Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés

Dimension: px
Commencer à balayer dès la page:

Download "Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés"

Transcription

1 Chapitre I Suites Exercices 8, 9, 0, 3, 4, 6, 3, 3, 34 page 34 pour revoir les notions de première sur les suites (récurrence, sens de variation...) Suite géométrique. Définition Définition Une suite u est géométrique s il existe un certain réel non nul q, appelé raison de la suite, tel que, pour tout n 0, u n+ = q u n Exemple Soit la suite u géométrique, de premier { terme u 0 = 5 et de raison q =. u0 =... La définition de u par récurrence est u n+ =... Les premiers termes de cette suite sont u =..., u =..., u 3 =..., u 4 =..., u 5 =..., u 6 =... Remarque Si la raison vaut 0, tous les termes de la suite sont nuls sauf peut-être u 0. Pour qu une suite u soit géométrique, il faut et il suffit que, pour tout n N, les termes u n soient non nuls et que le quotient u n+ u n soit constant : u n+ u n = q R. Le nombre q est alors la raison de la suite u. Exemple Par exemple, soit u définie par u n = 3 n. On a, pour tout entier naturel n, u n+ = 3n u n 3 = 3 n Donc la suite u est géométrique, et sa raison est q = 3. Exercices 35, 38, 39, 4, 46 page 35. Propriétés Propriété Soit u une suite géométrique, de premier terme u 0 et de raison q. Relation entre u n et u 0 : Relation entre u n et u p : Pour tout n N, on a u n = u 0 q n Pour tous n,p N, on a u n = u p q n p

2 Ces formules permettent d obtenir la définition explicite d une suite géométrique à partir de sa définition par récurrence : Exemple 3 On place un capital de 5000e à un taux annuel de %. Quel sera le capital dans 0 ans? On modélise la situation par la suite géométrique u de premier terme u 0 = 5000 et de raison q =,0. u n est donc le capital obtenu après n années et on a u 0 = u 0 q n = 5000,0 0 e. Exercices 47, 48, 49, 58, 67 pages 35 à 37.3 Sens de variation Soit (u n ) une suite géométrique de raison q et de premier terme u 0 donc : u n+ u n = u 0 q n+ u 0 q n = u 0 q n (q ) La monotonie de la suite dépend du signe de u 0, q n et (q ) Si q < 0 alors q n est positif pour n pair, négatif pour n impair donc la suite n est pas monotone. Si q > 0 alors la suite est monotone, croissante ou décroissante selon le signe du produit u 0 (q ). Nous pouvons en déduire les deux théorèmes suivants : Théorème Soit q un réel non nul. Si q < 0 alors la suite (q n ) n est pas monotone. Si q > alors la suite (q n ) est strictement croissante. Si 0 < q < alors la suite (q n ) est strictement décroissante. Si q = alors la suite (q n ) est constante. Théorème Soit (u n ) une suite géométrique de raison q non nulle et de premier terme u 0 non nul Si q < 0 alors la suite (u n ) n est pas monotone. Si q > 0 et u 0 > 0 alors la suite (u n ) a le même sens de variation que la suite (q n ). Si q > 0 et u 0 < 0 alors la suite (u n ) a le sens de variation contraire de celui de la suite (q n ). Exercices 53, 54, 55 page 35.4 Somme de termes consécutifs d une suite géométrique Activité page 0 : La légende du jeu d échecs K Théorème 3 La somme de n + termes consécutifs d une suite géométrique, de premier terme u 0 et de raison q est donnée par : S = u 0 qn+ q de termes raisonnb (S = premier terme ) raison

3 Démonstration : Soit q et S = +q +q +...+q n. On a q S = q +q +...+q n +q n+. Donc S qs = q n+ S( q) = q n+ donc, pour q, S = qn+ q. Pour tout i on a u i = q i u 0. n u i = u 0 +u +...+u n +u n = u 0 +qu 0 +q u q n u 0 i=0 = u 0 (+q +...+q n ) = u 0 q n+ q Exercices 68, 70, 7, 74, 76, 78, 80, 8, 8 page 39.5 Limite d une suite géométrique.5. Notion de limite Limite égale à + Définition Une suite admet pour limite+ si tout intervalle ouvert de type ]A; + [ contient tous les termes de la suite à partir d un certain rang p. 4 3 A - u n > A pour n Figure Une suite ayant pour limite + Exemple 4 La suite u définie pour tout n 0 par u n = n tend vers +. On note : limu n = + 3

4 Limite finie : suite convergente Définition 3 Une suite converge vers un réel l si tout intervalle ouvert I contenant l contient aussi tous les termes de la suite à partir d un certain rang p. u n 3 l u n I pour n 8 0 n Figure Une suite convergente Exemple 5 La suite u définie pour tout n > 0 par u n = n tend vers 0. On note : limu n = 0 Définition 4 Une suite qui ne converge pas est dite divergente. Exemple 6 Les suites (( ) n ) n et (n ) n divergent. Propriété (Opérations sur les limites) a et b désignent deux réels et u une suite. Si limu n = 0 alors lim(au n +b) = b Si limu n = + alors : lim(au n ) = + si a > 0 lim(au n ) = si a < 0 lim(u n +b) = +.5. Limite d une suite géométrique Théorème 4 Soit q un réel strictement positif : Si 0 < q < alors la suite géométrique de terme généralq n converge vers 0 : limq n = 0. Si q = alors la suite géométrique de terme général q n est constante et sa limite est. Si q > alors la suite géométrique de terme général q n a pour limite + : limq n = +. 4

5 Exemple 7 Toute suite géométrique u de raison0 < q < converge vers 0 puisque son terme général s écrit : u n = u 0 q n Soit v la suite géométrique de premier terme v 0 = 5 et de raison q = 3. Alors, pour tout n, v n = 5 ( 3 n ). Or 3 > donc lim( 3 n ) = +. De plus, v 0 = 5 < 0 donc limv n = lim ( 5 ( 3 n ) ) = Exercices 84, 85, 87, 88, 89, 9, 95 page 39 Algorithmes et suites : deux exemples. Calculs des termes d une suite définie par récurrence Soit (u n ) la suite définie par u 0 = et u n+ = u n + n pour tout n 0. On souhaite calculer u 00. Cette suite n est ni arithmétique ni géométrique (il suffit de calculer ses trois premiers termes pour s en convaincre). On ne dispose donc pas de définition explicite et le calcul de u 00 nécessite le calcul de tous les termes de u à u 99. Algorithme INITIALISATION U prend la valeur TRAITEMENT Pour n allant de 0 à 99 faire U prend la valeur *U+n SORTIE Afficher U (On pouvait aussi initialiser à u = et faire une boucle "Pour n allant de à 99" pour éviter de commencer à compter à 0) Algorithme INITIALISATION U prend la valeur n prend la valeur 0 TRAITEMENT Tant que n<00 U prend la valeur *U+n n prend la valeur n+ Fin Tant que SORTIE Afficher U. Recherche d un seuil à l aide d un algorithme On place un capital de 000e à un taux annuel de,5%. Dans combien d années le capital disponible sera-t-il supérieur à 3000e? On modélise la situation par la suite géométrique c de premier terme c 0 = 000 et de raison q =,05. c n est donc le capital obtenu après n années et on a c n = c 0 q n = 000,05 n e. On cherche donc à résoudre l inéquation : 000,05 n 3000 L inconnue n étant un exposant, nous avons besoin du logarithme (que nous étudierons plus tard)pour la résoudre... On s en sort avec l algorithme suivant : 5

6 Algorithme 3 INITIALISATION C prend la valeur 000 n prend la valeur 0 TRAITEMENT Tant que n<3000 C prend la valeur.05*c n prend la valeur n+ Fin Tant que SORTIE Afficher n On obtient en sortie : 8 À partir de la 8ème année, le capital sera donc supérieur à 3000e. Remarque Dans cet exemple, la raison de la suite géométrique étant strictement supérieure à, la suite est croissante et la question posée est : trouver le plus petit entier n à partir duquel c n dépasse une certaine valeur (le seuil). Dans le cas d une suite géométrique (u n ) de raison strictement inférieure à, et donc décroissante, la question serait du type : trouver le plus petit entier n à partir duquel u n devient inférieur à une certaine valeur (le seuil). Dans ce cas, la boucle aurait été "Tant que n >..." 3 Suite arithmético-géométrique 3. Définition Définition 5 On appelle suite arithmético-géométrique toute suite (u n ) définie par une relation de récurrence du type u n+ = au n +b où a et b sont deux réels, et un terme initial u 0. Remarque 3 Si a =, (u n ) est arithmétique de raison b. Si b = 0, (u n ) est géométrique de raison a. Pour de telles suites, on ne dispose pas de définitions explicites faciles (du typeu n = u 0 +nr pour les suites arithmétiques ou u n = u 0 q n pour les suites géométriques) permettant d obtenir directement des renseignements sur les variations ou la convergence. On peut cependant représenter graphiquement les suites arithmético-géométriques ce qui permet de visualiser certaines propriétés de la suite. On peut aussi ramener l étude d une suite arithmético-géométrique à celle d une suite géométrique. C est l objet des deux paragraphes qui suivent. 6

7 3. Représentation graphique On considère la suite (u n ) définie par u 0 = 5 et u n+ = u n+. On a donc a = et b =. La relation u n+ = u n + peut s écrire u n+ = f(u n ) où f est la fonction affine définie sur R par f(x) = x+. Par exemple f(u 0 ) = u 0 + = 5+ = 7 = u. Dans un repère, on représente sur l axe des abscisses les termes de la suite (u n ) en suivant la méthode suivante : On place u 0 sur l axe des abscisses. On trace la droite d équation y = x+ : cette droite permet d obtenir graphiquement l image de u 0 par f soit u. On obtient donc u sur l axe des ordonnées. Pour reporter u sur l axe des abscisses, on trace la droite d équation y = x qui est formée de tous les points qui ont leur abscisse égale à leur ordonnée. Une fois u représentée sur l axe des abscisses, on recommence le procédé... 4 u = f(u 0 ) 3 u 3 u 3 u 4 u 0 = 5 On peut maintenant émettre des conjectures sur la suite(u n ). Elle semble être décroissante et converger vers (qui est l abscisse du point d intersection des deux droites tracées). Pour démontrer ces conjectures, on va ramener l étude à celle d une suite géométrique. 7

8 3.3 Étude à l aide d une suite auxiliaire Considérons la suite (v n ) définie par v n = u n. Montrons que (v n ) est géométrique : Il s agit d établir une relation du type v n+ = qv n. On a, pour tout n 0 : v n+ = u n+ = u n + = u n = u n = (u n ) = v n On a prouvé que (v n ) est géométrique de raison q =. Ainsi, pour tout( n ) 0 : v n = v 0 q n. Or v 0 = u 0 = 5 = 3 n D où : v n = 3. ( ) n Et, puisque v n = u n, alors u n = +v n = +3. Nous avons ainsi réussi à obtenir une définition explicite de (u n ) par le biais de la suite géométrique (v n ). La suite (v n ) est géométrique de raison 0 < q = < donc elle est décroissante et converge vers 0. Ainsi, limu n = lim(v n +) =. Remarque 4 En TES, la suite auxiliaire est toujours donnée. Pour information (ceci est hors-programme), la suite v n à introduire est définie par v n = u n b a. En effet, si la suite (u n ) converge, elle converge nécessairement vers le réel l solution de l équation : l = al+b c est-à-dire l = b a. On montre, dans le cas général que la suite (v n) définie par v n = u n b est géométrique. a 8

9 4 Annales de Bac Les annales de 03 sont disponibles ici : Voici les exercices portant sur ce chapitre : Pondichéry juin 03 ex4 Amérique du Nord mai 03 ex3 Liban mai 03 ex Polynésie juin 03 ex3 Asie juin 03 ex3 Centres étrangers juin 03 ex QCM Métropole juin 03 ex Métropole juin 03 (sujet dévoilé!) ex Polynésie septembre 03 ex4 9

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels,

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels, I Qu est-ce qu une suite? Définition : Rappels sur les suites Une suite de nombres réels est une liste ordonnée de nombres réels, finie ou infinie. On note ( ) la suite u 0, u 1, u 2,..,, +1, Le nombre

Plus en détail

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite (u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2 Suites numériques Z, auctore 4 octobre 005 1 Suites arithmétiques Définition. Une suite de nombres (u n ) n N est arithmétique lorsqu il existe un nombre r tel que pour tout entier n on ait Ce nombre r

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée

Plus en détail

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite SUITES I. GENERALITES a. Définition et notations On appelle suite numérique, toute application de IN dans IR Une suite se note (u n ) n IN, (u n ) n 0 ou (u n ) On dit que u n est le terme général de la

Plus en détail

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES.

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. 1 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. I) RAPPELS DE COURS : Caractérisation par une relation de récurrence Caractérisation par une formule explicite Représentation graphique sur un axe Suites

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

Suites numériques. Table des matières

Suites numériques. Table des matières 1 Suites numériques Table des matières 1 Suite numérique 1.1 Définition................................. 1. Définir une suite.............................. 1..1 De façon explicite.........................

Plus en détail

Chap 1 Suites géométriques

Chap 1 Suites géométriques Chap 1 Suites géométriques Terminale ES Chap 1 - Suites géométriques I Notion de suite géométrique (TES110, TES111, TES112)4 1) Définition4 2) Relation entre les termes4 II Monotonie d'une suite géométriques

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite Exercices 2 octobre 2014 Raisonnement par récurrence. Limite d une suite Raisonnement par récurrence Exercice 1 Prouver que pour tout entier n, 4 n + 5 est un multiple de 3. Exercice 2 Prouver que pour

Plus en détail

Suites. d 1 = 1 e 1 = 20 a 2 = 4 b 2 = 1 2. c 2 = 1,75= 7 4. d 2 = 3 e 2 = 4 a 3 = 9 b 3 = 1 3. c 3 = 1,875= c 4 = 1,9375= 31.

Suites. d 1 = 1 e 1 = 20 a 2 = 4 b 2 = 1 2. c 2 = 1,75= 7 4. d 2 = 3 e 2 = 4 a 3 = 9 b 3 = 1 3. c 3 = 1,875= c 4 = 1,9375= 31. 1 Exemples simples Exercice 1.1 Á partir de leurs premiers termes On connaît les premiers termes de quelques suites. Suites Suite a n ) Suite b n ) Suite c n ) Suite d n ) Suite e n ) a 0 = 0 c 0 = 1 e

Plus en détail

Principe d une démonstration par récurrence :

Principe d une démonstration par récurrence : Chapitre Suites 1 Démonstration par récurrence Exemples introductif : Imaginons que des ouvriers construisant un immeuble aient toutes les instructions nécessaires pour construire un étage d immeuble sur

Plus en détail

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n.

Les suites. u : N R. n u(n) = e ln(n+1)+2 Compléter le tableau de valeurs (les images) par la suite u : n u n. Les suites 1 Suites généralités 1.1 Définition Une suite u est une fonction de l ensemble des entiers naturels N dans l ensemble des nombres réels R : Le terme u(n) est plus souvent noté u n. 1. Soit la

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013 Suites numériques Christophe ROSSIGNOL Année scolaire 01/013 Table des matières 1 Suites géométriques : Rappels et compléments 1.1 Définition, exemples........................................... 1. Expression

Plus en détail

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques Chapitre 2 Suites Sommaire 1 Généralités sur les suites....................................... 1.1 Définition d une suite...................................... 1.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S - Enseignement obligatoire Frédéric Demoulin Dernière révision : septembre 2005 fredericdemoulin@voilafr Tableau récapitulatif des exercices indique que cette

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

SUITES. u : N R n u(n) = u n

SUITES. u : N R n u(n) = u n CHAPITRE XI SUITES 1 Généralités 1.1 Notion de suite numérique Définition 1 : Une suite numérique est une fonction den(ou une partie de N) versr. u : N R n u(n) = u n L image de l entiernpar la suite u

Plus en détail

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t

Chaque fois qu on est confronté à une situation d évolutions successives d une grandeur de t%, on peut définir une suite géométrique de raison 1+ t I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite (u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

Convergence des suites

Convergence des suites Convergence des suites Cours maths Terminale S Dans ce module consacré à l étude de la convergence d une suite, on commence par redéfinir rigoureusement la notion de limite finie d une suite. Ensuite,

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple Classe : 11 ème Sciences CHAPITRE 5 SUITES NUMÉRIQUES Domaine : Sciences, Mathématiques et Technologies Compétences : Résoudre une situation problème Composantes : Diagnostiquer la situation problème,

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

( ) de premier terme

( ) de premier terme Suites arithmétiques Suites géométriques I Suites arithmétiques 1 Définition Une suite arithmétique est une suite obtenue en ajoutant au terme précédent toujours un même nombre, appelé raison Pour tout

Plus en détail

Méthodes sur les suites

Méthodes sur les suites Méthodes sur les suites G. Petitjean Lycée de Toucy 19 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur les suites 19 juin 2007 1 / 41 1 Déterminer par le calcul et graphiquement les premiers termes

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

Suites numériques. Les manières les plus courantes de définir une suite sont les suivantes.

Suites numériques. Les manières les plus courantes de définir une suite sont les suivantes. Suites numériques 1. Rappels sur les suites Définition. Une suite numérique, notée plus souvent est une fonction dont la variable est un entier naturel. L image d un entier n est pas notée mais et se lit

Plus en détail

Modes de générations de suites

Modes de générations de suites I Généralités sur les suites Généralités Une suite u de nombres réels est une fonction dont la variable est un entier naturel. L image par u d un entier naturel n est notée un et se lit «u indice n». un

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 3 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite Chapitre 4 Suites Objectifs du chapitre : item références auto évaluation définir et représenter graphiquement une suite étudier une suite arithmétique étudier une suite géométrique étudier le sens de

Plus en détail

Correction des exercices

Correction des exercices Correction des exercices Chapitre EXERCICE 1 a) u 1 = 5 5+1 = 5, u = 5 = 5 + 1 5, u 1 = 5 = 5 + 1 10 9, u = 10 9 10 9 + 1 = b) u 1 = ( 1+1) = 0, u = (0+1) = 1, u = (1+1) =, u = (+1) = 5 1 c) u 1 = 1 =

Plus en détail

SUITES ET RÉCURRENCE

SUITES ET RÉCURRENCE SUITES ET RÉCURRENCE En première : une suite ( ) est une fonction particulière : son ensemble de définition est constitué d'entiers, on peut donc parler (contrairement aux fonctions en général) de l'image

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée SUITE I ) Rappels et dénition 1. N est l'ensemble des entiers naturels : 0,1,2... Une suite numérique est une fonction de N (ou une partie de N) dans R u : N R n u n Exemple : suite de Fibonnacci : 1,

Plus en détail

Des outils pour les suites

Des outils pour les suites Des outils pour les suites Suites arithmético-géométriques Définition : ppelle suite arithmético-géométrique toute suite récurrente de la forme : où a et b sont des nombres réels. Quelques cas particuliers

Plus en détail

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES

Suites. 1 Généralité. 1.1 Définition. 1.2 Variations d une suite. Terminale L ES Suites 1 Généralité 1.1 Définition Une suite u est une fonction définie dans l ensemble des entiers naturels N : La suite u peut être notée (u) n N, u : N R n u(n) Le terme u(n), image de n par u, est

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Correction Devoir à la maison commun Saint-Charles La Cadenelle

Correction Devoir à la maison commun Saint-Charles La Cadenelle Correction Devoir à la maison commun Saint-Charles La Cadenelle Exercice On considère les matrices 0 5 0 0 5 0 0 0 0 0 0 4 ; 0 2 ; 0 2 0 ; 0 0 4 0 4 0 0 2 0 0 2 0 0 0 ) Soit la matrice 4 0 4 2 a) Prouver

Plus en détail

Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du

Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du Suites arithmétiques I) Définition: Soit n 0 un nombre un entier naturel Soit (u n ) n n0 une suite. On dit qu elle est arithmétique si, partant du TERME INITIAL u n0, pour passer d un terme au suivant,

Plus en détail

Suites - cours - 1 STG

Suites - cours - 1 STG Suites - cours - STG F.Gaudon 0 juin 2006 Table des matières Notion de suite 2. Définitions............................. 2.2 Méthodes de construction des suites............... 2.2. Définition explicite....................

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

Suites. résumés de cours. exercices. contrôles. corrigés

Suites. résumés de cours. exercices. contrôles. corrigés Suites GÉNÉRALITÉS Définitions Une suite est une liste ordonnée de nombres : u ( «u indice» ), u 2, u 3, u 4, On note (u n ) n * la suite: u, u 2, u 3,, u n, u n+, On note (u n ) n la suite: u 0, u, u

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

LES SUITES 3. II Utilisation de la calculatrice Représentation Graphique Représentation graphique (n ;u n ) 4

LES SUITES 3. II Utilisation de la calculatrice Représentation Graphique Représentation graphique (n ;u n ) 4 LES SUITES 3 I Généralités 3 1.1 Définitions 3 Exemple : 3 1. Différentes façons de définir une suite 3 a ) Par une formule explicite 3 3 3 b ) Par récurrence 4 ex 4 II Utilisation de la calculatrice Représentation

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

Soit (u n ) n n0 une suite. On dit qu elle est géométrique si, partant du

Soit (u n ) n n0 une suite. On dit qu elle est géométrique si, partant du Suites géométriques I) Définition Soit n 0 est un nombre entier naturel. Soit (u n ) n n0 une suite. On dit qu elle est géométrique si, partant du TERME INITIAL u n0, pour passer d un terme au suivant,

Plus en détail

UFR Mathématiques Année CAPES. Suites numériques

UFR Mathématiques Année CAPES. Suites numériques Université de Rennes 1 Ronan Quarez UFR Mathématiques Année 2008-2009 CAPES 1 Critère de Cauchy 1.1 QCM Suites numériques a) Toute suite de Cauchy, d entiers relatifs, converge dans Z? b) Toute suite de

Plus en détail

Enseignement obligatoire

Enseignement obligatoire Wallis et Futuna Cours de MATHÉMATIQUES Fabien PUCCI Classe de Terminale S Enseignement obligatoire Année 05 Table des matières Suites - Raisonnement par récurrence 7 I Démonstration par récurrence..................................

Plus en détail

Généralités sur les suites

Généralités sur les suites 1 Chapitre 3 Généralités sur les suites I. Définition, mode de génération d'une suite et représentation graphique : 1) Définition : Une suite est une fonction définie de IN ou d'une partie de IN dans IR.

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

SUITES ARITHMÉTIQUES

SUITES ARITHMÉTIQUES Chapitre 1 SUITES ARITHMÉTIQUES 1. Suites numériques 1.1. Exemples et vocabulaire Une suite numérique est une liste de nombres rangés dans un certain ordre. Ces 5 exemples seront utilisés dans ce chapitre.

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Généralités 11 Définition Définition : On appelle suite une fonction sur N ou sur une partie de N dans R Exemples: Les fonctions: u : n n+1 ; v : n n sont des suites Notation Vocabulaire : Soit

Plus en détail

Fiche d exercices 6 : Fonction logarithme

Fiche d exercices 6 : Fonction logarithme Fiche d exercices 6 : Fonction logarithme Exercice 1 Propriétés des fonctions logarithmes 1. Donner la définition, l ensemble de définition et la dérivée de ln ( x) 2. a. Quelle est la qualification de

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

Type bac janvier Corrigé

Type bac janvier Corrigé Exercice (Métropole 24) Commun à tous les élèves Type bac janvier 27 - Corrigé Partie A ) L image de par la fonction f est : f () +e. Le point d abscisse sur la courbe C, représentative de la fonction

Plus en détail

Résolution graphique d équations et d inéquations

Résolution graphique d équations et d inéquations Résolution graphique d équations et d inéquations I) Equations. Soit une fonction définie sur un domaine inclus dans et à valeurs dans. Soit, un nombre réel. On suppose qu on doit résoudre une équation

Plus en détail

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie.

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie. TS Limites de suites Cours I. Définitions 1. Limite infinie Définition Dire qu une suite (u n ) a pour limite + signifie que tout intervalle ouvert de la forme [A ; + [ contient tous les termes de la suite

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Exercice n 114 page 128

Exercice n 114 page 128 Jeudi 28 Février 2013 DM de Maths Exercice n 114 page 128 1) a) Voir papier millimétré 1) b) D après la représentation graphique des premiers termes de la suite (u n ), on peut conjecturer qu elle est

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

SUITES. Exercice 01 (voir réponses et correction) Exercice 02 (voir réponses et correction) Exercice 03 (voir réponses et correction)

SUITES. Exercice 01 (voir réponses et correction) Exercice 02 (voir réponses et correction) Exercice 03 (voir réponses et correction) SUITES Exercice 01 (voir réponses et correction) On considère un carré ABCD de coté c = 4. On appelle A 1, B 1, C 1 et D 1, les points situés respectivement sur [AB], [BC], [CD], [DA] à la distance 1 de

Plus en détail

Limites de suites. Christophe ROSSIGNOL. Année scolaire 2013/2014

Limites de suites. Christophe ROSSIGNOL. Année scolaire 2013/2014 Limites de suites Christophe ROSSIGNOL Année scolaire 2013/2014 Table des matières 1 Limite d une suite 2 1.1 Limite finie................................................ 2 1.2 Limite infinie...............................................

Plus en détail

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé Compléments sur les suites - Récurrence Exercices - Corrigé Exercice Pour n N nn + ), on pose Hn) : k := + + 3 + + n =. k= Pour n =, les deux membres de l égalité valent et donc H) est vraie. Soit ensuite

Plus en détail

LES SUITES. Une suite peut être définie de deux manières différentes :

LES SUITES. Une suite peut être définie de deux manières différentes : LES SUITES I. Rappels : A. Généralités sur les suites : Nous avons vu qu'une suite de nombres peut être notée avec une lettre ( en général u, v ou w ). Chaque nombre ayant sa place dans la suite, à la

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail

Leçon 41 : Suites arithmétiques, suites géométriques

Leçon 41 : Suites arithmétiques, suites géométriques Leçon 41 : Suites arithmétiques, suites géométriques Pré-requis : Raisonnement par récurrence, limites de suite, résolution d'un système d'équations, notions de suites (définition, étude de monotonie),

Plus en détail

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N Lycée Dominique Villars ECE COURS ETUDE des SUITES RECURRENTES On appelle suite récurrente toute suite (u n ) n N telle qu il existe une fonction réelle f : I R telle que : n N, u n+ = f(u n ) On va voir

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

Chap 5 Suites arithmético-géométriques

Chap 5 Suites arithmético-géométriques Chap 5 Suites arithmético-géométriques Terminale ES Chap 5 - Suites arithmético-géométriques I. Suite arithmético-géométrique (TES.230)...4 1) Etude d'un exemple...4 2) Définition...4 II. Représentation

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention.

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention. ) GENERALITES A ) DEFINITION et NOTATIONS SUITES NUMERIQUES On appelle suite numérique toute application de IN dans IR. Une suite se note u, ( ) n IN, ( ) n 0 ou ( ), qui est la notation la plus utilisée.

Plus en détail

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2 Limite de suites Table des matières I Introduction II s Limite finie............................................ 2 Limite infinie.......................................... III Limites usuelles 2 IV Opérations

Plus en détail

Chapitre 3 Exponentielles. Table des matières. Chapitre 3 Exponentielles TABLE DES MATIÈRES page -1

Chapitre 3 Exponentielles. Table des matières. Chapitre 3 Exponentielles TABLE DES MATIÈRES page -1 Chapitre 3 Exponentielles TABLE DES MATIÈRES page - Chapitre 3 Exponentielles Table des matières I Exercices I-................................................ I- 2................................................

Plus en détail

TS - Maths - D.S.3 - CORRECTION

TS - Maths - D.S.3 - CORRECTION TS - Maths - DS3 - CORRECTION Samedi 4 Novembre 20-2h Exercice Les parties A et B sont indépendantes Un site internet propose des jeux en ligne On donnera une valeur approchée à 0 2 près des résultats

Plus en détail

Cours 5: Une introduction aux suites numériques

Cours 5: Une introduction aux suites numériques Cours 5: Une introduction aux suites numériques Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012-2013 1 Généralités sur les suites

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Suites numériques. =2 n est associée à la fonction exponentielle définie sur R par f x =2 x qui sera étudiée en classe terminale.

Suites numériques. =2 n est associée à la fonction exponentielle définie sur R par f x =2 x qui sera étudiée en classe terminale. Suites numériques Définition Une suite numérique s est une fonction de N vers R : s:n s n. Son ensemble de définition est donc N ou un sous-ensemble de N. Notations - Vocabulaire: La variable n étant un

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail