Éléments de probabilité.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Éléments de probabilité."

Transcription

1 Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous idetiques, sot prévisibles, mais dot o e sait pas à l'avace lequel va se produire. Les résultats possibles d'ue épreuve de l'expériece aléatoire sot appelés les issues. Mathématiquemet, pour modéliser ue expériece aléatoire, o représete la globalité des issues par u esemble appelé uivers et oté ; chacu des élémets de cet esemble représetat ue issue possible, ces issues état toutes possibles et icompatibles etre elles deux à deux. Le choix d'u tel esemble 'est pas uique. Exemples: Jet d'u dé à six faces: ={ ;2 ; ;;5;} Jet d'ue pièce : ={pile, face} Défiitio : O appelle évéemet la réalisatio d'ue propriété lors d'ue expériece aléatoire. Pour u uivers détermié, o appelle aussi évéemet l'esemble des issues qui réaliset cette propriété. Lors d'ue épreuve, e foctio de l'issue la propriété sera réalisée ou o. Exemple: Lorsque l'o jette u dé à six faces umérotées de à, la propriété «être u ombre impair» correspod à l'évéemet A «le jet de dé a doé u ombre impair» ; il est réalisé pour les issues ; et 5 Fialemet o peut doer la défiitio suivat d'u évéemet : Défiitio : O appelle évéemet tout sous esemble A de l'uivers. Exemple: E choisissat comme uivers : ={;2 ; ;;5;} lors du lacer d'u dé à faces, l'évéemet A correspodat à la propriété «le ombre sorti est impair» sera le sous esemble A={;;5}. Défiitio : O dit qu'u évéemet A est élémetaire, si ue seule issue le réalise. Défiitio : est l'évéemet certai et l'évéemet impossible. L'évéemet A est l'évéemet qui a lieu quad l'évéemet A 'a pas lieu. L'évéemet A B est l'évéemet qui a lieu quad l'évéemet A ou (o exclusif) l'évéemet B a lieu L'évéemet A B est l'évéemet qui a lieu quad l'évéemet A et l'évéemet B ot lieu simultaémet. Si A B=, alors les évéemets A et B sot dits icompatibles: cela veut dire qu'ils e peuvet pas avoir lieu simultaémet. Exemples: Toujours, e laçat u dé, l'évéemet A correspodat à la propriété «le chiffre sorti est pair» est l'évèemet cotraire de l'évèemet A associé à la propriété «le chiffre sorti est impair». Das le tirage au sort d'ue carte d'u jeu de 2 cartes, l'évéemet A B, costitué de l'évèemet A associé à la propriété «u roi est sorti» et de l'évèemet B associé à «la couleur sortie est rouge», est le sous esemble A B= {RCa ; RCo,RTr, RPi,DCa, DCo, VCa,VCo,0Ca,0Co,9Ca,9Co,8 Ca,8 Co,7Ca,7Co, ACa, ACo} par cotre l'évéemet A B= {RCa, RCo } Page de 5 X. Ouvrard Bruet 200

2 Les évèemets C : «la carte sortie est u trèfle» et l'évèemet D : «la carte sortie est u cœur» sot icompatibles. 2. Échatilloage et fréqueces O effectue ue expériece aléatoire fois et l'o regarde si l'évèemet A est réalisé. O ote A le ombre de fois où c'est le cas. Défiitio : O appelle fréquece d'apparitio de A pour répétitios de l'expériece aléatoire le ombre f A = A. Les variatios de fréquece d'apparitio obteues lors de la répétitio de deux expérieces avec le même ombre d'essais, sot appelées les fluctuatios d'échatilloage. Ces fluctuatios d'échatilloage dimiuet lorsque la taille des échatillos gradit. Propriété des fréqueces. f = 2. Pour tout évéemet A, o a : 0 f A. Soit A et B deux évéemets icompatibles, alors : f A B = f A f B. Approche fréquetiste des probabilités : Lorsque deviet grad la fréquece d'apparitio de A, f A, ted vers u ombre oté p A appelé probabilité de A. Remarque : O motre que la probabilité que f A soit comprise etre p A et p A est : de 90 % pour tout ; de 9% pour supérieur à 25 ; de 95% pour supérieur à 500. Ce critère permet de fourir u moye de cotrôler la validité d'ue modélisatio. Par exemple, u dé à six faces est lacé 000 fois. La fréquece d'apparitio du est de 220. Si le dé est o truqué, la probabilité d'apparitio du serait de /. L'itervalle de dispersio serait [ 000 ; 000], soit approximativemet [0,5;0,98]. La fréquece d'apparitio du état de 0,22 il est peu plausible que le dé soit o truqué. U modèle où la probabilité d'apparitio du serait de 0,22 sera certaiemet plus approprié. Défiitio : O cosidère ue expériece aléatoire, d'issues {x ; x 2 ;... ; x }. Lorsqu'à chaque modalité x i o associe u ombre positif pour i variat de à, telles que i= =, o dit que l'o a ue loi de probabilité sur {x ; x 2 ;... ; x }. O réalise ue modélisatio de l'expériece aléatoire lorsque l'o a choisit sur u tel esemble ue loi de probabilité. Lacé d'u dé à six faces : O peut choisir comme loi de probabilité : Modalité 2 5 Probabilité Page 2 de 5 X. Ouvrard Bruet 200

3 Ou ecore celle-ci : Modalité 2 5 Probabilité 2 Ou 'importe laquelle qui collera à la réalité. Das le derier cas, o tiet compte du fait que le dé est truqué! Défiitio : O dit qu'ue loi de probabilité défiit pour ue expériece aléatoire de modalités {x ; x 2 ;... ; x } est équirépartie si chaque modalité a la même probabilité. O parle alors d'équiprobabilité. 2 2 Propriété : Das ce cas, =. Probabilité La démarche précédete ous permet d'aboutir à ue première approche d'ue probabilité. Nous doos maiteat ue défiitio plus formelle, qui s'affrachit de l'aspect expérimetal. Défiitio d'ue probabilité : Soit u uivers fii. O appelle probabilité, ue applicatio P qui associe à chaque évéemet A de u ombre réel P(A) de [0;], et qui soit telle que: P = Pour tout évéemet A tel que : A, P A 0. Si A, A 2,..., A sot des évéemets deux à deux icompatibles, alors: P A A 2... A =P A P A 2... P A. Propriété : Soit u uivers fii, sur lequel o défiit ue probabilité P La probabilité d'u évéemet A est la somme des probabilités des évéemets élémetaires i qui le costituet. Reveos au lacer de dé, dot la loi de probabilité est : Modalité 2 5 Probabilité Alors la probabilité de l'évéemet A : «le ombre sorti est impair» est : p(a)=p()+p()+p(5)= = 2 Si maiteat le dé est truqué et suit la loi de probabilité : Modalité 2 5 Probabilité 2 Alors la probabilité de l'évéemet A : «le ombre sorti est impair» est : p(a)=p()+p()+p(5)= 2 2 = 5 2 Propriétés : O a alors: / P =0 2/ P A = P A / P A B =P A P B P A B / Si A B, alors P A P B. Preuve :. et sot deux évéemets icompatibles, d'où : 2 2 Page de 5 X. Ouvrard Bruet 200

4 P P = P =P =P = et P =0. 2. A et A sot deux évéemets cotraires et A A=, d'où : P A P A =P = d'où le résultat.. Si A B=, alors A et B sot deux évéemets icompatibles et P A B =P A P B et comme P A B =P =0, la formule est prouvée. Si A B, soit A l'évéemet qui a lieu lorsque A a lieu mais quad B 'est pas réalisé. Alors A et B sot deux évéemets icompatibles et A B=A B, d'où : P A B =P A B =P A P B () O a : A=A A B, avec A et A B icompatibles, d'où : P A =P A P A B ou ecore : P A =P A P A B (2). De () et (2), o déduit : P A B =P A P B P A B.. Si A B, soit B l'évéemet qui a lieu lorsque B a lieu mais quad A 'est pas réalisé. Alors B=A B, avec A B =, d'où : P B =P A P B et doc P A P B. Propriété : O cosidère ue expériece aléatoire dot les issues sot équiprobables. ombre d'élémets de A Alors la probabilité d'u évéemet A est : p A = ombre d'élémets de. Preuve : La probabilité de A est la probabilité des évéemets élémetaires qui le costituet, qui ot tous la même probabilité. Avec le dé à faces o truqué et l'évéemet A de l'exemple précédet : p(a) = = 2 Attetio!!! Cette formule deviet fausse dès que l'o 'a pas équiprobabilité Cotre-exemple : Avec le dé à faces truqué et l'évéemet A de l'exemple précédet, o aurait avec cette formule : =, ce qui e correspod à la probabilité trouvée ci-dessus. 2. Variables aléatoires Défiitio : Soit u uivers fii. Ue variable aléatoire X sur est ue applicatio de das R telle qu'à toute issue de o associe u réel x telle que pour tout x R l'esemble des tels que X =x soit u évéemet de, que l'o ote X=x. Remarque : Cette coditio imposée à la variable aléatoire est toujours vérifiée lorsque l'uivers est fii. O peut reteir qu'ue variable aléatoire X sur est ue foctio qui associe à chaque issue de u réel. Das le lacé de deux dés, o peut défiir la variable aléatoire S qui à chaque issue associe la somme des deux dés. Das le lacé d 'ue pièce o truquée, dot les issues sot pile/face o peut défiir ue variable aléatoire X preat la valeur 0 lorsque l'issue est pile et quad l'issue est face. Défiitio : Soit u uivers fii, sur lequel o a défii ue loi de probabilité P. O ote x,x 2,...,x les valeurs prises par ue variable aléatoire X sur. O défiit ue loi de probabilité pour la variable X, e défiissat pour chaque x i la probabilité de l'évéemet X=x i comme la probabilité de l'esemble des issues ayat pour image x i par X. Page de 5 X. Ouvrard Bruet 200

5 Sur ue pièce o truquée et équilibrée, sas trache, qu'o lace deux fois x i 0 2 P X=x i Défiitio : Soit u uivers fii, sur lequel o a défii ue loi de probabilité P. Soit X ue variable aléatoire sur, admettat pour valeurs x,x 2,...,x, de loi de probabilité défiie par P X=x i = pour i. L'espérace de X est le réel E X défii par : E X = i= 2 x i. La variace de X est le réel V X défii par : V X = x i E X 2. i= L'écart-type de X est le réel X défii par : X = V X. Propriété : O a : V X = i= x i 2 E X 2. Preuve : V X = i= V X = i= x i E X 2 = i= x i 2 2 E X E X E X 2 = i= x i 2 2 x i E X E X = x i 2 E X 2 i= x 2 i 2 E X i= x i E X 2 i= Page 5 de 5 X. Ouvrard Bruet 200

Probabilités élémentaires

Probabilités élémentaires 1. Exemple... p2 4. Lois de probabilité... p7 2. Vocabulaire... p4 5. Variables aléatoires... p8 3. Espaces probabilisés fiis... p4 Copyright meilleuremaths.com. Tous droits réservés 1. Exemple Probabilités

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

Calcul des probabilités 2 (M-2.1)

Calcul des probabilités 2 (M-2.1) Calcul des probabilités (M-.) I. Probabilités sur u esemble fii. Défiitios Défiitio Ue expériece aléatoire est ue expériece dot il est impossible de prévoir l issue (mais o coaît toutes les issues possibles)

Plus en détail

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber Résumé : Niveau : Bac Scieces de l iformatique Réalisé par : Prof. Bejeddou Saber Tableau récapitulatif sur le déombremet: Type du tirage : Simultaé Successif sas remise Successif avec remise U tirage

Plus en détail

Expérience aléatoire - modélisation - langage des probabilités

Expérience aléatoire - modélisation - langage des probabilités T.S Probabilités coditioelles L 5 I Expériece aléatoire - modélisatio - lagage des probabilités Ue expériece aléatoire est ue expériece liée au hasard. Les mathématiques itervieet pour apporter u modèle

Plus en détail

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!.

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!. PROBABILITÉS E 654, Blaise Pascal (63 ; 66) etretiet avec Pierre de Fermat (60 ; 665) des correspodaces sur le thème des jeux de hasard et d'espérace de gai qui les mèet à exposer ue théorie ouvelle :

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

TD 4 : Variables aléatoires discrètes

TD 4 : Variables aléatoires discrètes MA40 : Probabilités TD 4 : Variables aléatoires discrètes Exercice Soit N u etier aturel supérieur ou égal à.. Motrer les égalités suivates : N k k N N + ) N k k N N + ) N + ). Ue ure cotiet ue boule blache

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

B E et Bi Bj pour i j et si A est un evenement de E alors p(a) p(a B ) p(a B )... p(a B ) p(b ) p(a /B ) p(b ) p(a /B )... p(b ) p(a /B ).

B E et Bi Bj pour i j et si A est un evenement de E alors p(a) p(a B ) p(a B )... p(a B ) p(b ) p(a /B ) p(b ) p(a /B )... p(b ) p(a /B ). Rappel : (E,p(E),p) est u espace probabilisé fii. O a: p(e), p( ), p(a) p(a), p(a B) p(a) p(b) p(a B) Probabilité coditioelle : A et B sot deux évèemets tels que p(b). p(a B) p(a / B) et doc p(a B) p(b)

Plus en détail

Echantillon : Collection d'individus prélevés dans la population statistique.

Echantillon : Collection d'individus prélevés dans la population statistique. SONDAGE (ECHANTILLONNAGE) POPULATION STATISTIQUE N idividus possédat ue modalité yi de la (ou des) variable(s) y ( i N) PARAMETRES valeur cetrale dispersio corrélatio µ σ² ρ moyee variace coef. corr. ECHANTILLON

Plus en détail

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako I Itroductio : NOTION DE PROBABILITÉ Site MathsTIE de Adama Traoré Lycée Techique Bamako ) Exemple : O lace fois e l air u dé o pipé (ormal), x et y fot u pari Si 66 apparaît alors x gage 600Frs Si ou

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

CH V : Variables aléatoires - généralités

CH V : Variables aléatoires - généralités CH V : Variables aléatoires - gééralités I. Notio de variable aléatoire réelle Soit (Ω, A ) u espace probabilisable. O dit que X est ue variable aléatoire réelle défiie sur (Ω, A ) si : (i) X est ue applicatio

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

x 0 + f ' (x) f (x) ln 3 3 f (x) dx.

x 0 + f ' (x) f (x) ln 3 3 f (x) dx. T S Devoir surveillé 8 Vedredi avril 7 Exercice (5 poits) l (x + ) O cosidère la foctio f défiie sur [, + [ par f (x) = x +. O admet que le tableau de variatios de f est le suivat. O défiit la suite (U

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

POLYNESIE Série S Juin 2001 Exercice

POLYNESIE Série S Juin 2001 Exercice OLYNESIE Série S Jui 00 Exercice gros rouges et 3 petits rouges Ue boîte cotiet 8 cubes : gros verts et petit vert petit jaue U efat choisit au hasard et simultaémet 3 cubes de la boîte (o admettra que

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

CHAPITRE 4 Paramètres d'une série statistique

CHAPITRE 4 Paramètres d'une série statistique Cours de Mathématiques Classe de secode Statistiques CHAPITRE 4 Paramètres d'ue série statistique A) Diverses sortes de séries statistiques 1) Défiitio Ue série statistiques est u esemble de ombres, représetat

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Quelques notions élementaires de probabilités et statistiques

Quelques notions élementaires de probabilités et statistiques Chapitre 6 Quelques otios élemetaires de probabilités et statistiques 6.1 Probabilités U uivers Ω est u esemble modélisat les réalisatios possibles d ue expériece. U esemble A P(Ω) modélise la otio d évéemet

Plus en détail

Introduction aux théorèmes limites et aux intervalles de confiance

Introduction aux théorèmes limites et aux intervalles de confiance Chapitre 5 Itroductio aux théorèmes limites et aux itervalles de cofiace Objectifs du chapitre. Savoir approcher ue loi biomiale par ue loi de Poisso ou ue loi ormale. 2. Savoir approcher ue loi e appliquat

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

1 Éléments de la théorie des probabilités

1 Éléments de la théorie des probabilités 1 Élémets de la théorie des probabilités 1.1 Expériece stochastique, évéemet aléatoire Ue expériece est dite stochastique ou aléatoire s il est impossible de prévoir so résultat. E pricipe, o admet qu

Plus en détail

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne 1 lois usuelles 11 Loi Biomiale B(, p) q = 1 p p(x = k) = C k p k q k Espérace E(X) = p Variace : V ar(x) = pq Écart type : σ = pq 12 Loi de Poisso P(λ) : loi de Poisso de paramètre λ > 0 : X(Ω) = N λ

Plus en détail

S Métropole septembre 2016

S Métropole septembre 2016 S Métropole septembre 206 Exercice 3 Cadidats ayat suivi l'eseigemet de spécialité 5 poits O dispose d'u dé équilibbré à 6 faces umérotées de à 6 et de trois pièces A, B et C ayat chacue u côté pile et

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

Dénombrement Site MathsTICE de Adama Traoré Lycée Technique Bamako

Dénombrement Site MathsTICE de Adama Traoré Lycée Technique Bamako Déombremet Site MathsTIE de Adama Traoré Lycée Techique Bamako A) Parties d u esemble : Soit la représetatio sagittale des esembles E, A et B E 9 8 4 6 0 3 A B ) Existe-t-il des élémets de A qui e sot

Plus en détail

9 0 6 Variables aléatoires discrètes

9 0 6 Variables aléatoires discrètes BCPST2 9 5 0 6 Variables aléatoires discrètes Exercice 1: Loi de Poisso 1 ) Soit X ue variable aléatoire discrète. O ote XΩ) = {x ; N}. O pose, pour tout de N : p = PX = x ) et s = p k. O découpe l'itervalle

Plus en détail

Espaces probabilisés.

Espaces probabilisés. Espaces probabilisés Chapitre 6 : otes de cours Esembles déombrables Esemble fii, (hors programme) esemble ifii Esemble déombrable Eumératio des élémets d u esemble fii ou déombrable Produit cartésie d

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Correction de l exercice 1

Correction de l exercice 1 IUT Orsa Iformatique S3 Correctio de l exercice. Ω est l esemble des résultats possibles de l experiece aléatoire lacer u dé à faces : Ω {,, 3,,, }, et Ω.. Si k Ω sort, le gai du jeu est k euros. Doc la

Plus en détail

EXERCICES SIMULATION LOIS DISCRETES

EXERCICES SIMULATION LOIS DISCRETES EXERCICES SIMULATION LOIS DISCRETES EXERCICE 1 : 1) Ecrire u programme qui revoie le lacer d u lacer de dé équilibré 2) Trasformer le programme précédet pour qu il simule ue série de 100 lacers d u dé

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance Termiale S. Lycée Desfotaies Melle Chapitre 11 Probabilité Coditioemet et idépedace I. Probabilité coditioelle 1- Exemple Das u lycée coteat N élèves, 4% des élèves sot des filles, % des garços. Parmi

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

Master Eseec Statistique pour l expertise - partie2

Master Eseec Statistique pour l expertise - partie2 Master Eseec Statistique pour l expertise - partie2 Christia Laverge Uiversité Paul Valéry - Motpellier 3 http://moodle-miap.uiv-motp3.fr http://www.uiv-motp3.fr/miap/es (UPV) Eseec 1 / 57 Lois limites

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Intervalles de confiance

Intervalles de confiance Itervalles de cofiace H4 H4 Itervalles de cofiace Vocabulaire : u correspod à ue fiabilité (ou cofiace) de 95 %, u correspod à ue fiabilité (ou cofiace) de 99 % 0 ) Echatillo o exhaustif La théorie des

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

Éléments de probabilités

Éléments de probabilités Chapitre 1 Élémets de probabilités 1.1 Notio d expériece aléatoire Défiitio 1 Ue expériece, dot o coait les issues possibles, est appelé expériece aléatoire s il est impossible de savoir à l avace quelle

Plus en détail

INÉGALITÉS DE MARKOV ET DE CHEBISHEV LOI FAIBLE DES GRANDS NOMBRES

INÉGALITÉS DE MARKOV ET DE CHEBISHEV LOI FAIBLE DES GRANDS NOMBRES Iégalités de Markov et de Chebishev - Loi faible des grads ombres versio du 11 avril 2014 35 8 INÉGALITÉS DE MARKOV ET DE CHEBISHEV LOI FAIBLE DES GRANDS NOMBRES 1 Iégalité de Markov. 8.1 Iégalité de Markov.

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

Lois normales et autres lois dérivées

Lois normales et autres lois dérivées Lois ormales et autres lois dérivées - Lois ormales a) - Défiitio O dit qu'ue variable aléatoire réelle X suit la loi ormale (ou gaussiee) de paramètres et, otée N ( ; ), si elle admet pour desité la foctio

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation U.F.R. S.P.S.E. Licece de psychologie L3 PLPSTA0 Bases de la statistique iféretielle UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Distributios d'échatilloage - Itervalles de variatio Exercice 1

Plus en détail

II - Estimation d'un paramètre par intervalle de confiance

II - Estimation d'un paramètre par intervalle de confiance II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

i la moyenne empirique de X n n v =

i la moyenne empirique de X n n v = Corrigé Statistiques iféretielle par par Pierre Veuillez Itervalle de cofiace. Exercice Détermier ue valeur approchée de la loi de la moyee empirique : E X E X, V X V X doc X N E X, V X Exercices. Variace

Plus en détail

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim NOM : Termiale S- ABC S3 ludi ovembre 06 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie. Le sujet est composé de 5 eercices idépedats.

Plus en détail

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé TS Le déombremet est l art de compter (Il y e a souvet aux cocours) (cardial d u esemble fii : ombre de ses élémets Exemple : si E est u esemble fii à élémets, o dit que le cardial de E est égal à et o

Plus en détail

a quand n tend vers plus l infini. d. Interpréter le résultat précédent en terme de nombre d abonnements de type A.

a quand n tend vers plus l infini. d. Interpréter le résultat précédent en terme de nombre d abonnements de type A. Liba Jui 23 Série ES Exercice U théâtre propose deux types d aboemets pour ue aée : u aboemet A doat droit à six spectacles ou u aboemet B doat droit à trois spectacles. O cosidère u groupe de 2 5 persoes

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

Exercices de dénombrement

Exercices de dénombrement DOMAINE : Combiatoire AUTEUR : Atoie TAVENEAUX NIVEAU : Itermédiaire STAGE : Grésillo 0 CONTENU : Exercices Exercices de déombremet Exercice Combie y a-t-il de sous-esembles d u esemble de cardial? Exercice

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /2017

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /2017 IUT de Sait-Etiee - départemet Techiques de Commercialisatio M. Ferraris Promotio 2016-2018 05/2017 Semestre 2 - MATHEMATIQUES DEVOIR 2 durée : 2 heures coefficiet 1/2 La calculatrice graphique est autorisée.

Plus en détail

CONVERGENCE ET APPROXIMATION

CONVERGENCE ET APPROXIMATION 11-2- 2010 J.F.C. Cov. p. 1 CONVERGENCE ET APPROXIMATION I CONVERGENCE EN PROBABILITÉ 1. Défiitio 2. Ue coditio suffisate de covergece e probabilité 3. La loi faible des grads ombres 4. Ue coséquece de

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Chapitre 5 : Matrices et suites. matrices colonnes dont les coefficients sont les suites numériques ( ) n définies pour tout entier naturel n par u n

Chapitre 5 : Matrices et suites. matrices colonnes dont les coefficients sont les suites numériques ( ) n définies pour tout entier naturel n par u n Chapitre 5 : Matrices et suites I Suites de matrices coloes Exemples La suite ( U ) défiie pour tout etier aturel par U = est ue suite de 3 + v matrices coloes dot les coefficiets sot les suites umériues

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Chapitre II: Notions sur les fautes et les erreurs.

Chapitre II: Notions sur les fautes et les erreurs. Chapitre II: Notios sur les fautes et les erreurs. Chapitre II: Notios sur les fautes et les erreurs.. Gééralités Mesurer c'est l'actio de comparer ue gradeur (quatité) par rapport à ue gradeur de même

Plus en détail

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1.

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1. Statistiques iféretielles Pierre-Heri WUILLEMIN Licece d Iformatique Uiversité Paris 6 Itroductio Soit ue populatio de taille N sur laquelle o observe ue propriété, dot o veut calculer moyee µ et de variace

Plus en détail

1 ère S Exercices sur le schéma de Bernoulli (1)

1 ère S Exercices sur le schéma de Bernoulli (1) ère Exercices sur le schéma de Beroulli () 8 Le chevalier de Méré, philosophe et homme de lettres, pose le problème suivat au mathématicie Blaise ascal : «Qu est-ce qui est le plus probable : obteir au

Plus en détail

CONCOURS BLANC 1 SCI 2

CONCOURS BLANC 1 SCI 2 CONCOURS BLANC SCI Durée : 4 heures Aucu istrumet de calcul est autorisé Aucu documet est autorisé Les étudiats sot ivités à soiger la présetatio de leur copie EXERCICE : CCP 05 CCP : cocours commus polytechiques

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes 08. O dispose de boîtes umérotées de à. La boîte k cotiet k boules umérotées de à k. O choisit au hasard ue boîte, puis ue boule das cette boîte. Soit X le uméro de la boîte et Y le uméro de la boule..

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail