20. Algorithmique & Mathématiques

Dimension: px
Commencer à balayer dès la page:

Download "20. Algorithmique & Mathématiques"

Transcription

1 L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus simple de grouper ces commades das l'éditeur qui serot exécutées lige par lige par le logiciel Scilab. Ces commades peuvet être sauvegardées das u fichier texte (extesio.sci ou.sce). Les liges de codes écrites das l'éditeur Scilab sot présetées aisi : Editeur : x = lispace(a,b,p); y= oes(x)*d; // Surface scf(); xset('colormap',hotcolormap(128)) fplot3d1(x,x,f) 20. Algorithmique & Mathématiques

2 4- Les istructios du lagage Scilab 4-1. Lecture et écriture des doées Cette partie comporte la liste des foctios Scilab utilisées das cet ouvrage. Chaque foctio comporte ue défiitio succicte mais suffisate pour être utilisée das les travaux pratiques. Pour plus d'iformatios sur les différets paramètres de ces foctios, prière de se reporter au fichier d'aide du logiciel Scilab INPUT La foctio iput() permet de saisir ue variable utilisateur. Editeur : w = iput("etrer votre préom : ","strig"); u = iput("etrer les bores : [a,b]= "); p = iput("etrer le ombre de poits : p = "); Cosole : Etrer votre préom : Pierre Etrer les bores : [a,b]= [5,2] Etrer le ombre de poits : p = 7 Remarques : La variable w cotiet ue chaîe de caractère (strig) La variable u est u vecteur : u(1) = 5 et u(2) = 2. u(1) peut s'écrire u(1,1) et u(2), u(1,2). La variable p est u réel. Ici p = DISP La commade disp() permet d'afficher u résultat das la cosole Scilab. Editeur : a=5; disp(a) Cosole : Algorithmique & Mathématiques

3 Première partie Eocés des travaux pratiques

4 2- Travail pratique Résolutio de l'équatio f(x) = 0 Méthode de dichotomie Soit f ue foctio strictemet mootoe sur u itervalle [a ; b] où les valeurs de a et de b sot telles que f chage de sige etre a et b. Il s'agit de résoudre l équatio (E) sur cet itervalle : f ( x) = 0 (E) De ombreuses situatios doet lieu à la résolutio umérique d équatios et d iéquatios. Les calculatrices et les outils logiciels itègret les foctioalités umériques ou formelles permettat cette résolutio. O se propose ici d'utiliser ue des méthodes de résolutio appelée méthode de dichotomie. a m b Présetatio de la méthode de dichotomie Cette méthode cosiste, e choisissat à chaque fois la valeur située au milieu de l itervalle e cours, à réduire de moitié l amplitude de l itervalle das lequel se trouve le ombre α tel que f ( α) = 0. b a Au bout de essais, l'itervalle a pour amplitude : Eocé 2 O cosidère la foctio suivate : f ( x) = x + 10x 23. Il s'agit de résoudre l'équatio (E) : f ( x) = 0 (E) O souhaite détermier la solutio x1 apparteat à l'itervalle [2 ; 4] avec ue précisio p doée, aisi que la solutio x2 apparteat à l'itervalle [5 ; 7] avec la même précisio Travail demadé 1] Ecrire l'algorithme permettat de calculer les solutios de l'équatio (E). 2] Ecrire le programme correspodat permettat de saisir la précisio p désirée Algorithmique Les doées - f : La foctio à étudier. - p : La précisio désirée Les valeurs à détermier Les solutios de l'équatio (E). Foctios et résolutio d'équatios Eocés. 35

5 1- Travail pratique Le jeu du lièvre et de la tortue 1-1. Eocé U lièvre et ue tortue sot sur la lige de départ. La tortue doit avacer de p cases pour atteidre la lige d'arrivée. Règle du jeu : Ue partie comporte au plus p tours. À chaque tour, o lace u dé. Si le 6 sort, alors le lièvre gage la partie, sio la tortue avace d ue case. La tortue gage quad elle a avacé p fois. Lièvre Tortue ARRIVEE p cases Soit T l'évèemet : "La tortue a gagé la partie", il s'agit de détermier, à l'aide d'ue simulatio de ce jeu, la fréquece de l'évèemet T afi de pouvoir cojecturer, suivat les valeurs de p, si le jeu est à l'avatage du lièvre ou de la tortue Travail demadé 1] Ecrire l'algorithme permettat d'effectuer la simulatio de parties et de compter le ombre de parties t t gagées par la tortue. E déduire la fréquece de l'évèemet T. 2] Ecrire le programme correspodat permettat de saisir le ombre de parties aisi que le ombre de cases p à parcourir par la tortue. 3] Cojecturer, suivat les valeurs de p, si le jeu est à l'avatage du lièvre ou de la tortue Algorithmique Les doées - : Le ombre de parties à jouer. - p : Le ombre de cases à parcourir par la tortue Les valeurs à détermier - t : Le ombre de parties gagées par la tortue. t - : La fréquece de l'évèemet T La méthode utilisée - La simulatio de chaque lacer de dé est obteue par la géératio d'u ombre etier aléatoire compris etre 1 et 6. - Pour chaque partie, o lace le dé au maximum p fois. Par exemple, si le 6 sort au secod lacer alors la tortue a perdu et o recommece alors ue ouvelle partie. - Pour chaque partie gagée par la tortue, o icrémete la valeur de t. - Au bout de parties o calcule le quotiet t correspodat à la fréquece de l'évèemet T. Probabilités Eocés. 43

6 7- Travail pratique Nombres à moyee harmoique etière 7-1. Eocé U ombre à moyee harmoique etière est u etier aturel p dot la moyee harmoique m de ses diviseurs positifs est u etier. Si o ote d 1, d 2,..., d les diviseurs positifs de l'etier aturel p, alors le ombre m suivat est u etier : m = = k d1 d 2 d d = k = 1 Exemple : O cosidère le ombre p = 6. Les 4 diviseurs positifs de 6 sot {1, 2, 3, 6}. 4 4 m = = = 2 ; m est u etier doc 6 est u ombre à moyee harmoique etière Travail demadé 1] Ecrire l'algorithme permettat de détermier si u etier aturel p est à moyee harmoique etière. 2] Ecrire le programme correspodat permettat de saisir la valeur de p. 3] Vérifier que les ombres suivats sot à moyee harmoique etière : 6 ; 1638 ; 6200 ; 8128 ; ] O défiit les etiers : = q 1 et p = 2. q, où est u etier aturel. Doer quelques valeurs de pour lesquelles l'etier p est u etier à moyee harmoique etière. Quelle cojecture peut-o faire? 7-3. Algorithmique Les doées p : L'etier aturel à étudier Les valeurs à détermier Il s'agit de détermier la moyee harmoique m de l'etier aturel p La méthode utilisée - O saisit la valeur de p. - O détermie l'esemble des diviseurs positifs de p, puis o calcule la valeur de m. - O affiche le résultat Les foctios et structures Structure répétitive TatQue p <> 1 Faire {Traitemet 1} FiTatQue k Arithmétique Eocés. 73

7 2- Travail pratique Etude d'u parallélogramme B 2-1. Eocé A partir des coordoées de trois poits A, B et C, o souhaite détermier les coordoées du poit D tel que ABCD soit u parallélogramme Travail demadé 1] Ecrire l'algorithme permettat de détermier les coordoées du poit D. 2] Ecrire le programme correspodat permettat de saisir les coordoées des poits A, B et C. 3] Représeter le parallélogramme ABCD das ue feêtre graphique. A D C 2-3. Algorithmique Les doées Les coordoées des poits A, B et C Les valeurs à détermier Les coordoées du poit D La méthode utilisée - O saisit les coordoées des poits A, B et C. - O calcule les coordoées du poit I, milieu de [AC]. - O calcule les coordoées du poit D, symétrique du poit B par rapport au poit I. - O affiche le résultat Les foctios et structures vecteur a = [5,8] a est u vecteur qui représete les coordoées du poit A(5 ; 8). a(1) ou a(1,1) a pour valeur 5. a(2) ou a(1,2) a pour valeur 8. = a/2 ; est u vecteur et = [2.5,4] Si b = [2,10] alors d = a + b est u vecteur et d = [7,18] Foctio gca() a=gca() retoure l'idetifiat de l'axe courat. Foctio isoview a.isoview() = "o" : Permet d'obteir u repère isométrique (avec les mêmes échelles). Foctio plot() : Trace le graphe d'ue foctio. Géométrie Eocés. 77

8 Deuxième partie Solutios des travaux pratiques

9 1- Travail pratique Solutio Le jeu du lièvre et de la tortue 1-1. L'algorithme ARRIVEE Variables, p, c, t, d, k Lièvre Etrées Saisir, p Tortue p cases Traitemet c pred la valeur 0 (Numéro de la case où se trouve la tortue) t pred la valeur 0 (Nombre de parties gagées par la tortue) k pred la valeur (O utilise la variable k pour le comptage des parties) TatQue k <> 0 Faire d pred ue valeur etière aléatoire comprise etre 1 et 6. Si d <> 6 Alors c pred la valeur c + 1 Si c = p Alors t pred la valeur t + 1 c pred la valeur 0 k pred la valeur k 1 FiSi Sio c pred la valeur 0 k pred la valeur k 1 FiSi FiTatQue Sorties Afficher la fréquece : t/ Afficher la fréquece théorique : (5/6)^p Probabilités Solutios. 95

10 1-2. Le programme = iput("etrer le ombre de parties à jouer... : ") p = iput("etrer le ombre p de cases à parcourir par la tortue : ") k = ; t = 0; c = 0; while k <> 0 d = it(6 * rad() + 1); if d <> 6 the c = c + 1; if c == p the t = t + 1; c = 0; k = k - 1; ed else c = 0; k = k - 1; ed ed pritf("%s\","resultats :") pritf ("Fréquece des parties gagées par la tortue : %f\",t/) pritf ("Fréquece théorique : %f\",(5/6)^p) 96. Algorithmique & Mathématiques

11 1-3. Les résultats umériques Les résultats ci-dessous correspodet à des simulatios de parties pour différetes valeurs du ombre de cases p. Cosole Scilab : Etrer le ombre de parties à jouer... : Etrer le ombre p de cases à parcourir par la tortue : 1 RESULTATS : Fréquece des parties gagées par la tortue : Fréquece théorique : Etrer le ombre de parties à jouer... : Etrer le ombre p de cases à parcourir par la tortue : 2 RESULTATS : Fréquece des parties gagées par la tortue : Fréquece théorique : Etrer le ombre de parties à jouer... : Etrer le ombre p de cases à parcourir par la tortue : 3 RESULTATS : Fréquece des parties gagées par la tortue : Fréquece théorique : Etrer le ombre de parties à jouer... : Etrer le ombre p de cases à parcourir par la tortue : 4 RESULTATS : Fréquece des parties gagées par la tortue : Fréquece théorique : Etrer le ombre de parties à jouer... : Etrer le ombre p de cases à parcourir par la tortue : 5 RESULTATS : Fréquece des parties gagées par la tortue : Fréquece théorique : Etrer le ombre de parties à jouer... : Etrer le ombre p de cases à parcourir par la tortue : 6 RESULTATS : Fréquece des parties gagées par la tortue : Fréquece théorique : Etrer le ombre de parties à jouer... : Etrer le ombre p de cases à parcourir par la tortue : 7 RESULTATS : Fréquece des parties gagées par la tortue : Fréquece théorique : Cojecture : Le jeu est à l'avatage de la tortue lorsque le ombre de cases est iférieur ou égal à 3. Probabilités Solutios. 97

12 4-3. Les résultats umériques 3] Représetatio graphique des surfaces : 10 (S1) : z = 2 2 x + y + 1 Représetatio graphique d'ue surface d'équatio z = f(x,y) Etrer l'expressio de la foctio f(x,y). z= 10/(x^2+y^2+1) Etrer les bores de l'itervalle. [a,b]= [-3,3] Etrer le ombre de poits à cosidérer. p= 30 Remarque : Le bouto "Rotatio" de la barre d'outils de la feêtre graphique permet de visualiser la surface sous différets agles de vue. Géométrie Solutios. 163

13 Troisième partie Le logiciel Scilab e 10 étapes

14 Cette troisième partie est destiée à permettre ue prise e mai rapide du logiciel Scilab. Il est etedu que toutes les foctioalités du logiciel 'y sot pas abordées. Il s'agit simplemet d'acquérir ue coaissace de base pour pouvoir traiter les travaux pratiques das de boes coditios. Chaque étape propose des exercices à réaliser aisi que les solutios correspodates. 1- L'eviroemet Scilab Le logiciel Scilab se compose pricipalemet d'ue cosole, d'u éditeur et de feêtres graphiques La cosole Il s'agit de la feêtre pricipale de Scilab. La cosole permet à l'utilisateur de saisir toutes les commades Scilab directemet au clavier. Pour accéder à l'éditeur : Meu de la cosole : "Applicatios / Editeur" 1-2. L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Pour exécuter u programme : Meu de l'éditeur : "Exécuter / Charger das Scilab" ou "Exécuter / Exécuter le fichier das Scilab" Les feêtres graphiques Les feêtres graphiques affichet les représetatios graphiques créées par les programmes ou les foctios défiies par l'utilisateur. Il est possible de défiir plusieurs feêtres graphiques pour u même programme. La barre d'outils permet d'effectuer ue rotatio du graphique, des zooms avat ou arrière et d'accéder au fichier d'aide du logiciel. Le logiciel Scilab e 10 étapes. 177

15 2- Utiliser la cosole et l'éditeur Exercice 1 Effectuer les opératios suivates das la cosole Scilab : - 22/7-4^ (5+4^2)/(7+4^3) Solutio 1 Cosole : -->22/7 as = >4^2+5 as = >(5+4^2)/(7+4^3) as = Exercice 2 Effectuer les opératios suivates das l'éditeur Scilab et afficher les résultats das la cosole : - 22/7-4^ (5+4^2)/(7+4^3) Solutio 2 Editeur : a = 22/7; b = 4^2 + 5; c = (5+4^2)/(7+4^3); disp(a) disp(b) disp(c) Cosole : Remarque : O lace les calculs à l'aide du meu de l'éditeur : "Exécuter / Charger das Scilab" ou "Exécuter / Exécuter le fichier das Scilab" Algorithmique & Mathématiques

16 3- Saisir et afficher des doées Exercice 1 Ecrire u programme das l'éditeur Scilab effectuat les opératios suivates : - Saisir ue valeur a das la cosole ; - Calculer le carré de la valeur a ; - Afficher le résultat. Solutio 1 Editeur : a = iput("etrer la valeur de a : "); r = a^2; pritf("résultat : %f\",r) Cosole : Etrer la valeur de a : 5 Résultat : Exercice 2 Ecrire u programme das l'éditeur Scilab effectuat les opératios suivates : - Saisir deux valeurs a et b das la cosole ; - Calculer le quotiet a/b ; - Afficher le résultat avec 4 décimales. Solutio 2 Editeur : s = iput("etrer les valeurs de a et de b : [a,b]= "); r = s(1)/s(2); pritf("résultat : %0.4f\",r) Cosole : Etrer les valeurs de a et de b : [a,b]= [22,7] Résultat : Le logiciel Scilab e 10 étapes. 179

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire HEC Gilles Mauffrey METHODES QUANTITATIVES AVEC EXCEL Programmatio liéaire, programmatio dyamique, simulatio, statistique élémetaire La Modélisatio LA MODELISATION Modèle et typologie des modèles. La otio

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

Neolane Leads. Neolane v6.0

Neolane Leads. Neolane v6.0 Neolae Leads Neolae v6.0 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord. Cette publicatio

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Simulations interactives de convertisseurs en électronique de puissance

Simulations interactives de convertisseurs en électronique de puissance Simulatios iteractives de covertisseurs e électroique de puissace Jea-Jacques HUSELSTEIN, Philippe ENII Laboratoire d'électrotechique de Motpellier (LEM) - Uiversité Motpellier II, 079, Place Eugèe Bataillo,

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Maîtrise de Mathématiques TER Le bandit manchot à deux bras

Maîtrise de Mathématiques TER Le bandit manchot à deux bras Maîtrise de Mathématiques TER Le badit machot à deux bras Deis Cousieau Sous la directio de Jea-Michel Loubes Septembre 2003 Table des matières 1 Présetatio du problème 2 1.1 Exemple de la machie à sous,

Plus en détail

n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :...

n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :... Nom:... Préom :... Chaque répose peut valoir : c) 2 poits si le choix est totalemet exact + poit si le choix est partiellemet exact + 0 poit si le choix est erroé + -i poit si le choix est u coeses Ue

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules est à dispositio olie et sera doé aux cadidats lors des exames oraux

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Gérer les applications

Gérer les applications Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Neolane Message Center. Neolane v6.0

Neolane Message Center. Neolane v6.0 Neolae Message Ceter Neolae v6.0 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord.

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Logiciel de synchronisation de flotte de baladeurs MP3 / MP4 ou tablettes Androïd

Logiciel de synchronisation de flotte de baladeurs MP3 / MP4 ou tablettes Androïd easylab Le logiciel de gestio de fichiers pour baladeurs et tablettes Visualisatio simplifiée de la flotte Gestio des baladeurs par idividus / classes / groupes / activités Activatio des foctios par simple

Plus en détail

trouve jamais dans les concepts généraux que ce qu on y met

trouve jamais dans les concepts généraux que ce qu on y met ,QIRUPDWLTXHQRUPHHWWHPSV,VDEHOOH%R\GHQV Présetatio par Marie-Ae Chabi Réuio PIN 15 javier 2004 /HVEDVHVGHGRQQpHVHPSLULTXHV Collectio fiie et structurée de doées codifiées, textuelles ou multimédia, destiées

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Commet utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Survol du compte Mauvie U La majorité des Caadies gèret leurs fiaces comme suit : 1. Ils déposet leur reveu et autres actifs à court

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Copyright 2001 2006 Hewlett-Packard Development Company, L.P.

Copyright 2001 2006 Hewlett-Packard Development Company, L.P. Guide des logiciels Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses de garatie accompagat ces produits et services. Aucu élémet de ce documet

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Guide des logiciels de l ordinateur HP Media Center

Guide des logiciels de l ordinateur HP Media Center Guide des logiciels de l ordiateur HP Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses de garatie accompagat ces produits et services. Aucu

Plus en détail

Les algorithmes de tri

Les algorithmes de tri CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

Guide des logiciels installés sur votre ordinateur portable Sony PCG-Z600LEK/HEK

Guide des logiciels installés sur votre ordinateur portable Sony PCG-Z600LEK/HEK Guide des logiciels istallés sur votre ordiateur portable Soy PCG-Z600LEK/HEK Commecez par lire ce documet! Guide des logiciels istallés sur votre ordiateur portable Soy Commecez par lire ce documet! Importat

Plus en détail

Un accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT. www.bnpparibas.net. Centre de Relations Clients 0 820 820 001 (0,12 /min)

Un accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT. www.bnpparibas.net. Centre de Relations Clients 0 820 820 001 (0,12 /min) * selo coditios cotractuelles e vigueur. U accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT + VOTRE CODE SECRET * : www.bpparibas.et Cetre de Relatios Cliets 0 820 820 001 (0,12 /mi) Appli Mes Comptes

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier

Plus en détail

Lignes directrices applicables aux régimes de capitalisation

Lignes directrices applicables aux régimes de capitalisation Solutios Retraite collectives Liges directrices applicables aux régimes de capitalisatio RÉPONDEZ AUX EXIGENCES ÉNONCÉES DANS LES LIGNES DIRECTRICES GRÂCE AUX EXCELLENTS OUTILS DE LA FINANCIÈRE MANUVIE

Plus en détail

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus Réseaux d odelettes et réseaux de euroes pour la modélisatio statique et dyamique de processus Yacie Oussar To cite this versio: Yacie Oussar. Réseaux d odelettes et réseaux de euroes pour la modélisatio

Plus en détail

Régulation analogique industrielle ESTF- G.Thermique

Régulation analogique industrielle ESTF- G.Thermique Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité

Plus en détail

Guide des logiciels installés sur votre ordinateur portable Sony PCG-N505SN

Guide des logiciels installés sur votre ordinateur portable Sony PCG-N505SN istallés sur votre ordiateur portable Soy PCG-505S 2 IMPORTAT Ce produit comporte des logiciels acquis par Soy sous licece de tiers. Leur utilisatio est soumise aux modalités des cotrats de licece fouris

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Principes et Méthodes Statistiques

Principes et Méthodes Statistiques Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Centre d expertise en analyse environnementale du Québec PROTOCOLE POUR LA VALIDATION ET LA VÉRIFICATION D UNE MÉTHODE D ANALYSE EN MICROBIOLOGIE

Centre d expertise en analyse environnementale du Québec PROTOCOLE POUR LA VALIDATION ET LA VÉRIFICATION D UNE MÉTHODE D ANALYSE EN MICROBIOLOGIE Cetre d expertise e aalyse eviroemetale du Québec Programme d accréditatio des laboratoires d aalyse PROTOCOLE POUR LA VALIDATION ET LA VÉRIFICATION D UNE MÉTHODE D ANALYSE EN MICROBIOLOGIE DR-12-VMM Éditio

Plus en détail

LES MESURES CLÉS DU PROJET DE LOI ÉCONOMIE SOCIALE ET SOLIDAIRE

LES MESURES CLÉS DU PROJET DE LOI ÉCONOMIE SOCIALE ET SOLIDAIRE LES MESURES CLÉS DU PROJET DE LOI ÉCONOMIE SOCIALE ET SOLIDAIRE Qu est-ce que l Écoomie sociale et solidaire? Coopératives Etreprises sociales Scop Fiaceurs sociaux Scic CAE Mutuelles Coopératives d etreprises

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Guide des logiciels installés sur votre ordinateur portable Sony. Série PCG-GR

Guide des logiciels installés sur votre ordinateur portable Sony. Série PCG-GR Guide des logiciels istallés sur votre ordiateur portable Soy Série PCG-GR Commecez par lire ce documet! Commecez par lire ce documet! Importat Ce produit comporte des logiciels acquis par Soy sous licece

Plus en détail

Notes de version. Neolane v6.1

Notes de version. Neolane v6.1 Notes de versio Neolae v6.1 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord. Cette

Plus en détail

Avid AirSpeed Multi Stream

Avid AirSpeed Multi Stream Avid AirSpeed Multi Stream Versio 1.8 Lisez-moi Iformatios importates Avid vous recommade de predre coaissace de l'esemble des iformatios coteues das ce fichier Lisez-moi avat d'istaller ou d'utiliser

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014 Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

Mécanismes de protection contre les vers

Mécanismes de protection contre les vers Mécaismes de protectio cotre les vers Itroductio Au cours de so évolutio, l Iteret a grademet progressé. Il est passé du réseau reliat quelques cetres de recherche aux États-Uis au réseau actuel reliat

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

One Office Voice Pack Vos appels fixes et mobiles en un seul pack

One Office Voice Pack Vos appels fixes et mobiles en un seul pack Uique! Exteded Fleet Appels illimités vers les uméros Mobistar et les liges fixes! Oe Office Voice Pack Vos appels fixes et mobiles e u seul pack Commuiquez et travaillez e toute liberté Mobistar offre

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail