Mécanique des fluides : Potentiels de vitesses

Dimension: px
Commencer à balayer dès la page:

Download "Mécanique des fluides : Potentiels de vitesses"

Transcription

1 Le Potentiel de vitesse pour les écoulements de fluides réels : la contribution de Joseph-Louis Lagrange Velocity Potential in Real Fluid Flows : Joseph-Louis Lagrange s Contribution HUBERT CHANSON Department of Civil Engineering, The University of Queensland, Brisbane QLD 4072, Australie Ph. : (61 7) Fax : (61 7) /lhb: T oday the concept of potential flow is too often associated, wrongly, with the notion of ideal, hence inviscid fluid. Herein the original development of Joseph-Louis LAGRANGE is presented. He introduced the velocity potential for real fluid flows, provided that the resultant of the forces derives from a potential. In the same article, LAGRANGE also presented the concept of stream function and the equation of the celerity of a small disturbance in shallow-water. LAGRANGE made an outstanding contribution in 1781 and he was truly ahead of his time. I INTRODUCTION Pour les fluides parfaits ( ideal fluids ), et sous l hypothèse d un écoulement irrotationnel ( irrotational flow ), on peut obtenir des solutions analytiques complètes du champs de vitesse et de pression. Le concept de fluide parfait est un artifice mathématique, par lequel un fluide est dit parfait si il est incompressible et sa viscosité est nulle. De même, pour un écoulement irrotationnel de fluide parfait, le champs des vitesses peut être résolu par une méthode graphique, dite des petits carreaux ( flow net ) [17, 18]. Cette technique élégante est bien adaptée aux écoulements bidimensionnels ou axisymmétriques, et elle est liée aux propriétés conjuguées de la fonction de courant ψ et du potentiel de vitesse φ, pour ce type d écoulement, que l on appelle des écoulements potentiels ( potential flows ) [4, 14]. La Figure 1 montre un exemple de construction graphique pour un écoulement vertical dans un orifice bidimensionnel alimenté par un grand réservoir, et dont les résultats ont été comparés, avec succès, à des mesures détaillées de vitesses, par vélocimétrie acoustique Doppler, dans le réservoir [3]. Bien que la méthode graphique des petits carreaux soit une technique simple et efficace, et que, de plus, les solutions analytiques des écoulements potentiels soient exactes, elles ne sont valides qu en dehors de la couche limite, dans la région dite d écoulement potentiel en faisant l hypothèse d un fluide parfait avec une viscosité nulle. En fait, la terminologie «écoulement potentiel» est ambiguë, et il y a, parfois, une certaine confusion, parmi les étudiants et les jeunes ingénieurs, sur la validité et le domaine d application du concept de potentiel de vitesse. Très récemment, une polémique sur les «écoulements potentiels» a été relancée, Figure 1 : Solution graphique d'un écoulement instationnaire dans un orifice bidimensionnel (après CHANSON et al. [3]). 127 LA HOUILLE BLANCHE/N

2 par un chercheur américain (JOSEPH 2006). Ce dernier rappela l existence d un potentiel de vitesse pour des fluides visqueux, introduit en premier par STOKES [16]. Cet article revisite la preuve de l existence d un potentiel de vitesse, telle qu elle fut présentée par Joseph-Louis LAGRANGE [8, 9]. En suivant pas à pas LAGRANGE, on souligne les hypothèses de base pour l existence du potentiel de vitesse. On montre aussi l étendue de ses contributions sur «la Théorie du Mouvement des Fluides». sent tous que Joseph-Louis LAGRANGE introduisit, le premier, le concept de potentiel de vitesse (ex. [12], p. 293 ; [16], p. 107). Son «Mémoire sur la Théorie du Mouvement des Fluides» fut présenté le 22 novembre 1781 à Berlin, avec une notation typique du 18 e siècle, que l on reproduit dans le Tableau 1. II LE POTENTIEL DE VITESSE SELON JOSEPH-LOUIS LAGRANGE II.1 PRÉSENTATION Né en Italie, Joseph-Louis LAGRANGE ( ) était un astronome et mathématicien français qui enseigna à l Ecole Polytechnique et à l Ecole Normale Supérieure depuis leur création respective en 1794 et 1795 (Fig. 2) ( 1 ). Les historiens, les enseignants et les chercheurs reconnais- 1. Voir aussi «Lagrange.» Jl La Houille Blanche, 1957 [10]. Figure 2 : Joseph-Louis LAGRANGE ( ). Pour un fluide incompressible, LAGRANGE ([8], p ) développa l équation d EULER : Tableau 1. Notation utilisée par Joseph-Louis LAGRANGE. Définition LAGRANGE [8, 9] Article présent Composantes du vecteur vitesse p V x q r V y V z Coordonnées Cartésiennes x x y y z z Densité du fluide ρ Fonction de courant ω ψ Potentiel des forces V U Potentiel de vitesse ϕ Φ Pression Π P Résultante des forces P F x Q R F y F z Temps t t Vorticité γ + β α LA HOUILLE BLANCHE/N

3 Le Potentiel de vitesse pour les écoulements de fluides réels : la contribution de Joseph-Louis Lagrange (1a) (1b) La fonction φ est le potentiel de vitesse (LAGRANGE [8], p ). LAGRANGE ([8], pp ) montra que l équation (4) est satisfaite si l écoulement est irrotationnel : (5a) (1c) où ρ est la densité du fluide, V x, V y, V z sont les composantes Cartésiennes de la vitesse, F est la résultante des forces appliquées au volume de control infinitésimal et P est la pression. On notera que ni EULER, ni LAGRANGE n utilisèrent la notation vectorielle moderne. II.2 DÉRIVATION DU POTENTIEL DE VITESSE Le raisonnement de LAGRANGE qui s ensuit est basé sur l hypothèse que la résultante des forces dérive d un potentiel U tel que : (2) (5b) (5c) bien que LAGRANGE n utilise pas explicitement le terme «irrotationnel» ( irrotational ). En combinant les équations (3) et (4), on dérive la forme différentielle de l équation de Bernoulli. Après intégration, LAGRANGE a obtenu la forme intégrale de l équation de Bernoulli pour un écoulement instationnaire : (6) Pour un fluide parfait ( µ = 0), où g est l accélération de la gravité et z est la coordonnée verticale, positive vers le haut. En faisant la somme des équations (1a), (1b) et (1c), LAGRANGE a obtenu : o ù G est une fonction arbitraire, quelconque du temps t (LAGRANGE [8], p. 711). LAGRANGE ([8], p. 712) montre alors que l équation de conservation de masse devient : (7) avec V le module du vecteur vitesse :. Comme le terme de gauche, dans l équation (3), est une différentielle complète, le terme de droite doit aussi être une différentielle complète. Cela revient à montrer qu il existe un scalaire φ qui satisfasse : (3) (4a) (4b) (4c) Pour un fluide incompressible, l équation de conservation de la masse (7) se simplifie et devient une équation de Laplace en fonction du potentiel de vitesse φ. Il est important de noter que LAGRANGE ([8], pp ) a démontré l existence du potentiel de vitesse, et le concept d écoulement irrotationnel, pour tout fluide compressible et élastique : c.a.d., ρ = f( P ). Clairement, le concept de potentiel de vitesse n est pas lié au concept de fluide parfait avec zéro viscosité. En fait, le développement de LAGRANGE peut s appliquer à de nombreux écoulements de fluides réels, en particulier si la résultante des forces dérive d un potentiel. On ne peut que souligner la clairvoyance et le génie de J.L. LAGRANGE, qui a introduit le concept de potentiel de vitesse plusieurs dizaines d années avant les concepts de viscosité du fluide, couche limite, et turbulence. III APPLICATIONS La première famille d applications du potentiel de vitesse est le cas des fluides parfaits. Pour un fluide parfait, c.a.d. incompressible et sans viscosité, l équation de conservation de la masse est une équation de Laplace en fonction du potentiel de vitesse φ, tandis que la condition d irrotatio- 129 LA HOUILLE BLANCHE/N

4 nalité est une autre équation de Laplace en fonction de la fonction de courant ψ : φ = 0 (8) ψ = 0 (9) Pour des fluides parfaits, il existe une quantité importante de solutions analytiques (ex. [4, 14, 17, 18]), tandis que tout écoulement bi-dimensionnel ou axi-symétrique peut être résolu par une méthode graphique. Un autre type d applications est le cas des écoulements irrotationnels visqueux. Une première série d applications est les écoulement visqueux irrotationnels, à faibles nombres de Reynolds. L équation d EULER devient, en incorporant les forces de viscosité ( 2 ) : (10) LAMB ([11], pp ) calcula la dissipation visqueuse et montra que l écoulement est irrotationnel, donc avec un potentiel de vitesse. Une autre application est l écoulement permanent d un fluide très visqueux entre deux plaques parallèles très proches : la cellule de Hele-Shaw ( Hele-Shaw cell ), qui fut introduite à la fin du 19 e siècle [5]. La Figure 3 montre une application simple autour d un obstacle, avec injection de colorant pour visualiser les lignes de courant. Pour un écoulement bidimensionnel, l équation (10) est transformée en négligeant les termes d inertie. Le potentiel de vitesse existe et il est proportionnel à la pression (ex. [11], pp ; [14], ). On peut, aussi, citer l exemple de l écoulement d un système, initialement au repos, et qui est brusquement mis en vitesse ( impulsively started flow ). L écoulement est initialement irrotationnel et on peut considérer qu il reste irrotationnel durant les instants suivants (ex. [13], pp ). Un dernier exemple bien connu, est la percolation en milieu poreux. Le potentiel de vitesse ( 3 ) est simplement proportionnel à la charge piézométrique ( piezometric head ). IV DISCUSSION Le mémoire de LAGRANGE [9] est un traité important, car il introduit, de plus, deux autres notions fondamentales : la fonction de courant ψ, et la célérité d une onde dans un canal. Pour un fluide incompressible, LAGRANGE considéra l effet de l attraction du soleil et de la lune sur les océans. En dérivant une solution bidimensionnelle horizontale, il introduisit la fonction de courant sous une forme scalaire, bien connue pour les écoulements bidimensionnels (LAGRANGE [8], pp ). Quel événement! En un seul article, LAGRANGE a défini les fonctions de potentiel de vitesse et de courant, qui forment la base de la mécanique des fluides parfaits. Notons que LAGRANGE fut le contemporain d un autre hydraulicien de renom, Jean-Charles de BORDA ( ) (Fig. 4) qui introduisit les concept de lignes de courant, de tubes de courant et de vena contracta [1]. J.C. de BORDA était un ingénieur, mathématicien et militaire, qui servit dans la marine et atteignit le grade de Capitaine de Vaisseau. Il participa à la Guerre d Indépendance des Etats-Unis d Amérique dans la marine française. Durant la Révolution Française, BORDA, LAGRANGE et Pierre-Simon LAPLACE ( ) travaillèrent ensemble sur le système métrique. Figure 4 : Jean-Charles de BORDA ( ). Figure 3 : Cellule de Hele-Shaw - Ecoulement horizontal d eau, du robinet, entre deux plaques de verre très rapprochées, autour d un arc circulaire avec une cambrure de 15 %, sans incidence, avec injection de colorant. 2. Notons que la notion de viscosité était inconnue à l époque de Joseph- Louis LAGRANGE. Elle fut introduite, en 1822, par Claude Louis Marie Henri NAVIER ( ). Une autre application, décrite par LAGRANGE, est la propagation d une onde dans un écoulement à surface libre avec une faible profondeur. LAGRANGE ([8], pp ) montre que la vitesse d une onde petite doit être égale à la 3. Le potentiel de la vitesse moyenne, ou macroscopique. Il ne s agit pas du champs des vitesses intersticielles. LA HOUILLE BLANCHE/N

5 Le Potentiel de vitesse pour les écoulements de fluides réels : la contribution de Joseph-Louis Lagrange racine carrée du produit de l accélération de la gravité par la hauteur d eau :. Ce résultat est bien connu des hydrauliciens [2, 6, 19]. L auteur pense que LAGRANGE fut le premier à en démontrer la preuve analytiquement. V CONCLUSION Il y a plus de 200 ans, Joseph-Louis LAGRANGE introduisit le concept de potentiel de vitesse, bien en avance sur son temps. Il démontra que le potentiel de vitesse existe pour tout écoulement de fluide réel, pour lequel la résultante des forces dérive d un potentiel. Dans le même mémoire [9], il introduisit, en plus, deux notions fondamentales : le concept de la fonction de courant, pour une fluide incompressible, et le calcul de la célérité d une petite onde dans un canal peu profond. En rétrospective, cet ouvrage marqua une étape décisive dans le développement de la mécanique des fluides moderne. LAGRANGE et ses contemporains étaient des scientifiques hors pairs, mais aussi des individus extraordinaires, qui contribuèrent à des évènements politiques et historiques majeurs à l échelle mondiale. Par exemple, les travaux de BORDA, LAPLACE, FOURIER durant la Révolution et l Empire. Combien d hydrodynamiciens peuvent en dire autant de nos jours? VI REFERENCES [1] BORDA J.C. D E. ( 1766 ). Mémoire sur l Ecoulement des Fluides par les Orifices des Vases. Mémoires de l Académie Royale des Sciences, Paris, [2] CHANSON H. ( 2004 ). The Hydraulics of Open Channel Flows: An Introduction.- Butterworth-Heinemann, Oxford, UK, 2nd edition, 630 pages. [3] CHANSON H., AOKI S., E T M ARUYAMA M. (2002). Unsteady Two-Dimensional Orifice Flow : a Large-Size Experimental Investigation. Jl of Hyd. Res., IAHR, 40, 1 pp [4] GUYON E., HULIN J.P., ET P ETIT L. (1991). Hydrodynamique Physique. Savoirs Actuels, InterEditions/CNRS Editions, Paris, France, 506 pages. [5] H ELE-SHAW H.J.S. ( 1898 ). Investigation of the Nature of the Surface Resistance of Water and of Stream-line Motion under Certain Experimental Conditions. Trans. Inst. Naval Architects, UK, 40. [6] H ENDERSON F.M. ( 1966 ). Open Channel Flow. MacMillan Company, New York, USA. [7] J OSEPH D.D. (2006 ). Potential Flow of Viscous Fluids : Historical Notes. Intl Jl of Multiphase Flow, 1,32 pp [8] LAGRANGE J.L. ( 1781 ). Mémoire sur la Théorie du Mouvement des Fluides. Œuvres de Lagrange, Gauthier-Villars, Paris, France (imprimé en 1867, J.A. SERRET Editeur), 1,4 pp [9] LAGRANGE J.L. ( 1781 ). Mémoire sur la Théorie du Mouvement des Fluides. Œuvres de Lagrange, Gauthier-Villars, Paris, France, (imprimé en 1882). [10] L A H OUILLE B LANCHE ( 1957 ). Lagrange. Jl La Houille Blanche, 12 A p [11] L AMB H. ( 1932 ). Hydrodynamics. Cambridge University Press, 6th Ed, 738 pages. [12] L EVI E. ( 1995 ). The Science of Water. The Foundation of Modern Hydraulics., ASCE Press, New York, USA, 649 pages. [13] LIGHTHILL J. ( 1986 ). An Informal Introduction to Theoretical Fluid Mechanics. Clarendon Press, Oxford, UK, IMA Monograph series, 260 pages. [14] ROUSE H. ( 1938 ). Fluid Mechanics for Hydraulic Engineers. McGraw-Hill Publ., New York, USA (aussi Dover Publ., New York, USA, 1961, 422 pages). [15] R OUSE H., E T I NCE S. ( 1957 ). History of Hydraulics. Iowa Institute of Hydraulic Research Publ., Iowa City, USA, 269 pages. [16] S TOKES G. ( 1851 ). On the Effect of Internal Friction of Fluids on the Motion of Pendulums. Trans. Camb. Phil. Soc, 9 Part II pp [17] STREETER V.L. ( 1948 ). Fluid Dynamics. McGraw-Hill Publications in Aeronautical Science, New York, USA. [18] VALLENTINE H.R. ( 1969 ). Applied Hydrodynamics, Butterworths, London, UK, SI edition. [19] V IOLLET P.L., C HABARD J.P., E SPOSITO P., E T L AURENCE D. ( 2002 ). Mécanique des Fluides Appliquée. Ecoulements Incompressibles dans les Circuits, Canaux et Rivières, autour des Structures et dans l Environnement., Presses des Ponts et Chaussées, Paris, France, 2 e édition, 367 pages. VI.1 LIENS INTERNET {http://www-groups.dcs.st-and.ac.uk/~history/biogindex.html} {http://www.uq.edu.au/~e2hchans/civ4160.html#lecture %20material} {http://www.polytechnique.fr/institution/historique.php} {http://www.ens.fr/ecole/presentation.php} Biographies of well-known mathematicians Photographs of Hele-Shaw cell flows Ecole Polytechnique, Historique Ecole Normale Supérieure, Historique 131 LA HOUILLE BLANCHE/N

Concours CASTing 2011

Concours CASTing 2011 Concours CASTing 2011 Épreuve de mécanique Durée 1h30 Sans calculatrice Le candidat traitera deux exercices parmi les trois proposés dans le sujet. Dans le cas où les trois exercices seraient traités partiellement,

Plus en détail

TABLE DES MATIÈRES. Introduction... 1 Un bref aperçu historique... 1 Contenu des exposés... 5 Références... 7

TABLE DES MATIÈRES. Introduction... 1 Un bref aperçu historique... 1 Contenu des exposés... 5 Références... 7 TABLE DES MATIÈRES Préface... v Introduction... 1 Un bref aperçu historique..................................... 1 Contenu des exposés.......................................... 5 Références....................................................

Plus en détail

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date Guide de SolidWorks Flow Simulation pour l enseignant Présentateur Date 1 Qu'est-ce que SolidWorks Flow Simulation? SolidWorks Flow Simulation est un logiciel d'analyse des écoulements de fluide et du

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail

HYDRODYNAMIQUE. 1.1 Mouvement d'un fluide, écoulement stationnaire et laminaire

HYDRODYNAMIQUE. 1.1 Mouvement d'un fluide, écoulement stationnaire et laminaire MHd 1 HYDRODYNAMIQUE 1 THEORIE 1.1 Mouvement d'un fluide, écoulement stationnaire et laminaire L'écoulement d un fluide est défini si, à un instant t, on donne en tout point x de l espace: v (x,t) la vitesse

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

Histoire de l hydraulique. Un hydraulicien d exception bien en avance sur son époque : Jean-Baptiste Charles Joseph Bélanger (1790-1874)

Histoire de l hydraulique. Un hydraulicien d exception bien en avance sur son époque : Jean-Baptiste Charles Joseph Bélanger (1790-1874) DOI 10.1051/lhb/2009072 Un hydraulicien d exception bien en avance sur son époque : Jean-Baptiste Charles Joseph Bélanger (1790-1874) An Exceptional Hydraulic Engineer ahead of his Time : Jean-Baptiste

Plus en détail

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau Formation à la C F D Computational Fluid Dynamics Formation à la CFD, Ph Parnaudeau 1 Qu est-ce que la CFD? La simulation numérique d un écoulement fluide Considérer à présent comme une alternative «raisonnable»

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

MÉCANIQUE DES FLUIDES

MÉCANIQUE DES FLUIDES spé y 2003-2004 DS n 3 rapport MÉCANIQUE DES FLUIDES Rapport du jury CENTRALE 2002 Partie I. Caractérisation d un écoulement I A Ordres de grandeurs I A 1 - Parfois confusion

Plus en détail

Approche sismique par une Lattice Method, code Mka3D.

Approche sismique par une Lattice Method, code Mka3D. Approche sismique par une Lattice Method, code Mka3D. Christian Mariotti, Françoise Le Piver Laboratoire de Détection et de Géophysique CEA/DAM/DASE BP12 91680 Bruyères le Châtel christian.mariotti@cea.fr

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures ***

EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1. Durée : 4 heures *** SESSION 003 PCP1006 EPREUVE SPECIFIQUE - FILIERE PC PHYSIQUE 1 Durée : 4 heures L'utilisation des calculatrices est autorisée. Les deux problèmes sont indépendants Une feuille de papier millimétré devra

Plus en détail

Objectifs du Chapitre. Initiatiaon à l Analyse Dimensionnelle. Introduction à la Théorie de Maquettes et Similitude.

Objectifs du Chapitre. Initiatiaon à l Analyse Dimensionnelle. Introduction à la Théorie de Maquettes et Similitude. Objectifs du Chapitre Initiatiaon à l Analyse Dimensionnelle. Introduction à la Théorie de Maquettes et Similitude. Adil Ridha (Université de Caen) Analyse Dimensionnelle et Similitude 2009-2010 1 / 31

Plus en détail

Mathématiques et Océanographie

Mathématiques et Océanographie Mathématiques et Océanographie Anne-Laure Dalibard Département de mathématiques et applications École normale supérieure 20 avril 2011 Journées Académiques de l IREM de Nantes Plan Présentation rapide

Plus en détail

Notion de champ. PARtiE 3. Le programme. Évaluation diagnostique p. 216. CoMPrEndrE Champs et forces

Notion de champ. PARtiE 3. Le programme. Évaluation diagnostique p. 216. CoMPrEndrE Champs et forces PARtiE 3 Manuel unique, p. 216 ( Manuel de physique, p. 102) Notion de champ séquence 1 Le programme notions et contenus Exemples de champs scalaires et vectoriels : pression, température, vitesse dans

Plus en détail

Etude expérimentale des modes d onde de surface piégés

Etude expérimentale des modes d onde de surface piégés Etude expérimentale des modes d onde de surface piégés P. J. COBELLI a, P. PETITJEANS a, A. MAUREL b, V. PAGNEUX b,c a. Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR CNRS 7636 Ecole

Plus en détail

Écoulements potentiels

Écoulements potentiels Chapitre 2 Écoulements potentiels O. Thual, 26 juin 21 Sommaire 1 Perte de charge...................... 3 1.1 Équation de Bernoulli................. 3 1.2 Charge moyenne.................... 4 1.3 Loi de

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Durée du TP : 3h30 1. RAPPELS. La densité d un corps, notée d, s'exprime suivant la relation suivante : corps. d ref

Durée du TP : 3h30 1. RAPPELS. La densité d un corps, notée d, s'exprime suivant la relation suivante : corps. d ref TP N 2 : MECANIQUE DES FLUIDES Durée du TP : 3h30 1. RAPPELS La densité d un corps, notée d, s'exprime suivant la relation suivante : corps d ref avec corps la masse volumique du corps considéré et ref

Plus en détail

Électromagnétisme et Optique Physique

Électromagnétisme et Optique Physique Électromagnétisme et Optique Physique Dr.R.Benallal DÉPARTEMENT DE PHYSIQUE École Préparatoire en Sciences et Techniques de Tlemcen Physique 4 Fevrier-Juin 2013 Programme du module I Électromagnétisme

Plus en détail

1 - DEBITMETRE A ORGANE DEPRIMOGENE

1 - DEBITMETRE A ORGANE DEPRIMOGENE 1 - DEBITMETRE A ORGANE DEPRIMOGENE Il s agit de créer au sein de la canalisation une restriction localisée de la section (ou constriction) qui engendrera une différence de pression statique dont la mesure

Plus en détail

CentraleSupélec Option Energie Année universitaire 2015-2016 PARCOURS ENERGIES FOSSILES : PROGRAMME PEDAGOGIQUE ET FICHES DE COURS

CentraleSupélec Option Energie Année universitaire 2015-2016 PARCOURS ENERGIES FOSSILES : PROGRAMME PEDAGOGIQUE ET FICHES DE COURS OPTION ENERGIE http://www.option-energie.ecp.fr PARCOURS ENERGIES FOSSILES : PROGRAMME PEDAGOGIQUE ET FICHES DE COURS PROGRAMME PEDAGOGIQUE DU PARCOURS ENERGIES FOSSILES (cliquer sur le nom de l activité

Plus en détail

Problème d'hydrodynamique.

Problème d'hydrodynamique. Problème d'hydrodynamique. On s'intéresse au réseau hydraulique d'un système de plancher chauffant de bâtiment. Ce système se compose de plusieurs éléments (de haut en bas, voir Figure 1) : -Un réservoir

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

INSA de LYON Dép. Génie Civil et Urbanisme 3GCU CONVECTION - 93. [J. Brau], [2006], INSA de Lyon, tous droits réservés

INSA de LYON Dép. Génie Civil et Urbanisme 3GCU CONVECTION - 93. [J. Brau], [2006], INSA de Lyon, tous droits réservés CONVECTION - 93 Introduction Ce mode de transfert est basé sur le fait qu il y a déplacement de matière : il ne concerne donc que les fluides (liquides et gaz). Contrairement à la conduction où le transfert

Plus en détail

La Menace du Stéréotype

La Menace du Stéréotype La Menace du Stéréotype Fabrice GABARROT Bureau M6158 - Uni Mail Université de Genève 40, Bld du Pont d'arve CH-1205 Genève SUISSE Courriel : Fabrice.Gabarrot@pse.unige.ch Les stéréotypes sont, pour simplifier,

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Influence de la variation de débit sur les performances d une pompe solaire

Influence de la variation de débit sur les performances d une pompe solaire Revue des Energies Renouvelables SIENR 12 Ghardaïa (2012) 23 28 Influence de la variation de débit sur les performances d une pompe solaire H. Ammar 1*, M.T. Bouziane 2 et Y. Bakelli 1 1 Unité de Recherche

Plus en détail

Comparaisons des premières formulations du Théorème de Bernoulli de l hydrodynamique à un

Comparaisons des premières formulations du Théorème de Bernoulli de l hydrodynamique à un Comparaisons des premières formulations du Théorème de Bernoulli de l hydrodynamique à un énoncé actuel D Alembert, dans l article Hydrodynamique de l Encyclopédie (1), date la naissance de cette discipline

Plus en détail

INTRODUCTION DU CFD. La perte de pression (dp) par unité-longueur (dl) est déterminée par la formule :

INTRODUCTION DU CFD. La perte de pression (dp) par unité-longueur (dl) est déterminée par la formule : INTRODUCTION DU CFD Introduction A l inverse des calculs de force de construction, au moyen du software de Ansys ou Pro/E par exemple, les calculs de courant ne sont pas très connus. Ceci est une introduction

Plus en détail

Cauchy et l Analyse algébrique. Cours du 3 février 2015

Cauchy et l Analyse algébrique. Cours du 3 février 2015 Cauchy et l Analyse algébrique Cours du 3 février 2015 Contexte historique en France : incidence européenne - Révolution française (1789-1804) - 1789 : Assemblée nationale/ Prise de la Bastille Monarchie

Plus en détail

Quelques données relatives au stockage de déchets en milieu souterrain 2D

Quelques données relatives au stockage de déchets en milieu souterrain 2D Quelques données relatives au stockage de déchets en milieu souterrain 2D 7 avril 2006 1 Physique du problème : caractéristiques et modèles d un milieu poreux Le cadre physique de notre problème est celui

Plus en détail

On prend comme volume de contrôle l auget en translation. Ce volume de contrôle est donc en translation avec une vitesse U t. U t

On prend comme volume de contrôle l auget en translation. Ce volume de contrôle est donc en translation avec une vitesse U t. U t page 1 Problème 1 : Auget mobile (6 points) Un jet d eau, ayant une vitesse V 1 frappe un auget à une hauteur y 1 comme indiqué sur la figure 1. On considère que le jet incident a un diamètre D et que

Plus en détail

Séquence 6. Fonctions dérivées. Sommaire

Séquence 6. Fonctions dérivées. Sommaire Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement

Plus en détail

Tests de propagation des ondes 1D 30 juin 2006 Fernando Lopez-Caballero & Arezou Modaressi. 1 Test de propagation des ondes dans un milieux élastique

Tests de propagation des ondes 1D 30 juin 2006 Fernando Lopez-Caballero & Arezou Modaressi. 1 Test de propagation des ondes dans un milieux élastique GEFDYN - Tests de propagation des ondes 1D 1 Version de Gefdyn : Dyn7229-PC Tests associés : Tests de propagation des ondes 1D 3 juin 26 Fernando Lopez-Caballero & Arezou Modaressi inimelbd_q44p dynmelbd_q44p

Plus en détail

Cinématique des fluides

Cinématique des fluides Cinématique des fluides L. Menguy, PSI*, Lycée Montesquieu, Le Mans février 2011 Plan du cours - Cinématique des fluides Description lagrangienne et eulérienne Notion de trajectoire et de ligne de courant

Plus en détail

Figure 3.1- Lancement du Gambit

Figure 3.1- Lancement du Gambit 3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh

Plus en détail

Description du programme de physique et estimation horaire

Description du programme de physique et estimation horaire Description du programme de physique et estimation horaire Description du programme de physique première année et estimation horaire En italiques : les points incertains. 1. Description des états de la

Plus en détail

Objectifs du cours. Introduction aux outils numériques en hydraulique fluviale

Objectifs du cours. Introduction aux outils numériques en hydraulique fluviale Écoulements non-permanents à surface libre / ESL0/ 1 Philippe Belleudy - 10 2001 Objectifs du cours Revoir les notions fondamentales dans la perspective d une utilisation en bureau d étude Introduction

Plus en détail

NORMES BIBLIOGRAPHIQUES DE L AMERICAN PSYCHOLOGICAL ASSOCIATION (APA, 6 ème édition)

NORMES BIBLIOGRAPHIQUES DE L AMERICAN PSYCHOLOGICAL ASSOCIATION (APA, 6 ème édition) NORMES BIBLIOGRAPHIQUES DE L AMERICAN PSYCHOLOGICAL ASSOCIATION (APA, 6 ème édition) PUBLICATION MANUAL OF THE AMERICAN PSYCHOLOGICAL ASSOCIATION, SIXTH EDITION. (2009). Lorsque vous tapez un texte, utilisez

Plus en détail

Motifs turbulent-laminaire dans l écoulement de Poiseuille plan

Motifs turbulent-laminaire dans l écoulement de Poiseuille plan rencontre du non-linéaire 2013 155 Motifs turbulent-laminaire dans l écoulement de Poiseuille plan Laurette S. Tuckerman PMMH-ESPCI-CNRS, 10 rue Vauquelin, 75005 Paris laurette@pmmh.espci.fr z streamwise

Plus en détail

PRESSION. Rq2 : L HYDROSTATIQUE étudie les propriétés des fluides en équilibres, toutes les parties étant parfaitement immobiles (Archimède, Pascal)

PRESSION. Rq2 : L HYDROSTATIQUE étudie les propriétés des fluides en équilibres, toutes les parties étant parfaitement immobiles (Archimède, Pascal) PRESSION 1 1. GENERALITES 1.1. Définition : pression exercée par une force r F agissant uniformément et perpendiculairement à une surface de grandeur S UNITE SI : le Pascal [ Pa ] ou [ N.m -2 ] p = F S

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 3 : Hypothèses de l écoulement en conduite Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Cinématique d écoulement -Lignes caractéristiques -Vitesses et débits B. Hypothèse

Plus en détail

Etude de l écoulement d un fluide entre deux plans parallèles munis d obstacles

Etude de l écoulement d un fluide entre deux plans parallèles munis d obstacles ème Congrès Français de Mécanique Bordeaux, 6 au 3 août 3 Etude de l écoulement d un fluide entre deux plans parallèles munis d obstacles. BODIF, F. DNNE,.K. BENKL niversité des Sciences et de la Technologie

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1 Hélium superfluide Applications aux procédés de Cryogénie Physique des solides - 22 mai 2006 1 Introduction L Hélium Z = 2. Point de fusion très bas. Chimiquement inerte. Deux isotopes naturels Physique

Plus en détail

Modélisation 3D par le modèle de turbulence k-ε standard de la position de la tête sur la force de résistance rencontrée par les nageurs.

Modélisation 3D par le modèle de turbulence k-ε standard de la position de la tête sur la force de résistance rencontrée par les nageurs. Modélisation 3D par le modèle de turbulence k-ε standard de la position de la tête sur la force de résistance rencontrée par les nageurs. H. ZAÏDI a, S. FOHANNO a, R. TAÏAR b, G. POLIDORI a a Laboratoire

Plus en détail

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels 3ème séance de Mécanique des fluides Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait 1 Généralités 1.1 Introduction 1.2 Équation d Euler 1.3 Premier théorème de Bernoulli 1.4

Plus en détail

UNIVERSITÉE KASDI MERBAH OUARGLA

UNIVERSITÉE KASDI MERBAH OUARGLA UNIVERSITÉE KASDI MERBAH OUARGLA FACULTE DES SCIENCES APPLIQUÉES Département de Génie des Procédés Phénomènes de transferts Travaux pratiques de mécanique des fluides CHAOUCH Noura et SAIFI Nadia 2013

Plus en détail

EPFL - Travaux pratiques de physique. Hydrodynamique. Résumé

EPFL - Travaux pratiques de physique. Hydrodynamique. Résumé Hydrodynamique Résumé L étude de la dynamique des fluides (liquides et gaz) permet de déterminer les caractéristiques du fluide lui-même ainsi que celles d un objet plongé à l intérieur de celui-ci. Il

Plus en détail

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF PHYSQ 126: Circuits RLC 1 CIRCUITS RLC À COURANT ALTERNATIF 1 Introduction. Le but de cette expérience est d introduire le concept de courant alternatif (en anglais, Alternating Current ou AC) et d étudier

Plus en détail

; discussion sur l'orientation des vecteurs impliqués (cylindre montant sur un plan incliné.

; discussion sur l'orientation des vecteurs impliqués (cylindre montant sur un plan incliné. Organisation des séances collectives de remédiation en physique. Swillens / MEDI1 2013/2014 Séance 1 lundi 17 février de 14h à 16h auditoire Claude. "C'est quoi la remédiation en physique?" (stratégie

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

Fascicule de Travaux Pratiques

Fascicule de Travaux Pratiques Ministère de l'enseignement Supérieur, de la Recherche Scientifique et de la Technologie Université de Sousse Institut Supérieur des Sciences Appliquées et de Technologie de Sousse Fascicule de Travaux

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

Fiche de lecture du projet de fin d étude

Fiche de lecture du projet de fin d étude GENIE CLIMATIQUE ET ENERGETIQUE Fiche de lecture du projet de fin d étude Analyse du phénomène de condensation sur l aluminium Par Marine SIRE Tuteurs : J.C. SICK Manager du Kawneer Innovation Center &

Plus en détail

Les calculatrices sont autoris ees I.1 Traitement classique de la rotation d une mol ecule d eau Figure I.1 1/10

Les calculatrices sont autoris ees I.1 Traitement classique de la rotation d une mol ecule d eau Figure I.1 1/10 Les calculatrices sont autorisées Les deux problèmes sont indépendants. On fera l application numérique chaque fois que cela est possible, en veillant à préciser l unité et à ne donner que les chiffres

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

GEFDYN - Tests de consolidation 1D d un sol bi-phasique saturé 1

GEFDYN - Tests de consolidation 1D d un sol bi-phasique saturé 1 GEFDYN - Tests de consolidation D d un sol bi-phasique saturé Tests de consolidation D d un sol bi-phasique saturé 6 juin 26 Fernando Lopez-Caballero & Arezou Modaressi Version de Gefdyn : Dyn7229-PC Tests

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

Quels sont les plus petits carrés magiques possibles? Douze énigmes pour gagner 8.000 et douze bouteilles de champagne!

Quels sont les plus petits carrés magiques possibles? Douze énigmes pour gagner 8.000 et douze bouteilles de champagne! Quels sont les plus petits carrés magiques possibles? Douze énigmes pour gagner 8.000 et douze bouteilles de champagne! Communiqué de presse, 6 avril 2010, France. Alors que les carrés magiques sont connus

Plus en détail

statique J. Bertrand To cite this version: HAL Id: jpa-00237017 https://hal.archives-ouvertes.fr/jpa-00237017

statique J. Bertrand To cite this version: HAL Id: jpa-00237017 https://hal.archives-ouvertes.fr/jpa-00237017 Quelques théorèmes généraux relatifs à l électricité statique J. Bertrand To cite this version: J. Bertrand. Quelques théorèmes généraux relatifs à l électricité statique. J. Phys. Theor. Appl., 1874,

Plus en détail

MODELISATION ET SIMULATION DES SYSTEMES MECANIQUES. ing. M. Catrina Ş.L. dr.eng. P. PAP

MODELISATION ET SIMULATION DES SYSTEMES MECANIQUES. ing. M. Catrina Ş.L. dr.eng. P. PAP Constantin Brâncuşi University of Târgu Jiu ENGINEERING FACULTY SCIENTIFIC CONFERENCE 13 th edition with international participation November 07-08, 008 Târgu Jiu MODELISATION ET SIMULATION DES SYSTEMES

Plus en détail

Cours et applications

Cours et applications MANAGEMENT SUP Cours et applications 3 e édition Farouk Hémici Mira Bounab Dunod, Paris, 2012 ISBN 978-2-10-058279-2 Table des matières Introduction 1 1 Les techniques de prévision : ajustements linéaires

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

SAMEDI 3 MARS 2012 UE3-S2 : ORGANISATION DES APPAREILS ET SYSTEME, ASPECTS FONCTIONELS

SAMEDI 3 MARS 2012 UE3-S2 : ORGANISATION DES APPAREILS ET SYSTEME, ASPECTS FONCTIONELS SAMEDI 3 MARS 2012 UE3-S2 : ORGANISATION DES APPAREILS ET SYSTEME, ASPECTS FONCTIONELS 19 QCMs DURÉE DE L ÉPREUVE : 1 HEURE LES CALCULATRICES NE SONT PAS AUTORISÉES Le sujet comprend 8 pages, veuillez

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

Résume du cours de Mécanique Analytique

Résume du cours de Mécanique Analytique Résume du cours de Mécanique Analytique jean-eloi.lombard@epfl.ch 22 janvier 2009 Table des matières 1 Équations de Lagrange 1 1.1 Calcul des variations....................... 3 1.2 Principe de moindre

Plus en détail

Cours préparatoires de physique

Cours préparatoires de physique Cours préparatoires de physique Août 2012 L. Dreesen LA DYNAMIQUE, LES LOIS DE NEWTON Août 2012 L. Dreesen 1 Table des matières Introduction Force La première loi de Newton La troisième loi de Newton La

Plus en détail

Examen de la maturita bilingue de physique. Corrigé officiel

Examen de la maturita bilingue de physique. Corrigé officiel Examen de la maturita bilingue de physique Session de mai 2013 Corrigé officiel Questions de cours Mécanique I. 1a) Référentiel le cadre par rapport auquel on étudie le mouvement. 1b) Réf. terrestre est

Plus en détail

Du Calcul d Aire... ...Au Calcul Intégral

Du Calcul d Aire... ...Au Calcul Intégral Du Calcul d Aire......Au Calcul Intégral Objectifs Définir proprement l aire d une surface plane, au moins pour les domaines usuels (limités par des courbes simples) et fournir un moyen de la calculer.

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

TS Physique D Aristote à aujourd hui Exercice résolu

TS Physique D Aristote à aujourd hui Exercice résolu P a g e 1 TS Physique Eercice résolu Enoncé -34 avant JC : Aristote déclare qu une masse d or, de plomb ou de tout autre corps pesant tombe d autant plus vite qu elle est plus grosse et, en particulier,

Plus en détail

Introduction à la résistance des matériaux et à la mécanique des fluides

Introduction à la résistance des matériaux et à la mécanique des fluides CNST-H-202 à la résistance des matériaux et à la mécanique des fluides 0 1 Philippe.Bouillard@ulb.ac.be version 4 février 2007 Motivation Mécanique des milieux continus mécanique du solide ou des structures

Plus en détail

Modélisation Physique et Numérique : TD02

Modélisation Physique et Numérique : TD02 Modélisation Physique et Numérique : TD0 Introduction Vos rapports doivent être envoyer, de préférence en format pdf, par email à vilotte@ipgp.ussieu.fr ou pfavre@ipgp.ussieu.fr. Les groupes ne doivent

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

TROISI` EME PARTIE L ALG` EBRE

TROISI` EME PARTIE L ALG` EBRE TROISIÈME PARTIE L ALGÈBRE Chapitre 8 L algèbre babylonienne Sommaire 8.1 Présentation..................... 135 8.2 Résolution d équations du second degré..... 135 8.3 Bibliographie.....................

Plus en détail

BTS Maintenance et après-vente automobile

BTS Maintenance et après-vente automobile BTS Maintenance et après-vente automobile Programme de Sciences Physiques AVERTISSEMENT Ce référentiel ne constitue absolument pas la liste des activités que le Professeur conduit au cours de l année scolaire.

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

MASTER Mention «Sciences de l Ingénieur» Spécialité «Mécanique des Fluides et Energétique» Orientation : «Fluides» Finalité : «Recherche»

MASTER Mention «Sciences de l Ingénieur» Spécialité «Mécanique des Fluides et Energétique» Orientation : «Fluides» Finalité : «Recherche» Ecole Polytechnique MASTER Mention «Sciences de l Ingénieur» Spécialité «Mécanique des Fluides et Energétique» Orientation : «Fluides» Finalité : «Recherche» Responsables : Stéphane Zaleski, Pierre Sagaut

Plus en détail

WTNP128 Essai de fendage par coin du béton sous pression fluide

WTNP128 Essai de fendage par coin du béton sous pression fluide Titre : WTNP128 - Essai de fendage par coin du béton sous [...] Date : 02/03/2011 Page : 1/14 WTNP128 Essai de fendage par coin du béton sous pression fluide Résumé : Le test présenté ici permet de vérifier

Plus en détail

COURS ÉCRIT. Introduction. 1 Modèles prototype 1D

COURS ÉCRIT. Introduction. 1 Modèles prototype 1D COURS ÉCRIT Modèles prototype D....................... 2 L instabilité roll waves d un écoulement incliné........ 5 3 Instabilité de Kelvin Helmoltz................... 4 Stabilité des écoulements parallèles................

Plus en détail

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures U 315 J. 5008 SESSION 2003 Filière MP PHYSIQUE ENS de Paris Durée : 6 heures L usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d accompagnement,

Plus en détail

ECOULEMENT DE L EAU DANS LES SOLS

ECOULEMENT DE L EAU DANS LES SOLS Unité d hydrologie et d hydraulique agricole Génie rural et environnemental ECOULEMENT DE L EAU DANS LES SOLS Notes de cours provisoires année académique 2010-2011 Aurore Degré Table des matières CHAPITRE

Plus en détail

Examen d informatique première session 2004

Examen d informatique première session 2004 Examen d informatique première session 2004 Le chiffre à côté du titre de la question indique le nombre de points sur 40. I) Lentille électrostatique à fente (14) Le problème étudié est à deux dimensions.

Plus en détail

ENGEES Formation continue

ENGEES Formation continue 1 ENGEES Formation continue LES NOTIONS DE BASE D HYDRAULIQUE UTILES EN ASSAINISSEMENT Thierry ADAM, Chef de projet Rappels d hydraulique 2 Notion de «débit» (Q) : flux hydraulique à travers une section

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

PROGRAMME DES UNITES DE VALEUR DE LA FILIERE PHYSIQUE NIVEAU I

PROGRAMME DES UNITES DE VALEUR DE LA FILIERE PHYSIQUE NIVEAU I REPUBLIQUE DU CAMEROUN Paix Travail - Patrie UNIVERSITE DE YAOUNDE 1 FACULTE DES SCIENCES BP 812 Yaoundé Tel/Fax : (237) 223 53 86 Telex UY4243KN Division de la Programmation et du Suivi des Activités

Plus en détail