Réalisabilité et extraction de programmes

Dimension: px
Commencer à balayer dès la page:

Download "Réalisabilité et extraction de programmes"

Transcription

1 Mercredi 9 mars 2005

2 Extraction de programme: qu'est-ce que c'est? Extraire à partir d'une preuve un entier x N tel que A(x). π x N A(x) (un témoin) (En fait, on n'extrait pas un entier, mais un programme qui le calcule) Extraire à partir d'une preuve. π x N y N A(x, y) un programme f : N N t.q. A(x, f (x)) pour tout x N.

3 Extraction de programme: pourquoi? Intérêt pratique: Fabriquer un algorithme à partir d'une preuve. Intérêt philosophique: Un début d'explication du mystère de la déraisonnable ecacité des mathématiques (E. Wigner) Intérêt ludique: Quel programme peut bien se cacher derrière la preuve du théorème XXX dûe à YYY? Mais l'extraction de programme n'est pas toujours possible...

4 Une existence sans témoin Théorème Il existe deux nombres irrationnels a et b tels que a b est rationnel. Preuve. On raisonne par cas suivant que 2 2 Q ou non. Si 2 2 Q, on prend a = b = 2. Si 2 2 / Q, on pose a = 2 2, b = 2, et il vient a b = ( 2 2) 2 = = 2 2 = 2. De cette preuve on ne peut pas extraire un couple (a, b) tel que a, b / Q et a b Q

5 Une disjonction sans alternative Théorème Ou bien e + π est transcendant, ou bien e π est transcendant. Preuve. Par l'absurde. Supposons S = e + π et P = e π algébriques. On considère l'équation du second degré à coecients algébriques: x 2 Sx + P = 0 Les nombres e et π, qui sont les solutions de cette équation, sont donc algébriques. Contradiction. Cette preuve ne dit pas quelle alternative est vraie!

6 Existence d'une fonction non calculable Soient: Halt(x) x est le code de Gödel d'une machine de Turing qui termine (sur le ruban vide) A(x, y) (Halt(x) y = 1) ( Halt(x) y = 0) Théorème Pour tout x N, il existe y N tel que A(x, y). Preuve. On raisonne par cas suivant que Halt(x) ou non. Si Halt(x), on prend y = 1. Si Halt(x), on prend y = 0. Ici, la fonction f à extraire est bien dénie... mais non calculable.

7 La logique intuitionniste (LJ) Brouwer (Luitzen Egbertus Jan, ) Point de vue philosophique: Le rejet de principes non-constructifs tels que le tiers-exclus: A A le raisonnement par l'absurde (déduire A de l'absurdité de A) l'axiome du choix, ou du moins certaines formes (Zorn) Techniquement: La déduction naturelle (Prawitz 1964) Basée sur des séquents asymétriques, de la forme Γ A On a l'inclusion stricte: LJ LK

8 Logique intuitionniste: ce qu'on conserve/ce qu'on perd En logique: On conserve les implications... A A (Double négation) (A B) ( B A) (Contraposition) ( A B) (A B) (Implication matérielle)... mais les réciproques sont perdues Lois de Morgan: (A B) A B (A B) A B ( x A(x)) x A(x) ( x A(x)) x A(x)

9 Logique intuitionniste: ce qu'on conserve/ce qu'on perd En algèbre: On conserve toute l'algèbre de base (1er cycle) mais on perd une partie de la théorie spectrale En topologie: On conserve la topologie générale mais il faut entièrement la reformuler! Topologie sans points, Espaces formels En combinatoire: Y a-t-il quoi que ce soit qui disparaisse?

10 Logique intuitionniste: ce qu'on conserve/ce qu'on perd En analyse: On conserve l'existence de R mais on perd son unicité (à isomorphisme près) Le maximum d'une fonction continue sur un compact n'est plus toujours atteint mais on peut toujours l'approcher à ε près. On conserve la mesure (et l'intégrale) de Lebesgue pourvu qu'on utilise la bonne construction de R!

11 Logique intuitionniste: ce qu'on gagne 1 La propriété de la disjonction: D'une preuve de A B (sans hypothèse), on peut extraire une preuve de A ou une preuve de B.. π A B. π 1 A ou. π 2 B 2 La propriété du témoin: D'une preuve de x A(x) (sans hypothèse), on peut extraire un témoin t et une preuve de A(t).. π x A(x) t +. π A(t) 3 Fonctions récursives: Les fonctions dont on peut démontrer l'existence sont toutes calculables

12 Une critique de la logique classique Signication de A = valeur de vérité de A? Les propositions = 4 et x, y, z, n N (n > 2 x n + y n z n ) Alfred Tarski ont-elles réellement la même signication? La prouvabilité commute avec, mais pas avec. Les quanticateurs, : (D {0; 1}) {0; 1} ne sont pas des fonctions calculables dès que le domaine D est inni. Quel est le statut de la notion de démonstration?

13 L'interprétation de Brouwer-Heyting-Kolmogorov (BHK) Le cahier des charges du constructivisme: Signication de A Ensemble des preuves de A L.E.J. Brouwer A. Heyting A.N. Kolmogorov (noté Φ(A)) Démontrer A exhiber une preuve π Φ(A) Signication des connecteurs: Φ(A B) Φ(A) Φ(B) (produit cartésien) Φ(A B) Φ(A) + Φ(B) (union disjointe) Φ(A B) Φ(A) Φ(B) (espace des fonctions) La signication des quanticateurs est un peu plus complexe...

14 L'interprétation de BHK: Exemple 1 Question: qu'est-ce qui prouve A B B A? A B B A? Réponse: fun (x, y) (y, x)

15 L'interprétation de BHK: Exemple 2 Question: qu'est-ce qui prouve (A B) (B C) (A C)? (A B) (B C) (A C)? Réponse: fun (f, g) fun x g(f (x))

16 L'interprétation de BHK: Exemple 3 Rappel: A B A + B Inl of A Inr of B Question: qu'est-ce qui prouve (A B) (B A)? (A + B) (B + A)? Réponse: function Inl(x) Inr(x) Inr(y) Inl(y)

17 Réalisabilité: les principes On se donne un langage de programmation P: Fonctions récursives (Kleene) λ-calcul, λµ-calcul, etc. PCF, Caml non typé, LISP,... On interprète chaque formule A de la théorie considérée par un ensemble de programmes Φ(A) En suivant les principes de l'interprétation de BHK... adaptés au langage considéré p A p réalise A p Φ(A) On montre que si A est prouvable, alors A est réalisable Le réalisateur p A est construit par induction sur la preuve de A En pratique, il s'agit surtout de vérier que les axiomes de la théorie sont réalisables. S.C. Kleene

18 Réalisabilité dans le calcul des prédicats intuitionniste Interprétation des connecteurs: Φ(A B) = { p q Φ(A) p q Φ(B) } Φ(A B) = { p p (p 1 Φ(A), p } 2 Φ(B)) Φ(A B) = { p p Inl(p 1 Φ(A)) p Inr(p } 2 Φ(B)) Φ( ) = ( A A ) Interprétation des quanticateurs: Φ( x A(x)) = Φ(A(d)) d D Φ( x A(x)) = d D [D = domaine de la quantication] Φ(A(d)) [ou presque... :-)]

19 Réalisation de l'égalité Le prédicat d'égalité x = y est interprété par: Par exemple: Φ(x = y) = { P si x = y sinon fun p? p x y [s(x) = s(y) x = y] fun p? p x [s(x) = 0 ] où s désigne la fonction successeur sur N (*) (*) Ou plus généralement toute fonction injective n'admettant pas 0 dans son image.

20 Réalisation des quantications numériques On introduit un prédicat de relativisation Nat(x) pour distinguer les quantications numériques: N x P(x) x (Nat(x) P(x)) N x A(x) x (Nat(x) P(x)) On pose: Φ(Nat(x)) = { {p p x} si x N sinon Les réalisateurs de N x P(x) calculent le témoin: p N x P(x) ssi p (n, q) avec q A(n)

21 Un dernier exercice... Soit iter un programme tel que: iter (a, f ) 0 a iter (a, f ) (n + 1) f n (iter (a, f ) n) (n N) Le comportement de iter n'a pas besoin d'être déni dans les autres cas. On considère un prédicat P(x) quelconque. 1 Montrer que si { a P(0) f N x (P(x) P(s(x))) alors pour tout n N on a: iter (a, f ) n P(n) 2 En déduire que iter P(0) N x (P(x) P(s(x))) N x P(x)

22 Réalisation des preuves de l'arithmétique de Heyting Les transparents précédents donnent les grandes lignes de la réalisabilité dans l'arithmétique de Heyting (HA) (= arithmétique intuitionniste du premier ordre) Théorème (Kleene): Si A est prouvable dans HA, alors A est réalisable par un programme p P. Propriété du témoin: Si p N x P(x), alors p (n, q) avec q P(n) La réalisabilité dans HA s'étend très facilement: Au second ordre: HA2 ( analyse intuitionniste) À l'ordre supérieur: HAω

23 Conclusion Réalisabilité Un sous-produit mathématique du programme philosophique intuitionniste Principe: Formule Ensemble de réalisateurs Généralisation des notions de valeur de vérité et de modèle Une technique très exible Réalisabilité classique (Krivine) BHK étendue au tiers-exclus backtracking Nécessite un langage de programmation avec des continuations Mais on perd (en général) la propriété d'extraction du témoin Réalisabilité en théorie des ensembles Friedman 73, McCarty 84, Krivine 01, Miquel 03,...

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2.

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2. CH.8 Décidabilité 8.1 Les langages récursifs 8.2 La machine de Turing universelle 8.3 Des problèmes de langages indécidables 8.4 D'autres problèmes indécidables Automates ch8 1 8.1 Les langages récursifs

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/ Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé Jusqu'à présent Nous avons déjà abordé Vers l'inni David Teller 23/01/2007 Les ensembles Le regroupement de valeurs caractérisées par des critères. Informatique Types. Physique Unités. Logique Domaines.

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

CHAPITRE IV. L axiome du choix

CHAPITRE IV. L axiome du choix CHAPITRE IV L axiome du choix Résumé. L axiome du choix AC affirme qu il est légitime de construire des objets mathématiques en répétant un nombre infini de fois l opération de choisir un élément dans

Plus en détail

Axiomatique de N, construction de Z

Axiomatique de N, construction de Z Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................

Plus en détail

De Hilbert à Kronecker. Les fondements de la logique arithmétique. Yvon Gauthier

De Hilbert à Kronecker. Les fondements de la logique arithmétique. Yvon Gauthier De Hilbert à Kronecker. Les fondements de la logique arithmétique 1 Yvon Gauthier Le projet De Hilbert à Kronecker. Les fondements de la logique arithmétique est la continuation de travaux entrepris depuis

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Problème : Calcul d'échéanciers de prêt bancaire (15 pt)

Problème : Calcul d'échéanciers de prêt bancaire (15 pt) Problème : Calcul d'échéanciers de prêt bancaire (15 pt) 1 Principe d'un prêt bancaire et dénitions Lorsque vous empruntez de l'argent dans une banque, cet argent (appelé capital) vous est loué. Chaque

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

Fiche n 2: Morphisme, sous-groupe distingué, quotient

Fiche n 2: Morphisme, sous-groupe distingué, quotient Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 2: Morphisme, sous-groupe distingué, quotient Exercice 1 Soient G, G deux groupes et f un homomorphisme de G dans G. Montrer que si A G, alors f( A )

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

L'algèbre de Boole (1)

L'algèbre de Boole (1) L'algèbre de Boole (1) (1) Georges BOOLE Né le 2 novembre 1815 à Lincoln, dans le Lincolnshire (Angletere), décédé le 8 décembre 1864 à Ballintemple (Ireland). Mathématicien et logicien qui créa une algèbre

Plus en détail

"Calcul et hyper-calcul"

Calcul et hyper-calcul "Calcul et hyper-calcul" Mémoire de Master 2 (LoPHISS) Université de Paris 1 (Panthéon-Sorbonne) par Héctor Zenil Chávez Sous la direction de M. Jacques Dubucs 20 octobre 2006 2 Table des matières 1 Introduction

Plus en détail

Peut-on tout programmer?

Peut-on tout programmer? Chapitre 8 Peut-on tout programmer? 8.1 Que peut-on programmer? Vous voici au terme de votre initiation à la programmation. Vous avez vu comment représenter des données de plus en plus structurées à partir

Plus en détail

Algorithmique et Programmation Fonctionnelle

Algorithmique et Programmation Fonctionnelle Algorithmique et Programmation Fonctionnelle RICM3 Cours 9 : Lambda-calcul Benjamin Wack Polytech 2014-2015 1 / 35 La dernière fois Typage Polymorphisme Inférence de type 2 / 35 Plan Contexte λ-termes

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Devoir à la maison : correction

Devoir à la maison : correction Calcul différentiel 2 Sous-variétés : bilan Devoir à la maison : correction Exercice 1. Un exemple de sous-variété : les structures complexes Soit E un R-espace vectoriel. Montrer que la donnée d une structure

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Fondements de l informatique Logique, modèles, et calculs

Fondements de l informatique Logique, modèles, et calculs Fondements de l informatique Logique, modèles, et calculs Cours INF423 de l Ecole Polytechnique Olivier Bournez Version du 20 septembre 2013 2 Table des matières 1 Introduction 9 1.1 Concepts mathématiques........................

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Induction sur les arbres

Induction sur les arbres Induction sur les arbres Planning Motivations Comment définir les arbres? Équations récursives sur les arbres Complexité de fonctions sur les arbres Recherche dans un arbre binaire de recherche Recherche

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Carl-Louis-Ferdinand von Lindemann (1852-1939)

Carl-Louis-Ferdinand von Lindemann (1852-1939) Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 sai1042@ensai.fr Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE

Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE 2012 2013 Olivier Debarre ALGÈBRE 2 ÉCOLE NORMALE SUPÉRIEURE 2012 2013 Olivier Debarre TABLE DES MATIÈRES I. Extensions de corps......................................................................

Plus en détail

λ-calcul et typage Qu est-ce qu une fonction?

λ-calcul et typage Qu est-ce qu une fonction? λ-calcul et typage Nicolas Barnier, Pascal Brisset ENAC Avril 2009 Nicolas Barnier, Pascal Brisset (ENAC) λ-calcul et typage Avril 2009 1 / 1 Qu est-ce qu une fonction? Classiquement Pas de notation uniforme/standard

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

La logique. et son automatisation

La logique. et son automatisation Université de Fribourg Cours 2001 Méthodes mathématiques de l informatique C. Auderset La logique et son automatisation Première partie: Logique propositionnelle 1. Syntaxe et sémantique de la logique

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Utilisation des tableaux sémantiques dans les logiques de description

Utilisation des tableaux sémantiques dans les logiques de description Utilisation des tableaux sémantiques dans les logiques de description IFT6281 Web Sémantique Jacques Bergeron Département d informatique et de recherche opérationnelle Université de Montréal bergerja@iro.umontreal.ca

Plus en détail

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH

Plus en détail

Peut-on faire des Mathématiques avec un ordinateur? René DAVID rene.david@univ-savoie.fr www.lama.univ-savoie.fr/~david

Peut-on faire des Mathématiques avec un ordinateur? René DAVID rene.david@univ-savoie.fr www.lama.univ-savoie.fr/~david Peut-on faire des Mathématiques avec un ordinateur? René DAVID rene.david@univ-savoie.fr www.lama.univ-savoie.fr/~david Qu est ce que les mathématiques? Qu est ce que les mathématiques? Un peu d histoire

Plus en détail

Ensembles et applications. Motivations. Exo7

Ensembles et applications. Motivations. Exo7 o7 nsembles et applications Vidéo partie 1. nsembles Vidéo partie 2. Applications Vidéo partie 3. Injection, surjection, bijection Vidéo partie 4. nsembles finis Vidéo partie 5. Relation d'équivalence

Plus en détail

Une calculatrice qui manipule les régions cubiques

Une calculatrice qui manipule les régions cubiques Une calculatrice qui manipule les régions cubiques Emmanuel Haucourt 1 Introduction Alors qu une calculatrice usuelle effectue des opérations numériques (addition, multiplication, soustraction, division,

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

par Denis-Charles Cisinski & Georges Maltsiniotis

par Denis-Charles Cisinski & Georges Maltsiniotis LA CATÉGORIE Θ DE JOYAL EST UNE CATÉGORIE TEST par Denis-Charles Cisinski & Georges Maltsiniotis Résumé. Le but principal de cet article est de prouver que la catégorie cellulaire Θ de Joyal est une catégorie

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Systèmes déductifs DEA D INFORMATIQUE UNIVERSITÉ BORDEAUX 1. Systèmes déductifs (Retoré) Plan Début Fin Préc. Suiv.

Systèmes déductifs DEA D INFORMATIQUE UNIVERSITÉ BORDEAUX 1. Systèmes déductifs (Retoré) Plan Début Fin Préc. Suiv. Systèmes déductifs DEA D INFORMATIQUE UNIVERSITÉ BORDEAUX 1 Plan 1 Liens avec d autres domaines de l informatique............... 3 2 La déduction naturelle de base (conjonction, implication)....... 4 3

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Algèbres de von Neumann et théorie ergodique des actions de groupes

Algèbres de von Neumann et théorie ergodique des actions de groupes Algèbres de von Neumann et théorie ergodique des actions de groupes Séminaire Tripode, ENS Lyon, Juin 2008. Stefaan Vaes 1/22 Sujet de l exposé 1 Introduction aux relations d équivalence dénombrables,

Plus en détail

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE Titulaire : A.M. Tilkin 8h/semaine 1) MATIERE DE 4 e ANNEE a) ALGEBRE - Rappels algébriques concernant la résolution d équations et d inéquations (fractionnaires

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Fonctions logiques élémentaires

Fonctions logiques élémentaires Fonctions logiques élémentaires II. Systèmes binaires et algèbre de oole ctuellement, alors que les ordinateurs analogiques sont encore du domaine de la recherche, les informations traitées par les systèmes

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits.

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits. Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits 1 La qualité de la rédaction est un facteur important dans l appréciation

Plus en détail

MPI Activité.10 : Logique binaire Portes logiques

MPI Activité.10 : Logique binaire Portes logiques MPI Activité.10 : Logique binaire Portes logiques I. Introduction De nombreux domaines font appel aux circuits logiques de commutation : non seulement l'informatique, mais aussi les technologies de l'asservissement

Plus en détail

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab Cours d algèbre Maths1 LMD Sciences et Techniques Par M. Mechab 2 Avant Propos Ceci est un avant projet d un manuel de la partie Algèbre du cours de Mathématiques de premières années LMD Sciences et techniques

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance Ensimag 2A Rapport de TER Application de la Recherche Opérationnelle à la Finance Elève : Yuefei HUANG Tuteur : Zoltán SZIGETI Mai, 2010 2 Sommaire 1. Introduction... 3 2. Le marché des changes et arbitrage...

Plus en détail

ÉLÉMENTS D ANALYSE ET D ALGÈBRE. Pierre COLMEZ

ÉLÉMENTS D ANALYSE ET D ALGÈBRE. Pierre COLMEZ ÉLÉMENTS D ANALYSE ET D ALGÈBRE Pierre COLMEZ Pierre COLMEZ C.M.L.S., École Polytechnique, 91128 Palaiseau Cedex, France. ÉLÉMENTS D ANALYSE ET D ALGÈBRE Pierre COLMEZ TABLE DES MATIÈRES Vocabulaire Mathématique....................................................................

Plus en détail

Informatique Machines à calculer en théorie et en pratique

Informatique Machines à calculer en théorie et en pratique Licence Physique-Chimie Histoire des Sciences Informatique Machines à calculer en théorie et en pratique Notes de Cours 1 Introduction Étymologie En Allemagne (1957) le terme «Informatik» est créé par

Plus en détail

Diagrammes de décisions binaires

Diagrammes de décisions binaires Diagrammes de décisions binaires Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juillet 2009 ATTENTION! N oubliez

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

PARCOURS DU CAVALIER SUR L ÉCHIQUIER

PARCOURS DU CAVALIER SUR L ÉCHIQUIER I05 ÉPREUVE COMMUNE DE TIPE 2011 - Partie D TITRE : PARCOURS DU CAVALIER SUR L ÉCHIQUIER Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

FONDEMENTS DES MATHÉMATIQUES

FONDEMENTS DES MATHÉMATIQUES FONDEMENTS DES MATHÉMATIQUES AYBERK ZEYTİN 1. DIVISIBILITÉ Comment on peut écrire un entier naturel comme un produit des petits entiers? Cette question a une infinitude d interconnexions entre les nombres

Plus en détail

Contrôle de mathématiques

Contrôle de mathématiques Contrôle de mathématiques Correction du Lundi 18 octobre 2010 Exercice 1 Diviseurs (5 points) 1) Trouver dans N tous les diviseurs de 810. D 810 = {1; 2; 3; 5; 6; 9; 10; 15; 18; 27; 30; 45; 54; 81; 90;

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail