Estimation des matrices de trafics

Dimension: px
Commencer à balayer dès la page:

Download "Estimation des matrices de trafics"

Transcription

1 Cédric Foruny 1/5 Esimaion des marices de rafics Cedric FORTUNY Direceur(s) de hèse : Jean Marie GARCIA e Olivier BRUN Laboraoire d accueil : LAAS & QoSDesign 7, av du Colonel Roche TOULOUSE Cedex 4 Eablissemen d inscripion : Universié Paul Sabaier 118, roue de narbonne TOULOUSE Cedex 9 Résumé La marice de rafic es la donnée de base de oue acivié d ingénierie de rafic ou de planificaion d un réseau IP. Pouran, elle es en général inconnue e sa mesure direce avec NeFlow a un coû prohibiif pour des réseaux d opéraeurs. L esimaion de cee marice de rafic à parir de mesures sur la charge des liens apparaî alors comme une alernaive inéressane. Les ravaux les plus récens sur ce suje considèren ous qu une informaion a priori sur le rafic ne perme pas d obenir une esimaion suffisammen précise, e qu il fau donc calibrer les modèles à parir de mesures NeFlow. Nous monrons ici que l on peu obenir des aux d erreur similaires à ceux de ces méhodes, sans surcoû supplémenaire. Mos-clés SNMP, marice de rafic, inférence, crière quadraique 1 Inroducion Dans le conexe concurreniel acuel, les opéraeurs de élécommunicaions se doiven d adaper régulièremen leurs infrasrucures IP pour faire face à la croissance du rafic, aux nouvelles exigences de qualié de service e aux impéraifs de sécurisaion. La donnée de base de l ensemble des aciviés sous-jacenes - ingéniérie de rafic, simulaion e planificaion de réseaux - es la marice de rafic du réseau, qui décri le volume de rafic enre chaque couple origine-desinaion (OD). Malheureusemen, la mesure direce de cee marice de rafic, à l aide d ouils els que NeFlow de Cisco, a un coû prohibiif pour des réseaux d opéraeurs dû à la fore consommaion CPU sur les roueurs e à un rafic de reporing imporan. Une alernaive inéressane consise alors à inférer cee marice de rafic à parir de mesures sur la charge des liens du réseau. Ces mesures son en effe facilemen disponibles, à inervalles de 5mn, à l aide du proocole SNMP. Soi L le nombre de liens, N le nombre de noeuds edges e c = N(N 1) le nombre de couples OD. Nous noerons Y = [y l ] le veceur de charge des liens, X = [x i ] le veceur des rafics OD e A = [a l,i ] L c la marice de rouage. Le veceur Y e la marice A éan connus, le problème consise à déerminer le veceur des rafics OD X el que Y = A.X i.e. y l = a l,i x i l = 1... L i=1

2 Cédric Foruny 2/5 Malheureusemen, ce problème ne peu êre résolu el quel car il es foremen sousconrain : le nombre de liens L es en général rès inférieur au nombre de couples OD c. Il exise donc une infinié de soluions, l espace des soluions pouvan êre décri par des echniques de décomposiion en valeurs singulières. Pour esimer la marice de rafic du réseau, il fau donc inroduire de l informaion supplémenaire pour lever l indéerminaion. Cee informaion peu se présener sous la forme de corrélaions a priori : corrélaions spaiales pour la méhode de omogravié ou corrélaions emporelles pour la méhode roue change. Il semble néanmoins largemen admis que des corrélaions a priori ne permeen pas d obenir une esimaion suffisammen précise pour êre exploiée par un opéraeur. L idée exploiée par les méhodes les plus récenes consise alors à effecuer des mesures NeFlow pendan 24h sur le réseau, pour en déduire des corrélaions spaio-emporelles a poseriori enre les couples OD, corrélaions qui peuven ensuie êre exploiées les jours suivans pour esimer la marice de rafic par des echniques efficaces comme le filre de Kalman [1, 2]. Si ces echniques permeen bien de réduire considérablemen l erreur d esimaion, elles nécessien l uilisaion de NeFlow pendan4h, ce qui ne semble pas accepable à l heure acuelle pour un opéraeur. Pour un éa de l ar déaillé, on pourra consuler [1]. L objecif de ce papier es de monrer que l on peu, en exploian une invariance emporelle dans la répariion des rafics, obenir des aux d erreur similaires à ces méhodes de dernière généraion, sans surcoû supplémenaire lié à NeFlow. 2 Approche proposée Nore approche se base sur une observaion faie dans [2]. Ce aricle considère plusieurs mesures SNMP Y = [yl ] consécuives obenues à des insans = 1... T. La mesure à l insan es reliée aux rafics OD à ce insan par la relaion Y = A X. Les aueurs éudien la répariion du rafic soran d un noeud origine i au cours du emps. Cee répariion, appelée fanou, es représenée par un veceur Pi = [p ij ] j=1...n pour la mesure obenue à l insan. Le erme p ij représene la proporion de rafic soran du noeud i desiné au noeud j à l insan. Considérons alors une demande OD k e noons s(k) le noeud origine, d(k) le noeud desinaion e Es(k) le rafic oal enran au noeud s(k) sur la période (connu par des mesures SNMP). On a alors la relaion suivane : x k = p s(k),d(k) E s(k) k = 1... c La première observaion faie dans [2] es que les fanous on un profil journalier qui se reprodui rès régulièremen d un jour sur l aure. [2] exploie cee observaion en mesuran avec NeFlow les fanous sur 24 heures, pour prédire ensuie les jours suivans la marice de rafic à parir des seules mesures SNMP du rafic E i en enrée de chaque noeud i. La deuxième observaion faie dans [2], mais qui n a pas éé exploiée jusqu ici, es que ces fanous varien rès faiblemen au cours d une heure, beaucoup plus faiblemen que les rafics OD. En effe, la variaion de la demande d un couple OD d une mesure à l aure provien majoriairemen de la variaion du rafic enran au noeud origine pluô que de celle de la répariion de ce rafic enre les noeuds desinaions. Nore approche consise à exploier cee faible variaion des fanous en cherchan leurs valeurs moyennes inerprean au mieux la série de mesures sur la charge des liens. Plus précisémen, l objecif es de déerminer les paramères p i,j minimisan l erreur quadraique moyenne d esimaion Γ(p i,j ), Minimiser Γ(p i,j ) = Sous les conraines : p i,j 0 i, j e T L =1 l=1 (1 y l y l N j=1 p ij = 1 ) 2 où y l = a l,k p s(k),d(k) Es(k) i k=1 (1)

3 Cédric Foruny 3/5 Ce problème es convexe. Il peu êre résolu par des echniques génériques de programmaion non-linéaire : gradien projeé, méhode de Gauss-Newon ou de Levenberg-Marquard. En praique, nous avons observé une convergence rès lene de ces méhodes, y compris loin de l opimum, probablemen due à la srucure pariculière des conraines. Nous proposons dans la suie un algorihme original pour résoudre ce problème plus efficacemen. 3 Algorihme Développé La echnique développée es un algorihme d approximaions successives qui, paran d une soluion iniiale P 0, génère une suie de soluions P k qui converge vers l opimum global du problème. La soluion P 0 peu êre obenue par exemple par une iniialisaion de ype gravié [1]. Pour une iniialisaion encore plus efficace, nous avons uilisé un algorihme de ype mille-feuille, que nous ne déaillons pas ici par manque de place. Soi δ < 1. Nous définissons le voisinage de la soluion P k à l iéraion k par, p k P V (P k ij ) ssi! (u, v, w) q ij = 1..c p ij = p k ij + δ p k ij δ si ij uv e ij uw si ij = uw si ij = uv Auremen di, un voisin de la soluion P k es obenu en déplaçan du rafic d un couple OD (u, v) vers un couple OD (u, w). Ce voisinage conien N(N 1)(N 2) soluions. La soluion P k+1 à l iéraion k + 1 es obenue en minimisan le coû dans le voisinage de P k, P k+1 = argmin P V (P k )Γ(P ) La soluion P k+1 n es générée que s il exise une soluion permean de faire décroîre le coû dans le voisinage de P k. Sinon, la valeur de δ es divisée par 2. Un poin criique de ce algorihme es le calcul du coû d une soluion voisine. Il peu êre fai efficacemen en calculan la variaion de coû résulane de la variaion de δ u,v = +/ δ du paramère p u,v associé à un couple OD k, T Γ u,v = yk,l =1 l L uv yl [ ] 2(yl y l ) + yk,l avec, l L uv y k,l = δ uv a l,k E u où L uv es l ensemble des liens l emprunés par le couple OD k, i.e. els que a l,k 0. L algorihme s arrêe si le crière n évolue plus (à 10 6 près), si δ devien rop faible ( < 1e 4 N 1 ), ou si l écar relaif maximum enre les charges mesurées e les charges esimées es inférieur à 1%. 4 Résulas Plusieurs opologies, consruies e configurées avec l ouil NEST IP-MPLS de QoS Design, on éé uilisées pour valider nore approche. Nous n en considérons ici que deux : Topo1, avec N = 15 noeuds edges e L = 80 liens, e Topo2, avec N = 10 e L = 50. Pour chacune de ces opologies, nous consruisons une marice de rafic iniiale à = 0 en iran aléaoiremen les rafics OD x 0 k, k = 1... c, suivan une disribuion mulimodale p 1 N(m 1, v 1 ) + p 2 N(m 2, v 2 ) + p 3 N(m 3, v 3 ). Les valeurs uilisées son : p 1 =30%, p 2 =20%, p 3 =50% e m 1 =50000 Kbps, m 2 =10000 Kbps e m 3 =500 Kbps. Il y a donc un faceur 100 enre les gros rafics (30%) e les peis (50%). Les marices de rafic pour les insans

4 Cédric Foruny 4/5 = 1... T son alors générées suivan Xuv = PuvE u en uilisan des disribuions gaussiennes : Ei = N(E0 i, 0.1 E0 i ) e P uv = N(Puv, 0 pf an Puv), 0 où pf an représene le coefficien de variaion des fanous au cours des mesures. La propagaion des rafics perme évidemmen d obenir la charge des liens yl à chaque insan. Pour évaluer nore approche, nous uilisons l erreur relaive moyenne sur la marice moyenne esimée (errm), l erreur spaiale pour un rafic uv (errs uv ) e l erreur emporelle pour une mesure (errt ). errm porera sur les gros rafics qui represene plus de 80% du rafic oal, errs e errt ne iendron compe que des rafics les plus fors represenan 95% du rafic oal. errm = T =1 uv=1 (X 0 uv P uv E u ) T c errs uv = T =1 Xuv P uv Euv T =1 Xuv errt = ij=1 Xij P ij Eij Le ableau (a) de Tab.4 expose les erreurs moyennes obenues pour différens ess. On observe que si les fanous varien peu (pf an < 3%), les erreurs moyennes sur les gros rafics son souven inférieures à 10% e oujours inférieures à 15%. Quand pf an augmene, les erreurs monen jusqu à 30% car il es plus difficile de relier oues les mesures à un seul fanou moyen. Une éude plus précise des résulas sur Topo1 pour 10 mesures (cf figure (b) e (c) de Tab. 4) monre les variaions des erreurs spaiales e emporelles pour différenes valeurs de pf an. Les erreurs son bien enendues croissanes par rappor à pf an mais elles resen dans le même cadre de valeur des erreurs obenues par la echnique des fanou calibrés par NeFlow ([2]). (a) errm (%) sur les gros rafics (plus de 80% du oal) pvar(%) Topo1,T=10 Topo1,T=15 Topo1,T= pvar(%) Topo2,T=8 Topo2, T=10 Topo2, T= ij=1 Xij (b) Spaial Error (c) Temporal Error Topo 1 wih N = 10 edges, L = 50 links, and T = 10 mesures Topo1 wih N = 10 edges, L = 50 links, and T = 10 mesures pvar 2% pvar 3% pvar 4% pvar 2% pvar 3% pvar 4% Spaial Error Temporal Error OD (from he bigges o he smalles) Time Inerval of mesure

5 Cédric Foruny 5/5 5 Conclusion e perspecives L avanage principal de l approche proposée ien dans l esimaion direce des fanous e des rafics sans aucune phase de calibrage à l aide de l ouil NeFlow. Nous monrons que cee echnique donne de bons résulas ou en évian de lourdes mesures sur le réseau. Si elle doi encore êre validée sur données réelles, elle apparaî comme une alernaive inéressane pour les opéraeurs an qu aucun ouil léger e efficace de mesure direce des rafics n exisera pas. De plus, les emps de calcul de ce algorihme (20 min pour Topo1 e T=10 e min pour Topo2 e T = 12) permeen évenuellemen un raiemen à la volée des informaions. Une perspecive à éudier es bien sûr la combinaison de nore approche avec quelques mesures NeFlow (seulemen pour un pei nombre d OD). Cee associaion pourrai donner d excellens résulas ou en évian des mesures exhausives. Références [1] Augusin Soule e Anukool Lakhina e Nina Taf e Konsanina Papagiannaki e Kave Salamaian e Anonio Nucci e Mark Crovella e Chrisophe Dio. «Traffic marices : balancing measuremens, inference and modeling». SIGMETRICS Perform. Eval. Rev., 33(1) : , [2] Konsanina Papagiannaki e Nina Taf e Anukool Lakhina. «A disribued approach o measure IP raffic marices». in Inerne Measuremen Conference, p , 2004.

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE UNIVERSITE DE TUNIS Faculé des sciences économiques e de gesion de Tunis MODELE DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE Ezzeddine MBAREK 2010 1 INTRODUCTION Le modèle que je propose

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Panorama des méthodes de coûtenance

Panorama des méthodes de coûtenance Recherche en Managemen de Proje Panorama des méhodes de coûenance Pour réduire les coûs de vos projes e augmener vos marges, quelle méhode choisir? François GAGNÉ, FGF Consulan Les Renconres 2005 du Managemen

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine.

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine. Analyse par inervalles pour la localisaion e la carographie simulanées; Applicaion à la roboique sous-marine Fabrice LE BARS Analyse par inervalles pour la localisaion e la carographie simulanées; Thèse

Plus en détail

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt»

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt» Exercice du Gesion Financière à Cour Terme «Cas FINEX Gesion du risque de aux d inérê» Ce cas raie des différens aspecs de la gesion du risque de aux d inérê liée à la dee d une enreprise : analyse d emprun,

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Un modèle intégré de la demande totale d énergie Application à la province de Québec RÉSUMÉ

Un modèle intégré de la demande totale d énergie Application à la province de Québec RÉSUMÉ Un modèle inégré de la demande oale d énergie Applicaion à la province de Québec par JeanThomas Bernard Tiulaire de la Chaire en économique de l'énergie élecrique Déparemen d'économique Universié Laval

Plus en détail

de rentiers en cours de service

de rentiers en cours de service Les Allocaion normes d acifs IFRS d un en assurance régime de reniers en cours de service 27 e journée de séminaires acuariels ISFA Lyon e ISA-HEC Lausanne Frédéric PLANCHET Pierre THEROND 3 décembre 2004

Plus en détail

4. Principe de la modélisation des séries temporelles

4. Principe de la modélisation des séries temporelles 4. Principe de la modélisaion des séries emporelles Nous raierons ici, à ire d exemple, la modélisaion des liens enre la polluion amosphérique e les indicaeurs de sané. Mais les méhodes indiquées, comme

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Introduction aux produits dérivés

Introduction aux produits dérivés Chapire 1 Inroducion aux produis dérivés de crédi Le risque de crédi signifie les risques financiers liés aux incapaciés d un agen (un pariculier, une enreprise ou un éa souverain) de payer un engagemen

Plus en détail

Etude de risque pour un portefeuille d assurance récolte

Etude de risque pour un portefeuille d assurance récolte Eude de risque pour un porefeuille d assurance récole Hervé ODJO GROUPAMA Direcion ACTUARIAT Groupe 2, Bd Malesherbes 75008 Paris Tél : 33 (0 44 56 72 46 herve.odjo@groupama.com Viviane RITZ GROUPAMA Direcion

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Segmentation d images couleur par fusion de régions.

Segmentation d images couleur par fusion de régions. SETIT 2005 3 rd Inernaional Conference: Sciences of Elecronic, Technologies of Informaion and Telecommunicaions March 27-31, 2005 TUNISIA Segmenaion d images couleur par fusion de régions. Mme AMEUR Zohra,

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

Les outils de gestion

Les outils de gestion Les ouils de gesion Beida Mohammed Ferha aleb Amar Ingénieurs d éa en informaique Opion : Sysèmes d Informaion (SI) el: +3 (0) 76 7 36 69 Fax: +3 (0) 3 58 93 Email: mohamed@moolki.com bilal_ini@yahoo.fr

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

MODELISATION ET ANALYSE DE LA SERIE CHRONOLOGIQUE DE PRODUCTION D EAU DE CONSOMMATION PAR LISSAGE EXPONENTIEL

MODELISATION ET ANALYSE DE LA SERIE CHRONOLOGIQUE DE PRODUCTION D EAU DE CONSOMMATION PAR LISSAGE EXPONENTIEL Courrier du Savoir N 18, Mars 2014, pp.09-14 MODELISATION ET ANALYSE DE LA SERIE CHRONOLOGIQUE DE PRODUCTION D EAU DE CONSOMMATION PAR LISSAGE EXPONENTIEL A. MESSAMEH, N. LOUDJANI, M. T.BOUZIANE Laboraoire

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

L évaluation immobilière. Michel Baroni 27/11/2009

L évaluation immobilière. Michel Baroni 27/11/2009 L évaluaion immobilière Michel Baroni 27/11/2009 Méhodes exisanes Méhodes des comparables Dépend de la base de données; méhode hédonique évenuellemen possible Méhodes de capialisaion Dépend de la base

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

Solvency II, IFRS : l impact des modèles d actifs retenus

Solvency II, IFRS : l impact des modèles d actifs retenus Les normes IFRS en assurance Solvency II, IFRS : l impac des modèles d acifs reenus 31 e journée de séminaires acuariels ISA-HEC Lausanne e ISFA Lyon Pierre THÉROND pherond@winer-associes.fr 18 novembre

Plus en détail

AFRICAMPUS 2015 Ouagadougou, Burkina Faso, du 26 au 27 février 2015

AFRICAMPUS 2015 Ouagadougou, Burkina Faso, du 26 au 27 février 2015 zzz UNE APPROCHE CONCEPTUELLE DE L APPROPRIATION DES SYSTEMES D INFORMATION MOBILES (SIM) PAR LES UTILISATEURS OUEST AFRICAINS AU TRAVERS D UNE METHODE DELPHI Marc BIDAN & Béchir ABBA GONI Thème n 5 PLAN

Plus en détail

4. "SEPO" - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE

4. SEPO - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE D/ Baobab: Cours de gesion des projes page 46 4. "" - UN MÉTHD UR L'AUT- ÉVALUATIN T UR L RJT-ILT 4.1 Inroducion (angl.:w) es un ouil pour l'auoévaluaion e pour les projes-piloe. Il a éé élaboré lors de

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

RELATIONS FONCTIONNELLES. I Généralités

RELATIONS FONCTIONNELLES. I Généralités Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces

Plus en détail

Estimation composite par régression pour l Enquête sur la population active du Canada avec plan de sondage à renouvellement de panel

Estimation composite par régression pour l Enquête sur la population active du Canada avec plan de sondage à renouvellement de panel Techniques d enquêe, juin 00 35 Vol. 7, N o, pp. 35 48 Saisique Canada, N o 00 au caalogue Esimaion composie par régression pour l Enquêe sur la populaion acive du Canada avec plan de sondage à renouvellemen

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

E9904 Optimisation d un sondage à probabilité proportionnelle à la taille. Le cas des CA3. Christian HESSE, Benoît MERLAT

E9904 Optimisation d un sondage à probabilité proportionnelle à la taille. Le cas des CA3. Christian HESSE, Benoît MERLAT E9904 Opimisaion d un sondage à probabilié proporionnelle à la aille Le cas des CA3 Crisian HESSE, Benoî MERLAT 3 Opimisaion d un sondage à probabilié proporionnelle à la aille Le cas des CA3 Crisian

Plus en détail

4.9 Calcul de la maçonnerie portante soumise à une charge verticale

4.9 Calcul de la maçonnerie portante soumise à une charge verticale La radioacivié évenuellemen émise dans les consrucions es due, principalemen, à la présence de Radium (Ra 226) e/ou Thorium (Th 232) dans le sous-sol e dans les maériaux uilisés. Parmi ceux-ci, le béon

Plus en détail

LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE

LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE LES HISTORIQUES DE COURS ET L ANALYSE TECHNIQUE 1 Origines e principes de base de l analyse echnique 2 Les ouils de l analyse graphique radiionnelle 3 Les ouils de l analyse saisique A) LES ORIGINES ET

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

ESTIMATION DE COEFFICIENTS TECHNIQUES ROBUSTES POUR L ECONOIE SENEGALAISE

ESTIMATION DE COEFFICIENTS TECHNIQUES ROBUSTES POUR L ECONOIE SENEGALAISE REPUBLIQUE DU SENEGAL ------------------ MINISTERE DE L ECONOMIE ET DES FINANCES ------------------ AGENCE NATIONALE DE LA STATISTIQUE ET DE LA DEMOGRAPHIE Direcion des Saisiques Economiques e de la Compabilié

Plus en détail

Un modèle de décomposition pour la détection de changement dans les séries temporelles d images RSO

Un modèle de décomposition pour la détection de changement dans les séries temporelles d images RSO Un modèle de décomposiion pour la déecion de changemen dans les séries emporelles d images RSO Sylvain Lobry 1,3 Loïc Denis 2 Florence Tupin 1 1 LTCI, CNRS, Télécom ParisTech Universié Paris-Saclay, 75013,

Plus en détail

Claudio Araujo, CERDI 1

Claudio Araujo, CERDI 1 0/09/03 Macroéconomérie I. Naissance de la modélisaion macroéconomérique : Cowles Commission and London chool Economics Claudio Arauo CERDI, Universié d Auvergne Clermon-Ferrand, France www.cerdi.org hp://www.cerdi.org/claudio-arauo/perso/

Plus en détail

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU SOMMAIRE ARTICLE 1 - Définiion du aux de renabilié ARTICLE 2 - Seuil minimum de renabilié ARTICLE 3 - Evaluaion de la recee acualisée

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

S5 Info-MIAGE 2012-2013 Mathématiques Financières Emprunts indivis. Université de Picardie Jules Verne Année 2012-2013 UFR des Sciences

S5 Info-MIAGE 2012-2013 Mathématiques Financières Emprunts indivis. Université de Picardie Jules Verne Année 2012-2013 UFR des Sciences S5 Info-MIAGE 2012-2013 Mahémaiques Financières Empruns indivis Universié de Picardie Jules Verne Année 2012-2013 UFR des Sciences Licence menion Informaique parcours MIAGE - Semesre 5 Mahémaiques Financières

Plus en détail

PHYSIQUE. Partie préliminaire

PHYSIQUE. Partie préliminaire PHYSIQUE Les différenes paries de ce problème son dans une large mesure indépendanes Seules les argumenaions précises e concises seron prises en compe en réponse aux quesions qualiaives Parie préliminaire

Plus en détail

Eléments finis espace-temps 4D

Eléments finis espace-temps 4D Elémens finis espace-emps 4D Franck Jourdan, Serge Dumon To cie his version: Franck Jourdan, Serge Dumon. Elémens finis espace-emps 4D. 10e colloque naional en calcul des srucures, May 2011, Giens, France.

Plus en détail

Écart de production et inflation en France

Écart de production et inflation en France L obje de la présene éude es d apprécier l incidence sur l inflaion d une modificaion de l écar de PIB. Les qualiés explicaives e prédicives des six indicaeurs d écar de producion calculés pour la France

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

pour un régime de rentiers

pour un régime de rentiers Les Crières normes d allocaion IFRS en assurance d acifs pour un régime de reniers 1 er juille 2004 Frédéric PLANCHET Acuaire associé Pierre THEROND Acuaire 1 er juille 2004 Page 1 Conexe (1) La déerminaion

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance UNIVERSITE DE PARIS-DAUPHINE Février 2004 MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Inernaionale, Monnaie, Finance Noes de Cours Auorisées, seules les

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar

L inflation dans la zone euro et aux États-Unis est. Rue de la Banque. Le découplage des courbes de rendement en euro et en dollar Le découplage des courbes de rendemen en euro e en dollar Benoî MOJON Direceur des Éudes monéaires e financières Fulvio PEGORARO Direcion des Éudes monéaires e financières Cee lere présene le résula de

Plus en détail

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI UNIVERSIE PARIS OUES, NANERRE LA DEFENSE UFR SEGMI Année universiaire 202 203 Cours d économérie L3 Economie Cours de Valérie MIGNON D de Benoî CHEZE e David GUERREIRO Exercice : Données en coupe D Inroducion

Plus en détail

Real-time approach for model-free hybrid 2D tracking

Real-time approach for model-free hybrid 2D tracking Suivi emps-réel d obje plan: approche hybride conour/exure Real-ime approach for model-free hybrid 2D racking M.Pressigou 1 E.Marchand 1 1 Lagadic, IRISA/INRIA Rennes IRISA, Campus de Beaulieu, Rennes

Plus en détail

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction Modélisaion e exrapolaion de l évoluion de la moralié française à parir de modèles sochasiques Analyse des qualiés prédicives de ces modèles Applicaions praiques Mémoire souenu pour l Insiu des Acuaires

Plus en détail

UCP : Unit Commitment Problem. UCP : Relaxation Lagrangienne et filtrage par coûts réduits

UCP : Unit Commitment Problem. UCP : Relaxation Lagrangienne et filtrage par coûts réduits ucp : relaxaion lagrangienne e filrage par coûs réduis T 1 UCP : Uni Commimen Problem Relaxaion lagrangienne e filrage par coûs réduis appliqués à la producion d élecricié BENOIST Thierry BOUYGUES/eLAB

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Prénom e nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Exercice n 1 Un ouvrier dispose de plaques de méal de 110 cm de longueur e de 88 cm de largeur. Il a reçu la consigne suivane : «Découpe dans

Plus en détail

L ajustement microéconomique des prix des carburants en France

L ajustement microéconomique des prix des carburants en France L ajusemen microéconomique des prix des carburans en France Erwan GAUTIER (LEMNA-TEPP, Universié de Nanes e Banque de France. Email : erwan.gauier@univ-nanes.fr) Ronan LE SAOUT (CREST e Ecole Polyechnique)

Plus en détail

Université d été Solvabilité 2 Juillet 2011

Université d été Solvabilité 2 Juillet 2011 LES INDICATEURS OPERATIONNELLES LIÉS À L ORSA Version 1.0 Universié d éé Solvabilié 2 Juille 2011 Frédéric PLANCHET Acuaire Associé fplanche@winer-associes.fr Marc JUILLARD Acuaire mjuillard@winer-associes.fr

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

Retour aux bases de la photographie Partie 1 L' EXPOSITION

Retour aux bases de la photographie Partie 1 L' EXPOSITION Parie 1 - Secion 1.5 Reour aux bases de la phoographie Parie 1 L' EXPOSITIO Secion 1.5 Synhèse Exposiion Indices de Luminaion IL (EV) 1 Synhèse des valeurs Rappel des échelles normalisées des différens

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Les Générateurs de Scénarios Économiques : quelle utilisation en assurance? 1

Les Générateurs de Scénarios Économiques : quelle utilisation en assurance? 1 Les Généraeurs de Scénarios Économiques : quelle uilisaion en assurance? 1 Alaeddine FALEH 2 Frédéric PLANCHET 3 Didier RULLIERE 4 ISFA- Universié Lyon I 5 Caisse des Dépôs e Consignaions 6 RÉSUMÉ Dans

Plus en détail

SIMULATION D UN FOIL AVEC INTERACTION FLUIDE STRUCTURE COMPUTATION OF A FOIL WITH FLUID STRUCTURE INTERACTION. 14 novembre 2012

SIMULATION D UN FOIL AVEC INTERACTION FLUIDE STRUCTURE COMPUTATION OF A FOIL WITH FLUID STRUCTURE INTERACTION. 14 novembre 2012 SIMULATION D UN FOIL AVEC INTERACTION FLUIDE STRUCTURE COMPUTATION OF A FOIL WITH FLUID STRUCTURE INTERACTION C. LOTHODE*, M. DURAND*, A. LEROYER**, M. VISONNEAU**, M. DELAITRE*, Y. ROUX*, L. DOREZ***

Plus en détail

Assimilation variationnelle de la dynamique conjointe de variables géophysiques

Assimilation variationnelle de la dynamique conjointe de variables géophysiques Assimilaion variaionnelle de la dynamiqe conjoine de variables éophysiqes Silèye BA posdoc SC/TB Sileye.ba@elecom-breane.e Séminaire SUPELEC Camps Rennes 15/11/2012 Principax collaboraers Sinal e Commnicaions

Plus en détail

Méthode d'analyse économique et financière ***

Méthode d'analyse économique et financière *** Méhode d'analyse économique e financière *** Noion d acualisaion e indicaeurs économiques uilisables pour l analyse de projes. Dr. François PINTA CIRAD-Forê UR Bois - Kourou CHRONOLOGIE D INTERVENTION

Plus en détail

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002 Universié Paris IX Dauphine UFR Economie Appliquée Maîrise Economie Appliquée ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 00 Noes de Cours Auorisées, Calcularices sans Mémoire Auorisées Durée :

Plus en détail

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT icence Sciences Economiques 3ème année er semesre MICROECONOMIE APPROFONDIE ET CACU INTERTEMPORE CHAPITRE 6 CONSOMMATION ET CACU INTERTEMPORE : HYPOTHESE DU REVENU PERMANENT Vision simplifiée du schéma

Plus en détail

INTRODUCTION AUX SÉRIES CHRONOLOGIQUES

INTRODUCTION AUX SÉRIES CHRONOLOGIQUES INTRODUCTION AU SÉRIES CHRONOLOGIQUES AE MÉTHODES STATISTIQUES ET APPLICATIONS O. ROUSTANT Novembre 008 Table des maières TABLE DES MATIERES... INTRODUCTION... 3 QUELQUES TECHNIQUES DESCRIPTIVES... 4.

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

GENERATEURS DE HAUTE TENSION

GENERATEURS DE HAUTE TENSION ours de A. Tilmaine HAPITRE VII GENERATEURS DE HAUTE TENSION Les généraeurs de haue ension son uilisés dans : a) les laboraoires de recherche scienifique ; b) les laboraoires d essai, pour eser les équipemens

Plus en détail

DOCUMENTS DE TRAVAIL. La mobilité résidentielle depuis la fin des Trente Glorieuses. Nathalie Donzeau Jean-Louis Pan Ké Shon

DOCUMENTS DE TRAVAIL. La mobilité résidentielle depuis la fin des Trente Glorieuses. Nathalie Donzeau Jean-Louis Pan Ké Shon 59 2009 DOCUMENTS DE TRAVAIL La mobilié résidenielle depuis la fin des Trene Glorieuses Nahalie Donzeau Jean-Louis Pan Ké Shon 2 La mobilié résidenielle depuis la fin des Trene Glorieuses Nahalie Donzeau

Plus en détail

( ) et est alors représenté par le graphe ci-

( ) et est alors représenté par le graphe ci- LE SIGNAL SINUSOIDAL : PRODUCTION ET OBSERVATION Le bu de ce premier TP es d une par la prise en main du maériel nécessaire pour l observaion des ondes lors de la prochaine séance (uilisaion de l oscilloscope),

Plus en détail

Académie de Poitiers TPE 2011-2012 3/8

Académie de Poitiers TPE 2011-2012 3/8 1 ère composane : émarche personnelle e invesissemen du candida au cours de l élaboraion du TPE (noe enière sur 8 poins) Iems officiels ompéences officielles Niveau d exigence 1. Recherche documenaire

Plus en détail

Indice relatif à l'économie et à la société numériques 1-2015 2

Indice relatif à l'économie et à la société numériques 1-2015 2 Indice relaif à l'économ e à la sociéé numériques 1-2015 2 Fiche pays La obn une globale 3 de 0,48 e se e à la 14 e place sur les 28 Éas membres de l'. Concernan l année écoulée, la améliore sa générale

Plus en détail

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure TP SdF N 25 Modélisaion e opimisaion de la mainenance prévenive e correcive d un maériel soumis à usure Ce TP complèe le TP N 22 sur la modélisaion e l opimisaion de la mainenance d un maériel réparable

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

Aide pour le devoir maison n 1 de Terminale STG GSI (704)

Aide pour le devoir maison n 1 de Terminale STG GSI (704) Aide pour le devoir maison n 1 de Terminale STG GSI (704) Mahémaiques Nombre d'exercices : 4 exercices Noe : L'exercice 4 es une pure copie d'un exercice d'un devoir surveillé de l'an dernier. Cela ne

Plus en détail

CHAPITRE III LA PREVISION

CHAPITRE III LA PREVISION CHAPITRE III LA PREVISION Prévoir ce qui va se passer dans le fuur es d'une imporance capiale pour la plupar des enreprises. En effe, la producion es selon le ype d'acivié un processus plus ou moins long,

Plus en détail

Quelle structure de dépendance pour un générateur de scenarios économiques en assurance? Impact sur le besoin en capital

Quelle structure de dépendance pour un générateur de scenarios économiques en assurance? Impact sur le besoin en capital Quelle srucure e épenance pour un généraeur e scenarios économiques en assurance? Impac sur le besoin en capial - Kamal ARMEL (Telecom Breagne EURIA) - Aymric KAMEGA (Universié Lyon, Laboraoire SAF, Winer

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail