S n = u u n. S = u k. k=0

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "S n = u u n. S = u k. k=0"

Transcription

1 Chapitre 3 Séries umériques 3. Défiitios et exemples 3.. Défiitios Défiitio 3.. Soit (u ) ue suite réelle. O lui associe (S ) ue ouvelle suite défiie par S = u u. O appelle série de terme gééral (u ) le couple ((u ), (S )) formé des deux suites. O ote u la série de terme gééral (u ). O appelle somme partielle d idice de la série u le ombre S. Si la suite (S ) coverge vers S, o dit que la série u coverge de somme S et o ote S = O appelle reste de rag p la différece R p = S S p. Si la série est pas covergete, elle est divergete. u k. Remarque 3..2 les premiers termes de la série itervieet pour le calcul de S mais pas pour la covergece. L étude du reste est utile coaitre la vitesse de covergece. Ue somme de Riema est pas ue série /si(k/) Coditio écessaire de covergece O a la relatio pour tout etier : u = S S. Propositio 3..3 Si la série u coverge, alors u coverge vers 0. La réciproque est fausse. 5

2 6 CHAPITRE 3. SÉRIES UMÉRIQUES Preuve : O a la relatio pour tout etier : u = S S. Doc si la série u coverge, la suite S coverge vers S, oedéduitquelasuiteu coverge vers S S = 0. Pour prouver que la réciproque est fausse, o cosidère la série de terme gééral / pour o ul. Cette série est appelée la série harmoique. O ote S la somme partielle, o a S 2 S = = 2. Doc si la série harmoique coverge, alors la suite S 2 S coverge vers 0 ce qui est impossible avec l iégalité ci-dessus doc la série harmoique diverge et so terme gééral ted vers 0. remarques : O utilise surtout la cotraposée de ce résultat c est-à-dire si la suite u e coverge pas vers 0, alors la série u diverge. Pricipe des séries télescopiques, o doit étudier ue suite a, o pose u = a a o étudie alors la série u, la somme partielle de cette série vérifie S = u = a a 0 k= Doc la série u coverge si et seulemet si la suite coverge Combiaisos liaires de sries covergetes Si les séries u et v coverget vers S et S respectivemet, alors pour tout réel λ la série u + λv est covergete de somme S + λs Séries de référece. série géométrique, c est la série de terme gééral q où q est u réel. Soit u réel q. Si q, la série de terme gééral q diverge et si q <, la série coverge et q k = q. 2. série dérivée : c est la série de terme gééral q. si q, le terme gééral e ted pas vers 0 doc la série diverge. si q <, alors la série coverge et k= kq k = q ( q) 2.

3 3.. DÉFIITIOS ET EXEMPLES 7 Preuve : S = iq i = q iq i = qf (q) oùf(x) = i=0 i= calcul de la dérivée f (x) = x+ +(+)x + ( x) 2 O remarque que le ésultat est la dérivée de la somme. 3. La formule du biôme égatif : i=0 x i = x+ x pour x = ;par d où la covergece de la série dérivée vers q ( q) 2. si x <, alors k=r k x k r = r ( x) r+. Preuve : o prouve ce résultat par récurrece. O pose k S,r = x k r. r Soit P (r) la propriété lim S,r = ( x). r+ P (0) est vraie. Soit u etier r tel que P (r) soit vraie, o a k S,r+ = x k r. r + Or k r+ = k r+ + k r,doc S,r+ =+ k=r+2 k=r k=r+ k k + x k r. r + r D où S,r+ = S,r + xs,r+. Or S,r+ = S,r+ r+ x r ( x)s,r+ = S,r x r. r + Or r+ r+ (r+)! hypothèse de récurrece,doccomme x <, la limite de ( x)s,r+ est celle de S,r soit par ( x) r+. D après le raisoemet par récurrece, la propriété pour tout etier r. rq : o peut aussi dériver termes à termes e supposat que l iterversio est possible etre la somme ifiie et la dérivée. 4. série expoetielle : x! coverge pour tout réel x et x k k! = ex.

4 8 CHAPITRE 3. SÉRIES UMÉRIQUES Preuve : La preuve avec Taylor lagrage appliqué à la foctio e x,oobtiet e x x k k! sup (e t ) x + t I ( +)!. La bore supérieure est idépedate de et la suite a = x ()! par l étude du rapport a + a ). 5. série de Riema : ted vers 0 (o peut le prouver coverge si et seulemet si α> α Preuve : Si α est égatif ou ul, le terme géral de la série e ted pas vers 0 doc la série diverge. Si α>0, alors pour tout etier k, la foctio t /t α est décroissate sur [k, k +] doc t [k, k +], (k +) α t α k, α o itègre sur [k, k + ] puis o somme de k =àk = pour u etier o ul d où + 2 k α t α dt k α, O coclut e calculat l itégrale. 3.2 Séries à termes positifs Défiitio 3.2. O dit que la série u est à termes positifs si u 0 pour tout etier. Propositio La suite des sommes partielles (S ) est croissate. Par coséquet la série u est covergete si et seulemet si la suite (S ) est majorée. Preuve : o applique le théorème de la covergece mootoe. Propositio Règle de comparaiso Soit deux suites telles que 0 u v pour tout etier assez grad, alors si la série v est covergete, la série u est covergete et si la série u est divergete, la série v est divergete.

5 3.3. SÉRIES À TERMES DE SIGE QUELCOQUE 9 Propositio Règle de égligeabilité Si u = o(v ),alors la covergece de la série v etraie la covergece de la série u, la divergece de la série u etraie la divergece de la série v, O e déduit la règle α u : si α u ted vers 0 et α>, alors la série u coverge, si α u ted vers et α, alors la série u diverge, Propositio Règle des équivalets Si u v alors les deux séries sot de même ature. rq : tous ces résultats sot valables pour des séries à termes égatifs. exercice : série de Bertrad u = cette série coverge si et seulemet si α> ou α L() β (α =etβ>). siα>, alors soit α>α > et o étudie α u, siα<, alors soit α<α < et o étudie α u, siα =, alors o pose f(t) = pout t> f est décroissate pour t assez grad et tl(t) β o coait ue primitive de f. 3.3 Séries à termes de sige quelcoque 3.3. Absolue covergece Défiitio 3.3. O dit que la série u est absolumet covergete si la série u est covergete. Propositio Toute série absolumet covergete est covergete. La réciproque est fausse Preuve : o remarque que u = u + u u et c est fii! La réciproque est fausse : u = ( ) Séries alterées O étudie les séries de terme gééral ( ) u où u 0. Propositio Soit ( ) u ue série alterée. Si la suite u est décroissate et covergete vers 0, alors la série alterée coverge. Preuve : o cosidère la suite des sommes partielles S. O prouve que S 2 et S 2+ sot adjacetes. O e déduit la covergece de S.

6 20 CHAPITRE 3. SÉRIES UMÉRIQUES exercice série logarithmique ( ) x., x IR. Prouver que x ], ] = ( ) x = L( + x). si x >, la série diverge, si x =, c est la série harmoique doc divergete, si x < ou x =, alors soit t [0,x] ou [x, 0] o itègre sur [0,x] +( t)+ +( t) = ( t)+ +t + ( ) k xk = L( + x) ( )+ k k= = +t ( t)+, +t x 0 t + +t dt, quad ted vers, e, utilisat ue majoratio simple, o prouve que l itégrale du deuxième membre ted vers 0 d où la covergece de la série Réarragemet das les séries Soit φ ue bijectio de I das lui-même, o cosidère ue série u, et o pose u = u φ(). O dit que la série u est u réarrragemet de la série u. Si la série série u est absolumet covergete, alors tout réarrragemet amèe ue série covergete de même somme. Par cotre si la série série u est pas absolumet covergete, alors il peut exister u réarrragemet ameat ue série divergete ou covergete vers ue autre somme. O cosidère la série ( ) + qui est semi covergete. O costruit ue autre série e ordoat les termes autremet =( 2 4 )+( )+( )+ Le terme gééral de cette ouvelle série est pour k 0 soit doc a k = 2k + 2(2k + ) 2(2k + 2) a k = a k = 2(2k + ) 2(2k + 2) = 2 = 2 = 2 2(2k + ) 2(2k + 2) 2+ 2k + 2k +2 2k + 2k +2 ( ) k k +

7 3.3. SÉRIES À TERMES DE SIGE QUELCOQUE 2 o e déduit que la série de terme gééral a k coverge de limite 2 l(2)

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Cours de mathématiques P.S.I.*

Cours de mathématiques P.S.I.* Cours de mathématiques PSI* D'après les cours de M Guillaumie Heriet Queti Séries umériques Das tout le chapitre, K désige le corps R ou C, et o désige par u ue suite de K Gééralités Vocabulaire Défiitio

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

Feuille d Exercices : Suites, suite!

Feuille d Exercices : Suites, suite! ECS 1 Dupuy de Lôme Semaie du 6 décembre 004 Feuille d Exercices : Suites, suite! Exercice 1 : Pour tout etier, o défiit u = 1. Motrez que u est mootoe.. Motrez que v est géométrique. k= 3. E déduire l

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

Séries à termes positifs

Séries à termes positifs UFR SFA, Licece 2 e aée, MATH326 Séries à termes positifs Das ce chapitre, u Ø 0, pour tout, et o étudie q u. O a S S = u Ø 0 : (S ) est croissate!. Gééralités. Propositio. Soit (u ) Ø0 ue suite de réels

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

Exercices corrigés sur les séries de fonctions

Exercices corrigés sur les séries de fonctions Eercices corrigés sur les séries de foctios Eocés Eercice Motrer que la série ( ) est uiformémet covergete mais o ormalemet covergete sur [, ] Eercice 2 Étudier la covergece sur R + de la série de foctios

Plus en détail

Corrigé feuille d exercices 4

Corrigé feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 008/009 MIME LM5-Suites et Itégrales Groupes Corrigé feuille d exercices Suites Covergece de suites Exercice Ue suite u N est pas croissate, si o N, u + u est vérifiée

Plus en détail

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition.

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition. CHAPITRE II Séries umériques I II - Défiitios et propriétés géérales - Séries à termes réels positifs ou uls III-Séries - à termes quelcoques I-Défiitios et propriétés géérales Défiitio. Soit (u N ue suite

Plus en détail

Chapitre : Séries numériques.

Chapitre : Séries numériques. ESI. Math. 009/00. Chapitre : Séries umériques. Itroductio géérale: Le but de ce chapitre est de défiir ce qu est ue série umérique et ce que veut dire qu elle coverge, o doera otamet u ses à ue somme

Plus en détail

Séries Numériques. Chapitre Suites Numériques Définitions

Séries Numériques. Chapitre Suites Numériques Définitions Chapitre Séries Numériques Suites Numériques Défiitios Ue suite umérique est ue applicatio de N (ou d ue partie de N) à valeurs das R ou das C O la ote u(), ou u, et o désige la suite (c est-à-dire l applicatio)

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples.

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples. 23. Séries umériques. Comportemet des restes ou sommes partielles. Exemples. Pierre Lissy December 8, 29 Das tout ce qui suit, K désige R ou C Covergece d'ue série. Déitio et modes de covergece[3] Déitio.

Plus en détail

Analyse mathématique II

Analyse mathématique II UNIVERSITÉ IBN ZOHR Faculté des Scieces Juridiques Écoomiques et Sociales Corrigés des QCM Aalyse mathématique II FILIÈRE SCIENCES ÉCONOMIQUES ET GESTION PREMIERE ANNÉE Sessio ormale 03/04 40 questios

Plus en détail

Feuille 2 : Séries numériques.

Feuille 2 : Séries numériques. Feuille 2 : Séries umériques. Master Eseigemet Spécialité Maths Coseils O accordera ue importace toute particulière aux démostratios des théorèmes du cours. Certais exercices de cette feuille sot ispirés

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1 SOLUTIONS AUX EXERCICES DE LA FEUILLE. Exercice. Ue suite de réels positifs qui coverge vers 0 est décroissate à partir d u certai rag. C est faux. Pour costruire u cotre-exemple, o pourrait cosidérer

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

Convergence et limite de suites numériques

Convergence et limite de suites numériques Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

CHAPITRE 1 SÉRIES NUMÉRIQUES

CHAPITRE 1 SÉRIES NUMÉRIQUES CHAPITRE SÉRIES NUMÉRIQUES. Gééralités Défiitio.. Soit ue suite de ombres réels, o pose : S = u 0 + u +...+ = u k. Etudier la série de terme gééral, c est étudier la suite S. S est appelée suite des sommes

Plus en détail

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances Frace métropolitaie Jui 200 Série S Exercice Restitutio orgaisée de coaissaces Démotrer, à l aide de la défiitio et des deux propriétés cidessous que si ( u ) et ( v ) sot deux suites adjacetes, alors

Plus en détail

CHAPITRE 1 SÉRIES NUMÉRIQUES

CHAPITRE 1 SÉRIES NUMÉRIQUES CHAPITRE SÉRIES NUMÉRIQUES Gééralités Défiitio Soit ue suite de ombres réels, o pose : S = u 0 + u ++ = La limite de S est appelée série de terme gééral S est appelée suite des sommes partielles de la

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

1. Convergence des Séries Numériques

1. Convergence des Séries Numériques Séries umériques 8 - Sommaire. Covergece des Séries Numériques.. Nature d ue série umérique.......2. Séries géométriques............ 2.3. Coditio élémetaire de covergece. 2.4. Suite et série des différeces.......

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Synthèse de cours PanaMaths (TS) Suites numériques

Synthèse de cours PanaMaths (TS) Suites numériques Sythèse de cours PaaMaths (TS) Suites umériques Das ce chapitre, le terme «suite» désige ue suite umérique (c'est-à-dire, das le cadre du programme de Termiale S, ue suite de réels). Ue telle suite sera

Plus en détail

Limites de suites, cours, terminale S

Limites de suites, cours, terminale S Limites de suites, cours, termiale S Covergece de suites Déitio : Soit (u ) ue suite. O dit que (u ) coverge vers u réel l ou a pour limite l lorsque tout itervalle ouvert A coteat l, cotiet tous les termes

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1 [http://mp.cpgedupuydelome.fr] édité le 8 décembre 6 Eocés Séries umériques Nature de séries umériques Exercice [ ] [Correctio] Détermier la ature des séries dot les termes gééraux sot les suivats : a

Plus en détail

Existence de la fonction exponentielle

Existence de la fonction exponentielle Eistece de la foctio epoetielle O cosidère les suites réelles (u ) et (v ) défiies pour tout 1 par : u () = 1+ et v () =. La démarce est alors la suivate : Démotrer que les deu suites sot adjacetes et

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

Cours de Mathématiques Séries numériques ou vectorielles Sommaire

Cours de Mathématiques Séries numériques ou vectorielles Sommaire Sommaire Sommaire I Gééralités sur les séries......................... 2 I. Espace vectoriel des séries, Sous-espace des Séries covergetes.... 2 I.2 Critère de Cauchy. Espace des séries ormalemet covergetes....

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

TD1 - Suites numériques

TD1 - Suites numériques IUFM du Limousi 2008-09 PLC1 Mathématiques S. Viatier Exercices TD1 - Suites umériques Exercice 1 Soit α > 0, étudier la covergece des suites déies par u = ( ) 1 + si α, v = 3 + cos α ( ) 1 + α. 3 + Idicatio

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

Comportement asymptotique des suites

Comportement asymptotique des suites Comportemet asymptotique des suites Table des matières 1 Itroductio 2 2 Limite d ue suite 2 2.1 Limite fiie d ue suite........................................... 2 2.2 Limite ifiie d ue suite..........................................

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

Chapitre 8 : Séries. Introduction. 1 Dénitions. ECE3 Lycée Carnot. 2 décembre 2010

Chapitre 8 : Séries. Introduction. 1 Dénitions. ECE3 Lycée Carnot. 2 décembre 2010 Chapitre 8 : Séries ECE3 Lycée Carot 2 décembre 200 Itroductio Reveos pour itroduire ce chapitre quelques siècles e arrière, au temps de Zéo d'élée, philosophe grec du ciquième siècle avat J-C. Celui-ci

Plus en détail

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1 Séries umériques Défiitios et premières propriétés. Défiitios Défiitio (Série umérique) Soit () N ue suite complexe. Pour tout N o pose : U = ( ème somme partielle). La suite (U ) N est alors appelée la

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Feuille d exercices 4

Feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 2009/200 MIME 22 LM5-Suites et Itégrales Groupe 22 Feuille d exercices Suites Covergece de suites Exercice Ecrire l éocé qui traduit : (u ) N est pas croissate Cet

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée...

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée... Séries umériques I Défiitios et otatios II Exemples 2 II.A Série géométrique....................................... 2 II.B Série expoetielle...................................... 3 II.C Série harmoique.......................................

Plus en détail

Suites numériques. 1 Questions de cours. 3 Exercices. 2 Applications. 1. Montrer que toute suite a au plus une limite.

Suites numériques. 1 Questions de cours. 3 Exercices. 2 Applications. 1. Montrer que toute suite a au plus une limite. Suites umériques 1 Questios de cours 1. Motrer que toute suite a au plus ue limite.. Motrer que toute suite covergete est borée. 3. Motrer que toute suite extraire d ue suite tedat vers l R ted aussi vers

Plus en détail

Partie I - Préliminaires

Partie I - Préliminaires SESSION 25 Cocours commu Cetrale MATHÉMATIQUES. FILIERE PC Partie I - Prélimiaires I.A - I.A. Soit N. Pour N, Puisque la série de terme gééral +... + + 2. coverge, il e est de même de la série de terme

Plus en détail

Suites réelles ou complexes

Suites réelles ou complexes 3 Suites réelles ou complexes 3. Prérequis L esemble R des ombres réels est supposé costruit avec les propriétés suivates : c est u corps commutatif totalemet ordoé ; il cotiet l esemble Q des ombres ratioels

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

SÉRIES. Cette question spécifique appelle des résultats spécifiques qui sont l objet du chapitre. u k (n ème reste de la série), alors : lim.

SÉRIES. Cette question spécifique appelle des résultats spécifiques qui sont l objet du chapitre. u k (n ème reste de la série), alors : lim. Christophe Bertault Mathématiques e MPSI SÉRIES INTRODUCTION AUX SÉRIES. SÉRIE, SOMME, PREMIERS EXEMPLES Défiitio (Série, sommes partielles) Soit(u ). Pour tout, o pose : U partielle). La suite(u ) est

Plus en détail

Suites et séries réelles

Suites et séries réelles Suites et séries réelles Ue suite umérique est ue famille de ombres réels ou complexes idicées par les etiers aturels. O ote ue suite u idifféremmet (u ) N, ou (u ) 0, ou simplemet (u ). L esemble des

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Support de Cours d Analyse 3. avec Exercices Corrigés

Support de Cours d Analyse 3. avec Exercices Corrigés République Algériee Démocratique et Populaire Miistère de l Eseigemet Supérieur et de la Recherche Scietifique Uiversité de Béjaia Faculté des Scieces Exactes Départemet de Recherche Opératioelle Support

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ).

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ). Chapitre Suites et ites Exercices Calcul des ites I (a) Calculer (b) Calculer (c) Calculer (d) Calculer (e) Calculer (f) Calculer (g) Calculer (h) Calculer (i) Calculer (j) Calculer (k) Calculer + + 4

Plus en détail

C.C.P TSI Mathématiques 1

C.C.P TSI Mathématiques 1 CCP TSI Mathématiques Eercice -) L'éocé e dit pas que f est défiie sur IR O pourrait doc cosidérer que f est défiie sur IR πz et, das ce cas, f() et f(π) 'eisteraiet pas Si f est défiie sur IR, par imparité

Plus en détail

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et.

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et. Séries umériques Exercice. Étude de covergece Étudier la covergece des séries de terme gééral : + e. ch α sh α. 3 l 3 + 3 l +. 4 +. 5 arccos 3 + 3. 6 a + + a. 7 +. 8 l. 9 +. 0 3.4.6.... l + siπ/3. 4 6

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

M1 MEEF PRÉPARATION À L ÉCRIT DU CAPES DE MATHÉMATIQUES ANALYSE

M1 MEEF PRÉPARATION À L ÉCRIT DU CAPES DE MATHÉMATIQUES ANALYSE M1 MEEF PRÉPARATION À L ÉCRIT DU CAPES DE MATHÉMATIQUES ANALYSE Matthieu Fradelizi Uiversité Paris-Est Mare-la-Vallée 2015-16 2 Table des matières 1 Les esembles N, Q et R 5 1.1 Propriété fodametale de

Plus en détail

Cours de Mathématiques : Polynômes et Suites

Cours de Mathématiques : Polynômes et Suites Uiversité de Cergy-Potoise Départemet de Mathématiques L MIPI - S2 205/206 Cours de Mathématiques : Polyômes et Suites - Polycopié d Exercices Chapitre : Nombres complexes Exercice a) Détermier la partie

Plus en détail

Cours I : SUITES NUMERIQUES. I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels Agrocampus Ouest ENIHP ère aée p. Cours I : SUITES NUMERIQUES / Défiitio I Quelques rappels Défiitio : Ue suite u est ue applicatio de l esemble N ou ue partie de N das R qui à chaque élémet de N associe

Plus en détail

FONCTIONS DE CLASSE C 1

FONCTIONS DE CLASSE C 1 FONCTIONS DE CLASSE C FONCTIONS DE CLASSE C La otio de classe C pour ue foctio est présete e aalyse (étude de foctios umériques à ue variable réelle, itégratios par parties) et e probabilités (foctio de

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail