTE AU ND TOUR CONTRE % POUR SON ADVERSAIRE B, D APRÈS UN SONDAGE EFFECTUÉ SUR UN ÉCHANTILLON DE 01 PERSONNES, REPRÉSENTATIF DE LA POPULATION FRANÇAISE ÂGÉE DE 1 ANS ET PLUS." LE ÉCHANTILLON REPRÉSENTATIF? En annotation d rultats de sondag, on précise souvent : "La représentativité de l échantillon a été assurée par la méthode d quotas (sexe, âge, profsion de la personne interrogée) après stratification par région et catégorie d agglomération." Aii, pour chaque région et catégorie d agglomération : L proportio d homm et de femm da l échantillon rpectent cell de la France; Idem pour l proportio de chaque classe d âge; Idem pour l proportio de type de profsion. CANDIDAT A VA - T- IL GAGNER? En coidérant la marge d erreur, on peut affirmer qu il y a au moi % de chanc pour que A recueille entre.% et.% d vot, B recueille entre.% et.% d vot. Il t difficile de conclure que A va gagner. Supposo que A recueille réellement 1% d vot. Quelle t la probabilité de l annoncer vnqueur à partir d un sondage sur 01 personn? oi de %. Il y a plus d une chance sur que l ordre annoncé soit faux. Par contre : l proportio croisé ne sont pas forcément rpecté (par exemple le sexe da chaque classe d âge), encore moi la proportion pour d autr critèr (statut matrimonial, patrimoine, religion, etc.) Un échantillon n t donc jams représentatif de toute la diversité d une population. EST LA PRÉCISION DU SONDAGE? AÉLIORER LE SONDAGE? Si on augmente le nombre de sondés? Cela améliore la précision de l timation. Si A t finalement gagnant avec 1% d vot, la probabilité de s être trompé da le pronostic (l annoncer perdant) à partir d une enquête décroit avec le nombre de sondés : On peut lire sur le site d IPSOS (section FAQ): "L inconvénient majeur de la méthode d quotas t de ne pas permettre de calculer scientifiquement la marge d erreur du sondage. L lois statistiqu qui permettent de la déterminer ne valent théoriquement que pour l sondag aléatoir. En pratique, on coidère cependant que la marge d erreur d sondag par quotas t égale ou inférieure à celle d sondag aléatoir." Q UELLE C OENT 0 D après la théorie d sondag aléatoir, 1 la marge d erreur à % t de plus ou moi n (à peu près*), en notant n le nombre de sondés. Da le sondage précédent, elle vaut donc.% Pour avoir un risque de moi de % de se tromper, il faudrt sonder plus de 000 personn. Et si la population totale étt moi nombreuse? Cela n a quasiment aucun impact. La marge d erreur t impactée par le coefficient 1 f, où f t le ratio nombre de sondés/population totale. Elle vaut :.% si l on sonde 01 personn sur 0 millio, *La marge d erreur exacte à % associée aux vot pour A vaut r p(1 p) p : proportion (inconnue) de vot pour A, (1 f ) f : ratio nombre de sondés/population totale. n % si l on sonde 01 personn sur 000. Il n y a guère que da le cas d un receement (f = 1) que l erreur devient nulle.

5 STRATÉGIE ET JEUX ALÉATOIRES LE PARADOXE DU ONTY HALL UN JEU DE CARTES A la fin d un jeu télévisé, un candidat doit choisir une porte parmi trois : derrière l une d elle se trouve une voiture, derrière l deux autr se trouvent d chèvr. Le candidat choisit une porte, diso la numéro 1 (la porte n t pas ouverte), et l animateur ouvre une autre porte, diso la numéro, derrière laquelle il y a une chèvre. Puis il vous propose de changer votre choix initial, c t à dire de prendre la porte numéro. Doit-on changer de porte? Indication : Que feriez vous s il y avt 00 port et que l animateur vous en ouvrt, en découvrant chèvr? La valeur d cart va décroissant : As, Roi, Dame, Valet,,,..., de 1 jusqu à 1. On tire cart face cachée. On retourne la première carte. On peut soit arrêter et marquer le nombre de points de cette carte, soit continuer. Si on continue, on retourne la deuxième carte. On peut alors soit arrêter, et marquer l points de la deuxième carte, soit continuer et marquer l points de la troisième carte. La stratégie optimale coiste à s arrêter si la première carte t au moi un dix, et sinon s arrêter si la deuxième carte t au moi un. VALEUR D UNE STRATÉGIE La loi d grands nombr dit que la fréquence d apparition d un évènement tend vers la probabilité, et que la moyenne arithmétique tend vers l pérance. Le calcul d probabilités ne peut der à prendre une décision que da le cas où on répète une expérience aléatoire a. En clr si vous jouez une fois à onty Hall, ou au jeu de cart, calculer d probabilités ne vous sert à rien. Pour le jeu de cart, la moyenne arithmétique d points gagnés converge vers l pérance de la variable aléatoire EV s,t de la stratégie pour laquelle on s arrête à la première carte si sa valeur t plus grande que s, et à la deuxième si sa valeur t plus grande quet. C t un polynôme du second degré qu il t facile de maximiser a Da l fts ce n t pas totalement vr. Par exemple on peut utiliser efficacement l probabilités si on lsse évoluer un système durant une grande période de temps (c t une d applicatio de la théorie ergodique) ONTY HALL : IL FAUT CHANGER DE PORTE Il y a deux stratégi entre lquell nous merio choisir la meilleure. S 1 coiste à choisir une porte et à s y tenir. S coiste à choisir une porte et systématiquement accepter de changer. Soit A i l évènement La voiture t derrière la porte choisie pour la i-ème partie. Alors la proportion de fois oùs 1 t gagnante converge vers P(A 1 ) = 1/. De même la proportion de fois oùs t gagnante converge versp ( ) A C 1 = /. En pratique si le nombre de parti t supérieur à 0,S gagne deux fois plus souvent (à peu près) que S 1. VENDRE DES AISONS Cet exemple part à première vue très semblable au jeu de cart et pourtant il t différent. Jouez contre l ordinateur et tentez de comprendre en quoi cet exemple t différent. Deux agenc immobilièr se murent pour la vente d un lot de mso, timé chacune d elle pour à peu près la valeur de 00 mille euros, avec une fourchette de plus ou moi 0 mille euros. Pour chacune d mso, 0 clients vont se présenter succsivement, et fre une offre. Si elle la trouve intérsante, l agence devra accepter l offre tout de suite, car elle ne reverra pas le client. Deux stratégi d affrontent. La stratégie de l agence machine sera dévoilée plus tard. La stratégie de l agence humn t à choisir parmi deux stratégi possibl: La stratégie S v paramétrée par une valeur de déclenchement v. Dès qu un client ft une offre supérieure à v on accepte son offre. La stratégie I x d apprentissage. On lsse passer x offr, on note la valeur maximum m x offerte. ntenant dès qu un client ft une offre supérieur à m x, on l accepte. Preno une exemple d une quinzne d offr pour examiner la nature d stratégi. [1, 0, 1, 11, 01, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0] S 0 s arrête à la deuxième offre et vend à 0. S s arrête à la quatrième offre et vend à 11. S 0 ne s arrête pas et donc vend à 0, prix de la dernière offre. I fixe le seuil à max(1,0) = 0 et vend donc à 11, I ft pareillement. I vend à 1 eti 1 ne s arrête pas donc vend à 0.

Canevas théoriques du projet sur le poker Partie A

Canevas théoriques du projet sur le poker Partie A Partie A Dans une partie de poker, particulièrement au Texas Hold em Limit, il est possible d effectuer certains calculs permettant de prendre la meilleure décision. Quelques-uns de ces calculs sont basés

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Projet Techniques de Programmation en C

Projet Techniques de Programmation en C Projet Techniques de Programmation en C PokerStat DESCRIPTION DU PROJET : 1 REALISATION DU PROJET 2 ROBUSTESSE DU GENERATEUR DE HASARD DE L'ORDINATEUR PROBABILITE BRUTE D'OBTENIR UNE COMBINAISON CALCUL

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Douze jeux de cartes. d'additions, de soustractions et de doubles. François Guély

Douze jeux de cartes. d'additions, de soustractions et de doubles. François Guély Douze jeux de cartes d'additions, de soustractions et de doubles. François Guély Aritma Parc des Fontenelles - Bailly, France www.aritma.net - Contact : info@aritma.net Sommaire Présentation... 4 Tableaux

Plus en détail

YANN ROUDAUT - Professeur de l Ecole Française de Poker - roudaut@ecolefrancaisedepoker.fr - 06 28 76 48 93

YANN ROUDAUT - Professeur de l Ecole Française de Poker - roudaut@ecolefrancaisedepoker.fr - 06 28 76 48 93 MODULE LES MATHEMATIQUES DU POKER Probabilités et Notions de Cotes - Partie 1 YANN ROUDAUT - Professeur de l Ecole Française de Poker - roudaut@ecolefrancaisedepoker.fr - 06 28 76 48 93 A/ POKER ET MATHEMATIQUES

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005 ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE Professeur Matière Session A. Ziegler Principes de Finance Automne 2005 Date: Lundi 12 septembre 2005 Nom et prénom:... Note:... Q1 :...

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET Phase 4 : Modélisation non-supervisée - 5 : Règles d association

Plus en détail

D une façon ou d une autre, amusez-vous bien avec Colomo, le jeu des couleurs!

D une façon ou d une autre, amusez-vous bien avec Colomo, le jeu des couleurs! COLOMO C O L O M O Rouge, orange, jaune, vert, bleu, violet tous connaissent les couleurs de l arc-en-ciel, ce sont les personnages principaux de tous les jeux COLOMO. Vous trouverez dans ce petit carnet

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

La méthode des quotas

La méthode des quotas La méthode des quotas Oliviero Marchese, décembre 2006 1 La méthode des quotas Principe de la méthode Point de départ et but recherché Caractère «intuitif» de la méthode A quoi ressemble une feuille de

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7

Computix. Dans la colonne du 10, B choisit le 7 inférieur A 10 B 7 Computix Matériel : grilles carrées comportant un nombre impair de cases. Quelques-unes sont données en annexe ; mais on peut aussi les construire soi-même, ou les faire construire par les élèves. Elles

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

Méthodes de prévision des ventes

Méthodes de prévision des ventes Méthodes de prévision des ventes Il est important pour toute organisation qui souhaite survivre dans un environnement concurrentiel d adopter des démarches de prévision des ventes pour anticiper et agir

Plus en détail

POKER ET PROBABILITÉ

POKER ET PROBABILITÉ POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main

Plus en détail

Prétest A QUESTIONNAIRE

Prétest A QUESTIONNAIRE MATHÉMATIQUES MAT5103 Probabilités II Prétest A QUESTIONNAIRE NE PAS ÉCRIRE SUR CE DOCUMENT Version du 16 décembre 2004 Rédigé par Denise Martin (martindenise@csdgsqcca) Centre L Envol 1 Un jeu consiste

Plus en détail

Les Français et la «multi- assurance»

Les Français et la «multi- assurance» Les Français et la «multi- assurance» Etude réalisée par pour Publiée le 7 décembre 2015 Méthodologie Recueil Enquête réalisée auprès d un échantillon de Français interrogés par Internet les 12 et 13 novembre

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni.

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni. MP 205/6 Feuille d exercices - Probabilités généralités). Univers, généralités Exercice.. Langage des probabilités. Soit Ω, A) un espace probabilisable. Soit A n ) n N une famille d événements et A, B,

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Les mathématiques appliquées de la finance

Les mathématiques appliquées de la finance Les mathématiques appliquées de la finance Utiliser le hasard pour annuler le risque Emmanuel Temam Université Paris 7 19 mars 2007 Emmanuel Temam (Université Paris 7) Les mathématiques appliquées de la

Plus en détail

Poker. A rendre pour le 25 avril

Poker. A rendre pour le 25 avril Poker A rendre pour le 25 avril 0 Avant propos 0.1 Notation Les parties sans * sont obligatoires (ne rendez pas un projet qui ne contient pas toutes les fonctions sans *). Celles avec (*) sont moins faciles

Plus en détail

,,ÉTUDES ET RECHERCHES SUR LA DISTRIBUTION, LA PROMOTION ET LA VALORISATION DES PRODUITS DE BOULANGERIE DANS LE MUNICIPE DE CONSTANŢA

,,ÉTUDES ET RECHERCHES SUR LA DISTRIBUTION, LA PROMOTION ET LA VALORISATION DES PRODUITS DE BOULANGERIE DANS LE MUNICIPE DE CONSTANŢA RESUMÉ Mots clés : marketing, produits alimentaires, stratégies La thèse de doctorat intitulée,,études ET RECHERCHES SUR LA DISTRIBUTION, LA PROMOTION ET LA VALORISATION DES PRODUITS DE BOULANGERIE DANS

Plus en détail

Stand Probabilite s et football

Stand Probabilite s et football Stand Probabilite s et football Dominos... A la de couverte des probabilite s On joue avec deux de s a 6 faces. Essayez de trouver intuitivement quelle est la probabilite : - d obtenir un avec un de a

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Probabilités sur un univers ni

Probabilités sur un univers ni POIRET Aurélien TD n o 21 MPSI Probabilités sur un univers ni 1 Événements et probabilités Exercice N o 1 : Dans un centre de loisirs, une personne peut pratiquer trois activités. On considère les événements

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Règlement du Whist. Le whist se joue à la couleur avec 52 cartes distribuées en 4-5-4 ou 4-4-5 ou 5-4-4 uniquement.

Règlement du Whist. Le whist se joue à la couleur avec 52 cartes distribuées en 4-5-4 ou 4-4-5 ou 5-4-4 uniquement. Règlement du Whist 1. Préliminaires Le whist se joue à la couleur avec 52 cartes distribuées en 4-5-4 ou 4-4-5 ou 5-4-4 uniquement. Hiérarchie des cartes: As, Roi, Dame, Valet, 10, 9, 8, 7, 6, 5, 4, 3,

Plus en détail

La nouvelle planification de l échantillonnage

La nouvelle planification de l échantillonnage La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

UNE EXTENSION DU MODELE DE CONSOMMATION DES MENAGES L'OFFRE DE TRAVAIL

UNE EXTENSION DU MODELE DE CONSOMMATION DES MENAGES L'OFFRE DE TRAVAIL UNE EXTENSION DU MODELE DE CONSOMMATION DES MENAGES L'OFFRE DE TRAVAIL I P L A N... A Arbitrage entre consommation et travail B Effets de l'augmentation du salaire C Déterminants de l'offre du travail

Plus en détail

Faits saillants du Sondage sur les travailleurs québécois de 25 à 44 ans et l épargne

Faits saillants du Sondage sur les travailleurs québécois de 25 à 44 ans et l épargne 2011 Faits saillants du Sondage sur les travailleurs québécois de 25 à 44 ans et l épargne Rédaction Marc-Olivier Robert Lambert Collaboration Francis Picotte Mise en page Nathalie Cloutier Révision linguistique

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

S initier aux probabilités simples «Jets de dé»

S initier aux probabilités simples «Jets de dé» «Jets de dé» 29-21 Niveau 2 Entraînement 1 Objectifs - S entraîner à être capable de déterminer une probabilité. - S initier aux fractions. Applications En classe : envisager un résultat sous l angle d

Plus en détail

Exercices : Analyse combinatoire et probabilité

Exercices : Analyse combinatoire et probabilité Exercices : Analyse combinatoire et probabilité 1. Le jeu de Cluedo consiste à retrouver l assassin du Dr. Lenoir, l arme et le lieu du crime. Sachant qu il y a six armes, neuf lieux et six suspects, de

Plus en détail

L analyse boursière avec Scilab

L analyse boursière avec Scilab L analyse boursière avec Scilab Introduction La Bourse est le marché sur lequel se traitent les valeurs mobilières. Afin de protéger leurs investissements et optimiser leurs résultats, les investisseurs

Plus en détail

CALCULODINGO. Manuel pédagogique

CALCULODINGO. Manuel pédagogique Introduction : CALCULODINGO Manuel pédagogique Le jeu pédagogique Calculodingo permet de jouer à 12 règles de jeu inclues dans le livret de règles, ainsi que 14 règles supplémentaires (indiquées en rouge

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2 Test du Khi 2 Le test du Khi 2 (khi deux ou khi carré) fournit une méthode pour déterminer la nature d'une répartition, qui peut être continue ou discrète. Domaine d application du test : Données qualitatives

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Poker Jack. http://www.casinosduquebec.com/montreal/fr/jeux/poker-3-cartes. L'objectif du jeu

Poker Jack. http://www.casinosduquebec.com/montreal/fr/jeux/poker-3-cartes. L'objectif du jeu Poker Jack Ce jeu est un jeu de carte inspiré du Blackjack et du Poker. Les règles ressemblent étrangement aux règles du Blackjack (mais avec aucun contrôle sur le tirage des cartes, il y aura toujours

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Séminaire du LGI Centrale Paris Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Y. Hayel 1, D. Quadri 2, T. Jimenez 1, L. Brotcorne 3, B. Tousni 3 LGI,

Plus en détail

Le Seven Card Stud. Club Poker 78

Le Seven Card Stud. Club Poker 78 Club Poker 78 Juin 2013 Introduction Le Seven Card Stud est une variante de poker née aux USA, au milieu du XIXe siècle. À partir des années 1930, ce jeu devient la variante la plus populaire dans les

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

ATELIER STATISTIQUES - PROBABILITES

ATELIER STATISTIQUES - PROBABILITES ATELIER STATISTIQUES - PROBABILITES I/ INTRODUCTION Extraits du document Ressources pour la classe de seconde Probabilités et Statistiques - : «L enseignement de la statistique et des probabilités constitue

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Choix de Portefeuille

Choix de Portefeuille Année 2007-2008 Choix de Portefeuille Christophe Boucher Chapitre 1. Théorie de la décision en avenir incertain Critère d espérance d utilité L attitude vis-à-vis du risque Chapitre 2. Rendements et critères

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

Présentation de l enquête Ifop pour QUALITEL «Les Français et la rénovation énergétique dans les copropriétés», réalisée du 7 au 17 mai 2013

Présentation de l enquête Ifop pour QUALITEL «Les Français et la rénovation énergétique dans les copropriétés», réalisée du 7 au 17 mai 2013 Présentation de l enquête Ifop pour QUALITEL «Les Français et la rénovation énergétique dans les copropriétés», réalisée du 7 au 17 mai 2013 Les Français et la rénovation énergétique dans les copropriétés

Plus en détail

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 :

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 : Terminale S - ACP Ex1 : Antilles Septembre 2006 Partie A - Restitution organisée des connaissances On suppose connu le résultat suivant : Si est une variable aléatoire qui suit une loi exponentielle de

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

CECOP. Centre d études et de connaissances sur l opinion publique. Les Français, leur épargne et leur retraite

CECOP. Centre d études et de connaissances sur l opinion publique. Les Français, leur épargne et leur retraite CECOP Centre d études et de connaissances sur l opinion publique Les Français, leur épargne et leur retraite FD/EP N 113015 Contacts Ifop : Frédéric Dabi / Esteban Pratviel Département Opinion et Stratégies

Plus en détail

MultiploDingo. Manuel pédagogique. Introduction

MultiploDingo. Manuel pédagogique. Introduction MultiploDingo Manuel pédagogique Introduction Merci d avoir acheté le jeu MultiploDingo. Le but de ce jeu est de faciliter l apprentissage à l école primaire (CE1 au CM2) des notions suivantes: - Multiplications

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Corrigé du baccalauréat STMG Métropole 18 juin 2015

Corrigé du baccalauréat STMG Métropole 18 juin 2015 orrigé du baccalauréat STMG Métropole 18 juin 215 Durée : 3 heures EXERIE 1 4 points Tous les ans, en août, Maïlys reçoit l échéancier (document indiquant le montant de sa cotisation annuelle) de sa mutuelle

Plus en détail

Les Français et les jeux

Les Français et les jeux Observatoire de la vie quotidienne des Français Les Français et les jeux Juillet 2015 Sondage réalisé par pour et publié samedi 25 juillet 2015 dans la presse régionale LEVEE D EMBARGO : SAMEDI 25 JUILLET

Plus en détail

Épreuve d informatique 2011

Épreuve d informatique 2011 A 2011 INFO. MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

Achats en ligne. et conversion. Le marketing à la performance, du premier affichage au dernier clic. tradedoubler.com

Achats en ligne. et conversion. Le marketing à la performance, du premier affichage au dernier clic. tradedoubler.com Achats en ligne et conversion Le marketing à la performance, du premier affichage au dernier clic tradedoubler.com Lorsqu il s agit de choisir une marque ou un produit à acheter, les consommateurs européens

Plus en détail

Collecte de données. Laurent Dorey

Collecte de données. Laurent Dorey Laurent Dorey Mercredi 16 Décembre 2014 Programme : Recensement & Echantillonnage Étapes pour sélectionner un échantillon La population observée La base de sondage Les unités d enquête La taille de l échantillon

Plus en détail

Thème 3 : Marchés et prix

Thème 3 : Marchés et prix Thème 3 : Marchés et prix Séquence : Marché et prix Question 1 : Comment se forment les prix sur un marché? Détermination du contexte : Effectifs : 35 élèves Salles : grande salle dans laquelle les élèves

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Utilisation des arbres binomiaux pour le pricing des options américaines

Utilisation des arbres binomiaux pour le pricing des options américaines Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les

Plus en détail

Apprentissage par renforcement (1a/3)

Apprentissage par renforcement (1a/3) Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

INF-130 Travail Pratique #2

INF-130 Travail Pratique #2 École de technologie supérieure INF-30 Travail Pratique #2 Travail individuel Tracé d un métro Francis Bourdeau, Frédérick Henri et Patrick Salois Remise à la 0 e semaine. Objectifs - Amener l étudiant

Plus en détail

Chapitre 9 Solutions des exercices de révision

Chapitre 9 Solutions des exercices de révision Chapitre 9 Solutions des exercices de révision Section 9.3 Équivalent-certain et critères de décision non probabilistes 1. Les critères non probabilistes (a) Le tableau ci-dessous donne les équivalents-certains

Plus en détail

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail