STATISTIQUE : TESTS D HYPOTHESES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "STATISTIQUE : TESTS D HYPOTHESES"

Transcription

1 STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 0-03 Jea-Jacques Ruch

2

3 Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5. Pricipe des tests 6.a. Méthodologie 6.b. Hypothèse ulle - hypothèse alterative 6.c. Statistique et iveau de sigificatio 6 3. Risques d erreur 7 4. Puissace d u test 8 Chapitre II. Test paramétriques 9. Test de la moyee 9.a. Variace coue 9.b. Variace icoue 9. Test de la variace 0.a. Moyee coue 0.b. Moyee icoue 0 3. Test de la fréquece 4. Test de comparaiso de deux moyees 4.a. Variace coue 4.b. Variace icoue 5. Test de comparaiso de deux variaces 3 6. Test de comparaiso de deux proportios 3 Chapitre III. Test du χ 5. Costructio du test 5. Première applicatio : test d ajustemet (loi discrète) 7 3. Deuxième applicatio : test d ajustemet (loi cotiue) 8 4. Troisième applicatio : test d ajustemet (famille de lois) 8 5. Quatrième applicatio : test d idépedace 8 Chapitre IV. Foctio de répartitio empirique 9. Itroductio 9. Théorème de Gliveko-Catelli 0 3. Test de Kolmogorov 4. Test de Kolmogorov-Smirov

4

5 CHAPITRE I Gééralités sur les tests. Itroductio U test d hypothèse est u procédé d iférece permettat de cotrôler (accepter ou rejeter) à partir de l étude d u ou plusieurs échatillos aléatoires, la validité d hypothèses relatives à ue ou plusieurs populatios. Les méthodes de l iférece statistique ous permettet de détermier, avec ue probabilité doée, si les différeces costatées au iveau des échatillos peuvet être imputables au hasard ou si elles sot suffisammet importates pour sigifier que les échatillos provieet de populatios vraisemblablemet différetes. O distiguera deux classes de tests : - Les tests paramétriques requieret u modèle à fortes cotraites (ormalité des distributios ou approximatio ormale pour des grads échatillos). Ces hypothèses sot d autat plus difficiles à vérifier que les effectifs étudiés sot plus réduits. - Les tests o paramétriques sot des tests dot le modèle e précise pas les coditios que doivet remplir les paramètres de la populatio dot a été extrait l échatillo. Il y a pas d hypothèse de ormalité au préalable. Les tests paramétriques, quad leurs coditios sot remplies, sot les plus puissats que les tests o paramétriques. Les tests o paramétriques s emploiet lorsque les coditios d applicatios des autres méthodes e sot pas satisfaites, même après d évetuelles trasformatio de variables. Ils peuvet s utiliser même pour des échatillos de taille très faible. O ditigue les tests suivat : - Le test de coformité cosiste à cofroter u paramètre calculé sur l échatillo à ue valeur pré-établie. Les plus cous sot certaiemet les tests portat sur la moyee, la variace ou sur les proportios. O coaît la loi théorique e gééral la loi ormale. Par exemple, das u jeu de dés à 6 faces, o sait que la face 3 a ue probabilité de /6 d apparaître. O demade à u joueur de lacer (sas précautios particulières) 00 fois le dé, o teste alors si la fréquece d apparitio de la face 3 est compatible avec la probabilité /6. Si ce est pas le cas, o peut se poser des questios sur l itégrité du dé. - Le test d ajustemet ou d adéquatio cosiste à vérifier la compatibilité des doées avec ue distributio choisie a priori. Le test le plus utilisé das cette optique est le test d ajustemet à la loi ormale, qui permet esuite d appliquer u test paramétrique. - Le test d homogééité ou de comparaiso cosiste à vérifier que K(K ) échatillos (groupes) provieet de la même populatio ou, cela reviet à la même chose, que la distributio de la variable d itérêt est la même das les K échatillos. Y a-t-il ue différece etre le taux de glucose moye mesuré pour deux échatillos d idividus ayat reçu des traitemets différets? - Le test d idépedace ou d associatio cosiste à éprouver l existece d ue liaiso etre variables. Les techiques utilisées diffèret selo que les variables sot qualitatives omiales, ordiales ou quatitatives. Est-ce que la distributio de la couleur des yeux observée das la populatio fraçaise fréqueces est idépedate du sexe des idividus?

6 6 Chapitre I. Gééralités sur les tests.a. Méthodologie.. Pricipe des tests Le pricipe des tests d hypothèse est de poser ue hypothèse de travail et de prédire les coséqueces de cette hypothèse pour la populatio ou l échatillo. O compare ces prédictios avec les observatios et l o coclut e acceptat ou e rejetat l hypothèse de travail à partir de règles de décisios objectives. Défiir les hypothèses de travail, costitue u élémet essetiel des tests d hypothèses de même que vérifier les coditios d applicatio de ces derières. Différetes étapes doivet être suivies pour tester ue hypothèse : () défiir l hypothèse ulle, otée H 0, à cotrôler ; () choisir ue statistique pour cotrôler H 0 ; (3) défiir la distributio de la statistique sous l hypothèse «H 0 est réalisée» ; (4) défiir le iveau de sigificatio du test α et la régio critique associée ; (5) calculer, à partir des doées fouries par l échatillo, la valeur de la statistique ; (6) predre ue décisio cocerat l hypothèse posée..b. Hypothèse ulle - hypothèse alterative. L hypothèse ulle otée H 0 est l hypothèse que l o désire cotrôler : elle cosiste à dire qu il existe pas de différece etre les paramètres comparés ou que la différece observée est pas sigificative et est due aux fluctuatios d échatilloage. Cette hypothèse est formulée das le but d être rejetée. L hypothèse alterative otée H est la "égatio" de H 0, elle est équivalete à dire «H 0 est fausse». La décisio de rejeter H 0 sigifie que H est réalisée ou H est vraie. Remarque : Il existe ue dissymétrie importate das les coclusios des tests. E effet, la décisio d accepter H 0 est pas équivalete à «H 0 est vraie et H est fausse». Cela traduit seulemet l opiio selo laquelle, il y a pas d évidece ette pour que H 0 soit fausse. U test coduit à rejeter ou à e pas rejeter ue hypothèse ulle jamais à l accepter d emblée. La ature de H 0 détermie la faço de formuler H et par coséquet la ature uilatérale ou bilatérale du test. O parle de test bilatéral lorsque l hypothèse alterative se "décompose e deux parties". Par exemple si H 0 cosiste à dire que la populatio estudiatie avec ue fréquece de fumeurs p est représetative de la populatio globale avec ue fréquece de fumeurs p 0, o pose alors : H 0 : p = p 0 et H : p p 0. Le test sera bilatéral car o cosidère que la fréquece p peut être supérieure ou iférieure à la fréquece p 0. O parle de test uilatéral lorsque l hypothèse alterative se "compose d ue seule partie". Par exemple si l o fait l hypothèse que la fréquece de fumeurs das la populatio estudiatie p est supérieure à la fréquece de fumeurs das la populatio p 0, o pose alors H 0 : p = p 0 et H : p > p 0. Le test sera uilatéral car o cosidère que la fréquece p e peut être que supérieure à la fréquece p 0. Il aurait été possible égalemet d avoir : H 0 : p = p 0 et H : p < p 0.c. Statistique et iveau de sigificatio. Ue statistique est ue foctio des variables aléatoires représetat l échatillo. Le choix de la statistique déped de la ature des doées, du type d hypothèse que l o désire cotrôler, des affirmatios que l o peut admettre cocerat la ature des populatios étudiées.... La valeur umérique de la statistique obteue pour l échatillo cosidéré permet de distiguer etre H 0 vraie et H 0 fausse. Coaissat la loi de probabilité suivie par la statistique S sous l hypothèse H 0, il est possible d établir ue valeur seuil, S seuil de la statistique pour ue probabilité doée appelée le iveau de sigificatio α du test. La régio critique R c = f(s seuil ) correspod à l esemble des valeurs telles que : P(S R c ) = α. Selo la ature uilatérale ou bilatérale du test, la défiitio de la régio critique varie. Test Uilatéral Bilatéral H 0 : t = t 0 H 0 : t = t 0 Hypothèse alterative H : t > t 0 H : t < t 0 H : t t 0 Niveau de sigificatio P(S > S seuil ) = α P(S < S seuil ) = α P( S > S seuil ) = α

7 3. Risques d erreur 7 Il existe deux stratégies pour predre ue décisio e ce qui cocere u test d hypothèse : la première stratégie fixe à priori la valeur du seuil de sigificatio α et la secode établit la valeur de la probabilité critique α obs à posteriori. Règle de décisio : Sous l hypothèse «H 0 est vraie» et pour u seuil de sigificatio α fixé - si la valeur de la statistique S obs calculée appartiet à la régio critique alors l hypothèse H 0 est rejetée au risque d erreur α et l hypothèse H est acceptée ; - si la valeur de la statistique S obs appartiet pas à la régio critique alors l hypothèse H 0 e peut être rejetée. Remarque : Le choix du iveau de sigificatio ou risque α est lié aux coséqueces pratiques de la décisio ; e gééral o choisira α = 0, 05, 0, 0 ou 0, 00. Règle de décisio : La probabilité critique α telle que P (S S obs ) = α obs est évaluée - si α obs α l hypothèse H 0 est acceptée car le risque d erreur de rejeter H 0 alors qu elle est vrai est trop importat ; - si α obs < α l hypothèse H 0 est rejetée car le risque d erreur de rejeter H 0 alors qu elle est vrai est très faible. 3. Risques d erreur Défiitio. O appelle risque d erreur de première espèce la probabilité de rejeter H 0 et d accepter H alors que H 0 est vraie. Ceci se produit si la valeur de la statistique de test tombe das la régio de rejet alors que l hypothèse H 0 est vraie. La probabilité de cet évèemet est le iveau de sigifiatio α. O dit aussi que le iveau de sigificatio est la probabilité de rejeter l hypothèse ulle à tort. Remarque : La valeur du risque α doit être fixée a priori par l expérimetateur et jamais e foctio des doées. C est u compromis etre le risque de coclure à tort et la faculté de coclure. La régio critique dimiue lorsque α décroît (voir itervalle de cofiace) et doc o rejette mois fréquemmet H 0. A vouloir commettre mois d erreurs, o coclut plus raremet. Exemple : Si l o cherche à tester l hypothèse qu ue pièce de moaie est pas «truquée», ous allos adopter la règle de décisio suivate : H 0 : la pièce est pas truquée est acceptée si X [40, 60] rejetée si X [40, 60] doc soit X < 40 ou X > 60 avec X «ombre de faces» obteus e laçat 00 fois la pièce. Le risque d erreur de première espèce est α = P(B(00, /) [40, 60]). Défiitio. O appelle risque d erreur de secode espèce, otée β la probabilité de rejeter H et d accepter H 0 alors que H est vraie. Ceci se produit si la valeur de la statistique de test e tombe pas das la régio de rejet alors que l hypothèse H est vraie. Remarque : : Pour quatifier le risque β, il faut coaître la loi de probabilité de la statistique sous l hypothèse H. Exemple : Si l o repred l exemple précédet de la pièce de moaie, et que l o suppose la probabilité d obteir face est de 0, 6 pour ue pièce truquée. E adoptat toujours la même règle de décisio : H 0 : la pièce est pas truquée

8 8 Chapitre I. Gééralités sur les tests est acceptée si X [40, 60] rejetée si X [40, 60] doc soit X < 40 ou X > 60 avec X «ombre de faces» obteues e laçat 00 fois la pièce. Le risque de secode espèce est β = P(B(00, 0, 6) [40, 60]). 4. Puissace d u test Rappelos que les tests e sot pas faits pour «démotrer» H 0 mais pour «rejeter» H 0. L aptitude d u test à rejeter H 0 alors qu elle est fausse costitue la puissace du test. Défiitio 3. O appelle puissace d u test, la probabilité de rejeter H 0 et d accepter H alors que H est vraie. Sa valeur est β La puissace d u test est foctio de la ature de H, u test uilatéral est plus puissat qu u test bilatéral. Elle augmete avec taille de l échatillo N étudié, et dimiue lorsque α dimiue. La robustesse d ue techique statistique représete sa sesibilité à des écarts aux hypothèses faites. Les différetes situatios que l o peut recotrer das le cadre des tests d hypothèse sot résumées das le tableau suivat : Décisio Réalité H 0 vraie H vraie H 0 acceptée correct maque de puissace risque de secode espèce β H acceptée rejet à tort puissace du test risque de premières espèce α β O peut aussi voir cela sur le graphique suivat :

9 CHAPITRE II Test paramétriques O suppose das ce chapitre que les échatillos sot issus d ue loi ormale ou peuvet être approximés par ue loi ormale.. Test de la moyee.a. Variace coue. O suppose que l o a u échatillo qui suit ue loi ormale N (µ, σ ) ou la variace est coue. O veut tester H 0 : µ = µ 0 cotre H : µ µ 0, c est le cas bilatéral. Sous l hypothèse H 0 la variable aléatoire X = k= X k suit ue loi N (µ 0, σ /) et par coséquet la statistique suit ue loi ormale cetrée réduite. Pour u risque d erreur α fixé o a doc Z = X µ 0 σ / P( Z q α/ ) = α avec q α/ le quatile d ordre α/ de la loi N (0, ) ; et doc la régio de rejet est ], q α/ [ ]q α/, + [ O calcule alors pour les valeurs de l échatillo Z et o accepte ou o rejette H 0 suivat la valeur trouvée, au risque α Si o cosidère u test uilatéral et ue hypothèse alterative H : µ > µ 0 par exemple, o obtiet pour u risque d erreur α P(Z q α ) = α avec q α le quatile d ordre α de la loi N (0, ) ; et doc la régio de rejet est ]q α, + [.b. Variace icoue. O suppose que l o a u échatillo qui suit ue loi ormale N (µ, σ ) ou la variace est maiteat icoue. O veut tester H 0 : µ = µ 0 cotre H : µ µ 0, das le cas bilatéral. Sous l hypothèse H 0 la variable aléatoire X = k= X k suit ue loi N (µ 0, σ /). Comme la variace est icoue, o l estime par la variace empirique : S = (X k X ). O a déjà vu qu alors la variable k= T = X µ 0 S / suit ue de Studet à degrés de liberté. Pour u risque d erreur α fixé o a doc P( T t α/ ) = α

10 0 Chapitre II. Test paramétriques avec t α/ le quatile d ordre α/ de la loi de Studet à degrés de liberté ; et doc la régio de rejet est ], t α/ [ ]t α/, + [ O calcule alors pour les valeurs de l échatillo T et o accepte ou o rejette H 0 suivat la valeur trouvée, au risque α.a. Moyee coue.. Test de la variace O suppose que l o a u échatillo qui suit ue loi ormale N (µ, σ ) où la moyee est coue. O veut tester H 0 : σ = σ0 cotre H : σ σ0. Sous l hypothèse H 0 la statistique V = S ( ) Xk µ σ0 = σ 0 suit ue loi du χ à degrés de libertés. Pour u risque d erreur α fixé o a doc (e choisissat u itervalle symétrique) : ( P χ α/ () S σ 0 k= χ α/ () ) = α avec χ α/ () et χ α/ () les quatiles d ordre α/ et α/ de la loi χ (). Doc la régio de rejet est [0, χ α/ ()[ ]χ α/ (), + [ O calcule alors pour les valeurs de l échatillo, V, et o accepte ou o rejette au risque α H 0 suivat la valeur trouvée. Si o a ue hypothèse alterative H : σ > σ0 o fera u test uilatéral, et obtiet au risque α ) (S P σ χ α() = α avec χ α() le quatile d ordre α de la loi χ (). Doc la régio de rejet est ]χ α(), + [.b. Moyee icoue. O suppose que l o a u échatillo qui suit ue loi ormale N (µ, σ ) où la moyee est icoue. O veut tester H 0 : σ = σ0 cotre H : σ σ0. Sous l hypothèse H 0 la statistique V = S ( ) Xk X σ0 = σ 0 suit ue loi du χ à degrés de libertés. Pour u risque d erreur α fixé o a doc (e choisissat u itervalle symétrique) : ( P χ α/ ( ) S σ 0 k= χ α/ ( ) ) = α avec χ α/ ( ) et χ α/ ( ) les quatiles d ordre α/ et α/ de la loi χ ( ). Doc la régio de rejet est [0, χ α/ ( )[ ]χ α/ ( ), + [ O calcule alors pour les valeurs de l échatillo, V, et o accepte ou o rejette au risque α H 0 suivat la valeur trouvée.

11 4. Test de comparaiso de deux moyees 3. Test de la fréquece Le modèle mathématique est le suivat. O dispose d ue populatio das laquelle chaque idividu présete ou o u certai caractère, la proportio d idividus présetat le caracère état otée p, et u échatillo aléatoire de taille extrait de cette populatio. La proportio f calculée à partir de l échatillo est cosidérée comme ue réalisatio d ue v.a. de loi biomiale B(, p) qu o peut assimiler, si est assez grad, à ue loi ormale N (p, p( p)/ ). O veut tester H 0 : p = p 0 cotre H : p p 0, das le cas bilatéral. O obtiet la régio de rejet pour u risque α ] [ ] [ p0 ( p 0 ) p0 ( p 0 ), p 0 q α/ p 0 + q α/, + avec q α/ le quatile d ordre α/ de la loi N (0, ). 4. Test de comparaiso de deux moyees Si les deux échatillos o la même taille = =. Le test se ramèe à ue test à ue moyee ulle de l échatillo (Z,..., Z ), avec Z i = X i Y i. 4.a. Variace coue. O suppose que l o a deux échatillos (X,..., X ) et (Y,..., Y )qui suivet ue loi ormale N (µ, σ ) et N (µ, σ ) où les variaces sot coues. O veut tester H 0 : µ = µ cotre H : µ µ, c est la cas bilatéral. Sous l hypothèse H 0 la variable aléatoire X = k= X k suit ue loi N (µ, σ/ ) et la variable aléatoire Y = k= Y k suit ue loi N (µ, σ/ ), par coséquet la statistique suit ue loi ormale cetrée réduite. Pour u risque d erreur α fixé o a doc U = X Y σ / + σ / P( U q α/ ) = α avec q α/ le quatile d ordre α/ de la loi N (0, ) ; et doc la régio de rejet est ], q α/ [ ]q α/, + [ O calcule alors pour les valeurs de l échatillo U et o accepte ou o rejette H 0 suivat la valeur trouvée, au risque α Si o cosidère u test uilatéral et ue hypothèse alterative H : µ > µ par exemple, o obtiet pour u risque d erreur α P(Z q α ) = α avec q α le quatile d ordre α de la loi N (0, ) ; et doc la régio de rejet est ]q α, + [ 4.b. Variace icoue. O suppose que l o a que l o a deux échatillos (X,..., X ) et (Y,..., Y )qui suivet ue loi ormale N (µ, σ ) et N (µ, σ ) où les variaces sot icoues. Cas : et supérieurs à 30. O veut tester H 0 : µ = µ cotre H : µ µ, das le cas bilatéral. Sous l hypothèse H 0 la variable aléatoire X Y suit ue loi N (0, σ/ + σ/ ). Comme la variace est icoue, o l estime par la variace empirique corrigée S + S = k= (X k X ) + (Y k Y ). k=

12 Chapitre II. Test paramétriques Alors la variable aléatoire X Y N = S / + S / peut être approximé par ue loi ormale cetrée réduite. Pour u risque d erreur α fixé o a doc P( N t α/ ) = α avec t α/ le quatile d ordre α/ de la loi ormale cetrée réduite ; et doc la régio de rejet est ], t α/ [ ]t α/, + [ O calcule alors pour les valeurs de l échatillo N et o accepte ou o rejette H 0 suivat la valeur trouvée, au risque α. Cas : ou iférieur à 30 et σ = σ O veut tester H 0 : µ = µ cotre H : µ µ, das le cas bilatéral. Sous l hypothèse H 0 la variable aléatoire X Y suit ue loi N (0, σ/ + σ/ ). Comme la variace est icoue, o l estime par la variace empirique corrigée ( ) S, = (X k X ) + (Y k Y ). + Alors la variable aléatoire k= suit ue de Studet à + degrés de liberté. Pour u risque d erreur α fixé o a doc k= X Y T = S, (/ + / ) P( T t α/ ) = α avec t α/ le quatile d ordre α/ de la loi de Studet à + degrés de liberté ; et doc la régio de rejet est ], t α/ [ ]t α/, + [ O calcule alors pour les valeurs de l échatillo T et o accepte ou o rejette H 0 suivat la valeur trouvée, au risque α Cas 3 : ou iférieur à 30 et σ σ O veut tester H 0 : µ = µ cotre H : µ µ, das le cas bilatéral. Sous l hypothèse H 0 la variable aléatoire X Y suit ue loi N (0, σ/ + σ/ ). Comme la variace est icoue, o l estime par la variace empirique corrigée S + S = (X k X ) + (Y k Y ). Alors la variable aléatoire k= X Y T = S / + S / suit ue de Studet à ν degrés de liberté, où ν est l etier le plus proche de Pour u risque d erreur α fixé o a doc (S / + S / ) ( )S 4 / 4 + ( )S 4 / 4 P( T t α/ ) = α k=

13 6. Test de comparaiso de deux proportios 3 avec t α/ le quatile d ordre α/ de la loi de Studet précédete ; et doc la régio de rejet est ], t α/ [ ]t α/, + [ O calcule alors pour les valeurs de l échatillo T et o accepte ou o rejette H 0 suivat la valeur trouvée, au risque α 5. Test de comparaiso de deux variaces Avec les mêmes otatios que précédemmet o teste O cosidère aisi que la statistique S = H 0 : σ = σ cotre H : σ σ k= (X k X ) et S = (Y k Y ). Z = S S Sous l hypothèse H 0 la statistique Z suit ue loi de Fisher-Sedecor F(, ) à et degrés de liberté. Pour u risque d erreur α fixé o a ue régio de rejet [0, F α/ ()[ ]F α/ (), + [ où les quatiles sot détermiées à l aide de la loi précédete. k= 6. Test de comparaiso de deux proportios O veut comparer deux proportios p et p à partir de deux échatillos. Le modèle mathématique est le suivat. O cosidère les proportios f et f associés aux deux échatillos. O veut tester H 0 : p = p cotre H : p p. O pred la statistique Z = f f F ( F )(/ + / ) O obtiet la régio de rejet pour u risque α ], q α/ [ ]q α/, + [ avec q α/ le quatile d ordre α/ de la loi N (0, ). avec F = f + f +

14

15 CHAPITRE III Test du χ. Costructio du test O cosidère des variables aléatoires (X k ) k idépedates idetiquemet distribuées, à valeurs das {,..., m} et o ote P(X k = i) = π i. O défiit N i () = k= {Xk =i} c est-à-dire le ombre fois que la valeur i apparaît das l échatillo (X, X,..., X ). O s itéresse à la répartitio de N() = (N (), N (),..., N m ()). O a pour tout (i, i,..., i m ) tels que 0 i, i,..., i m et i + + i m = P(N () = i,, N m () = i m ) = C i C i i C i3 i i.π i...! πim m = i! i m! πi... πim m o obtiet ue répartitio multiomiale. Nous allos appliquer la covergece e loi au vecteur N(). Doos d abord ue versio vectorielle du théorème cetral limite. Théorème. Soit (X l ) l ue suite de vecteurs de aléatoires de R k, idépedats idetiquemet distribués tels que E(X ) = µ R k et Γ = E [(X µ) t (X µ) t ] matrice de covariace k k. Alors o a j= X j µ L N (0, Γ) + Remarquos que X R k suit ue loi N k (0, Γ) si sa foctio caractéristique est et sa desité, lorsque Γ est alors f(x) = E appliquat ce résultat o obtiet : Théorème. E(e i<t,x> ) = exp ( / < t, Γt >) { (π) k/ det(γ) exp } < x, Γ x > Avec les otatios du début du paragraphe, et e posat π t = (π,..., π m ) o obtiet : π... 0 N() π t L N (0, π π t π) où π = π m

16 6 Chapitre III. Test du χ Démostratio. O a E(N i ()) = E( {Xk =i}) = E( {Xk =i}) = π i k= et doc E(N()) = π t. D autre part, o peut remarquer que : Cov( {Xk =i} {Xk =j}) = E[( {Xk =i} π i )( {Xk =j} π j )] = E[δ i,j {Xk =i}] π i π j. Par coséquet e posat Y k = {Xk =}. {Xk =m} o e déduit que : E(Y k ) = π et Cov(Y k, Y k ) = π ππ t O coclut alors a appliquat le TCL à la suite (Y k ) k et e remarquat que N() = k= Y k O obtiet alors le résultat qui suit, qui ous doe ue covergece vers ue loi du χ. Théorème 3. Avec les otatios précédetes o a D (π) = m (N i () π i ) i= π i L + χ (m ) Démostratio. O défiit : Avec cette otatio o a D (π) = f f : R m R x f(x) = m x i i= π i ( N() π ). Pour toute foctio F cotiue et borée o a [ ( )] N() π E F f E [ F f ( N (0, π ππ t ) )] + par défiitio de la covergece e loi car F f est cotiue borée et d après le TCL appliqué à N() π. Il faut doc détermier l image de la loi N (0, π ππ t ) par f. Soit Z = Z. Z m u vecteur aléatoire de loi N (0, π ππ t ). O a f(z) = m i= Zi = U où U = π i U.. U m, U i = Z i πi Le vecteur aléatoire U suit la loi N (0, Id π π t ). Soit A ue matrice orthogoal, alors le vecteur V = AU est u vecteur de loi ormale N (0, Id A π π t A t ) tel que V = U. Comme π =,

17 . Première applicatio : test d ajustemet (loi discrète) 7 0 o peut predre A telle que A π =. et aisi la matrice de covariace sera Id. (0,..., 0, ) = Id.... = Par coséquet, o a f(z) = U = V = m o obtiet le résultat. i= V i, où les V i N (0, ) sot idépedates, et doc. Première applicatio : test d ajustemet (loi discrète) Soit (X,..., X ) u -échatillo de la variable X à valeurs das {,..., m} et de loi icoue π, où P(X = i) = π i. O teste H 0 : π = p cotre H : π p (p loi de probabilité discrète sur {,..., m}). Supposos que H soit vraie, alors : N() p.s. + p p d après la loi forte des grads ombres. Par coséquet o obtiet D (p) = car sous p p et doc il existe i tel que m ( ) Ni () p i p i= i p.s. + + ( ) Ni () p i + (p i p i ) > 0 Doc si H 0 est fausse o a D (p) +, o peut doc utiliser ue régio de rejet de type D (p) > C (uilatérale). Si o choisit u risque de première espèce iférieur à α, c est-à-dire que l o veut à la limite P(χ (m ) > χ α(m )) α car d après la covergece e loi : P(D (p) > χ α(m )) P(χ (m ) > χ α(m )) α Le test est doc asymptotiquemet de iveau α, de plus sa puissace est car sous H, D (p) + et doc P(D (p) > χ α(m )) Exemple. O lace 00 fois ue pièce et o obtiet 0 piles. Le ombre de piles obteu est ue variable aléatoire B(00, p). O veut tester : H 0 : p = / cotre H : p /. Effectifs observés N i () Effectifs théoriques p i Ecarts N i () p i (N i () p i ) /p i pile face total O a D (p) = et pour α = 0.05 o trouve χ 0.05( ) = χ 0.05() = 3, 84. O trouve doc D (p) < χ α(m ) et o accepte l hypothèse H 0.

18 8 Chapitre III. Test du χ 3. Deuxième applicatio : test d ajustemet (loi cotiue) Soit (X,..., X ) u -échatillo de la variable X qui suit ue loi absolumet cotiue F icoue. O remplace la loi des X i par ue loi discrète. Pour ce faire o procède de la maière suivate : o cosidère des itervalles I j tels que R = m j=i j avec I j I l = si j l Si o veut alors tester H 0 : F = F 0 cotre H 0 : F F 0 o se ramèe au cas précédet e posat π j = P F (X I j ) p j = P F0 (X I j ). 4. Troisième applicatio : test d ajustemet (famille de lois) Soit (X,..., X ) u -échatillo de la variable X à valeurs das {,..., m}, qui suit ue loi (P θ ) θ Θ, avec θ icoue. O a m (N i () p i (θ)) D (p(θ)) = p i (θ) i= O remplace θ par u estimateur, par exemple l estimateur du maximum de vraisemblace ˆθ, puis o procède comme das la première applicatio e remarquat que si Θ R k D (p(ˆθ)) χ (m k ) Exemple. O a 00 séries de 400 pièces chacue. Pour k =,..., 00, o ote X k le ombre de pièces défectueuses das la k-ième série. O veut tester l hypothèse H 0 : π i = p i = e λ λ i i!, i 0. Le tableau ci-dessous ous permet de détermier ˆλ 00 = 00 in i (00) = i N i (00) p i (ˆλ 00 ) i= O obtiet (7 8.4) (3 9.3) (8 0.) D 00 (ˆλ 00 ) = = O a m = 8 et k = d où il faut regarder χ (6). Pour α = 0.05 le quatile est χ 0.95(6) =.69. O accepte doc H Quatrième applicatio : test d idépedace O observe u échatillo ((X, Y ),..., (X, Y )) à valeur das et {(x(i), y(j)), i r, j s}. O veut tester H 0 : X et Y sot idépedats. Soit N i,j le ombre de couples observés (x(i), y(j)) parmi observatios. O pose N i. = s j= N ij et N.j = r i= N ij O peut alors motrer que sous ces hypothèses ξ = r i= j= s (N ij N i. N.j /) N i. N.j O procède esuite comme das les paragraphes précédets. L + χ (r )(s )

19 CHAPITRE IV Foctio de répartitio empirique Das ce chapitre, o s itéresse à l estimatio de la loi d ue variable aléatoire aisi qu aux problèmes de tests associés. Pour traiter ces questios, ous allos chercher à estimer la foctio de répartitio de cette variable. Nous sommes doc cofrotés à u problème de statistique o-paramétrique. Pour traiter ce problème, o utilisera la otio de foctio de répartitio empirique.. Itroductio O cosidère u échatillo (X,..., X ) d ue variable aléatoire X. O ote F la foctio de répartitio de X, c est-à-dire : t R, F (t) = P(X t) = P(X i t) C est cette foctio F que ous allos chercher à estimer e itroduisat la foctio de répartitio empirique. Défiitio. La foctio de répartitio empirique associée à cet échatillo est la foctio : R [0, ] t F (t) = i= {X i t} Remarque Pour tout t R, la variable aléatoire F (t) suit la loi biomiale B(, F (t)). Pour représeter la foctio F, o itroduit la statistique d ordre (X (),..., X () ) associée à l échatillo (X,..., X ) défiie par O a alors : O e déduit le résultat suivat. {X (),..., X () } = {X,..., X } et X () X (). t R, F (t) = i= {X(i) t} Propositio. La foctio F est ue foctio e escalier, croissate, cotiue à droite et admettat ue limite à gauche. Elle est discotiue aux poits (X (i) ) i et costate sur [X (i), X (i+) [ pour i {,..., }. La foctio F (t) est u estimateur aturel de F (t), comme ous allos le voir das le résultat suivat. Propositio 3. O a pour tout t R, F (t) est u estimateur sas biais et fortemet cosistat de F (t). Par ailleurs, o a L t R, (F (t) F (t)) N (0, F (t)( F (t)). + Démostratio. Le calcul de l espérace motre que l estimateur est sas biais. De plus, la loi forte des grads ombres appliquée aux variables aléatoires i.i.d. {Xi t} (borées doc itégrable) tels que E[ {Xi t}] = P(X i t) = F (t) etraîe la covergece presque sûre. Le derier poit découle du théorème cetral limite.

20 0 Chapitre IV. Foctio de répartitio empirique Das les sectios suivates, ous allos ous itéresser o pas à la covergece poctuelle simple de F vers F mais à la covergece uiforme. Notos que la discotiuité de F présete des icovéiets théoriques évidets das l optique d estimer F. Néamois, comme elle est costate par morceaux, elle est simple à costruire e pratique. Das les sectios suivates, ous auros besoi de l outil de la foctio iverse gééralisée : x ]0, [, F = if {t R : F (t) x}. Propositio 4. (Ouvrard p. 9) La foctio iverse gééralisée se cofod avec l iverse de F quad F est bijective. Elle possède les propriétés suivates : - La mootoie de F etraîe t R, x ]0, [, F (t) x t F (x) - Si U U([0, ]) alors F (U) est ue variable aléatoire dot la foctio de répartitio est F. - Si Z est ue variable aléatoire de foctio de répartitio F cotiue alors F (Z) U([0, ]). Théorème de Gliveko-Catelli Le résultat de cette sectio reforce le théorème de la loi forte des grads ombres. Théorème 5. Théorème de Gliveko-Catelli Soit (X i ) i ue suite de variables aléatoires i.i.d. de foctio de répartitio F. O pose : t R, F (t) = {Xi t}. Alors o a : i= sup F (t) F (t) 0 p.s. t R Démostratio. D après la loi forte des grads ombres (comme das la propositio 3), o a pour tout t R fixé, F (t)(ω) F (t)(ω) pour presque tout ω. Il reste à voir que la covergece est uiforme e t. Si o pose : V = sup {Xi t} F (t). t R i= Soit (U k ) k ue suite de variable aléatoires idépedates idetiquemet distribuées de loi U([0, ]). O a alors les égalités e loi suivates : V = sup {Xi t} F (t) = sup {F (U i) t} F (t) = sup {Ui F (t)} F (t) t R i= t R Si o pose s = F (t), il viet : sup {Ui F (t)} F (t) = t R i= sup i= s F (R) i= t R {Ui s} s sup s [0,] i= {Ui s} s Aisi il suffit de motrer que le théorème est vrai das le cas particulier où les variables X i = (U i ) suivet des lois uiformes sur [0, ]. Grâce à la loi des grads ombres, o sait que pour tout s R, il existe u esemble égligeable N s Ω vérifiat : ω Ω\N s, {Ui s} s. i= i=

21 3. Test de Kolmogorov Comme ue réuio déombrable d esembles égligeables est ecore égligeable, o e déduit l existece d ue partie égligeable N Ω telle que : ω Ω\N, s [0, ] Q, {Ui s} s. E fait la croissace de s Pour chaque ω Ω\N, {Ui s} fait que l o a : i= ω Ω\N, s [0, ], i= {Ui s} s. i= {Ui s} coverge doc simplemet vers s sur [0, ]. Le théorème de Dii ous i= permet alors de coclure que la covergece est uiforme. 3. Test de Kolmogorov Le théorème de Gliveko-Catelli est ue gééralisatio de la loi forte des grads ombres au cas oparamétrique. La gééralisatio du TCL est doée par le théorème qui suit. La statistique itroduite das ce théorème ous permettra de costruire u test d ajustemet à ue loi (test de Kolmogorov). Das le même esprit, ous costruiros aussi u test d homogééité (test de Kolmogorov - Smirov). Propositio 6. Soit (X (),..., X () ) u -échatillo issu de X. O ote F la foctio de répartitio de X et F la foctio de répartitio empirique. Si F est cotiue alors la loi de e déped pas de F. D(F, F ) = sup F (t) F (t) t R Démostratio. O a, e posat x = F (t), D(F, F ) = sup F (t) F (t) = sup t R t R {Xi t} F (t) i= = sup {F (Xi) F (t)} F (t) = sup {Ui x} x d où le résultat. t R i= x [0,] i= Le résultat pricipal de cette sectio est le suivat. Théorème 7. O suppose que l o a les mêmes hypothèses que ci-dessus. Alors la variable aléatoire D(F, F ) coverge e loi, vers ue loi limite qui e déped pas de F et dot la foctio de répartitio est égale à : O a doc, pour λ > 0, + t 0, F KS (t) = + ( ) k exp ( k t ) k= P( + D(F, F ) λ) + ( ) k exp ( k λ ) k= Ce théorème est admis. Nous pouvos doc costruire u test d ajustemet à ue loi, dit test de Kolmogorov. O peut d abord

22 Chapitre IV. Foctio de répartitio empirique remarquer que si o réordoe de maière croissate l échatillo, (X (),..., X () ) alors F (X (j) ) = j/ et ( D(F, F ) = max max j j F (X (j)), F (X (j) ) j ) Si o veut tester que la loi de l échatillo a pour foctio de répartitio F 0, c est-à-dire H 0 : F = F 0 cotre H : F = F, o commece par réordoer l échatillo. Puis o calcule D(F, F ), e remarquat que sous H 0, o a D(F, F ) = D(F, F 0 ). Puis o cherche (das ue table) le quatile k α de la loi de Kolmogorov. O accepte alors H 0 si D(F, F 0 ) < D(F, F 0 ). Ce test est asymptotiquemet de iveau α et sa puissace ted vers quad ted vers Test de Kolmogorov-Smirov Das le même esprit, ous allos costruire u test d homogééité. O observe deux échatillos de taille respective et m, (X,..., X ) et (Y,..., Y m ). O veut tester si les deux échatillos sot issus d ue même loi (évetuellemet icoue). O ote F la foctio de répartitio de chacue des variables X i et G la foctio de répartitio de chacue des variables Y i. O veut tester H 0 : F = G cotre H : F G. Pour cela, o itroduit : t R, F (t) = {Xi t} et G m (t) = m {Yi t} m et o pose O a le résultat suivat. Théorème 8. i= D m, = sup F (t) G m (t). t R Avec les hypothèses doées ci-dessus o a, sous "H 0 : F = G" : m + P( + m D m, λ) + ( ) k exp ( k λ ) k= i= Ceci permet alors de costruire u test sur le même modèle que ci-dessus.

23 Idex foctio de répartitio empirique, 9 foctio iverse gééralisée, 0 hypothèse alterative, 6 hypothèse ulle, 6 iveau de sigificatio, 6 puissace d u test, 8 risque d erreur de première espèce, 7 risque d erreur de secode espèce, 7 statistique, 6 test bilatéral, 6 test bilatérale, 6 test d ajustemet (famille de lois), 8 test d ajustemet (loi cotiue), 8 test d ajustemet (loi discrète), 7 test d ajustemet ou d adéquatio, 5 test d idépedace, 8 test d homogééité ou de comparaiso, 5 test d hypothèse, 5 test d idépedace ou d associatio, 5 test de coformité, 5 test de Kolmogorov, test uilatéral, 6 test uilatérale, 6 tests o paramétriques, 5 tests paramétriques, 5 Théorème de Gliveko-Catelli, 0

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (8/0/003) Chapitre 7 Tests d hypothèse Sommaire. Itroductio.. 3. Pricipe des tests......3.. Choix de l hypothèse à tester.4... Hypothèse

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne 1 lois usuelles 11 Loi Biomiale B(, p) q = 1 p p(x = k) = C k p k q k Espérace E(X) = p Variace : V ar(x) = pq Écart type : σ = pq 12 Loi de Poisso P(λ) : loi de Poisso de paramètre λ > 0 : X(Ω) = N λ

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple.

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple. Théorie des tests : Rappel très simplifié sur u exemple. Aexe I Test de l efficacité d u remède sur des malades atteit d u rhume. p 0 : probabilité de guérir das les huit jours avec u placebo p 1 : probabilité

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Aée uiversitaire 2014 2015 L2 Écoomie Cours de B. Desgraupes Méthodes Statistiques Séace 11: Tests d adéquatio II Table des matières 1 Test de Kolmogorov-Smirov

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

Introduction aux théorèmes limites et aux intervalles de confiance

Introduction aux théorèmes limites et aux intervalles de confiance Chapitre 5 Itroductio aux théorèmes limites et aux itervalles de cofiace Objectifs du chapitre. Savoir approcher ue loi biomiale par ue loi de Poisso ou ue loi ormale. 2. Savoir approcher ue loi e appliquat

Plus en détail

Convergence en loi. Théorème de la limite centrale.

Convergence en loi. Théorème de la limite centrale. Uiversité Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 10 (semaie du 2 au 6 décembre 2013 Covergece e loi. Théorème de la limite cetrale. Covergece e loi 1. Soiet (X N ue

Plus en détail

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1.

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1. Statistiques iféretielles Pierre-Heri WUILLEMIN Licece d Iformatique Uiversité Paris 6 Itroductio Soit ue populatio de taille N sur laquelle o observe ue propriété, dot o veut calculer moyee µ et de variace

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Echantillon : Collection d'individus prélevés dans la population statistique.

Echantillon : Collection d'individus prélevés dans la population statistique. SONDAGE (ECHANTILLONNAGE) POPULATION STATISTIQUE N idividus possédat ue modalité yi de la (ou des) variable(s) y ( i N) PARAMETRES valeur cetrale dispersio corrélatio µ σ² ρ moyee variace coef. corr. ECHANTILLON

Plus en détail

Estimation de paramètres

Estimation de paramètres CHAPITRE 8 Estimatio de paramètres 1. Distributio des moyees des échatillos Das ce chapitre, ous étudieros commet est distribué la moyee de tous les échatillos de taille possibles d ue certaie populatio.

Plus en détail

Intervalles de fluctuations et intervalles de confiance

Intervalles de fluctuations et intervalles de confiance Complémets e statistique. Préparatio au Capes. Uiversité de Rees 1. 2015. Complémets e Statistique Préparatio au Capes Uiversité de Rees 1 Itervalles de fluctuatios et itervalles de cofiace Table des matières

Plus en détail

CONVERGENCE ET APPROXIMATION

CONVERGENCE ET APPROXIMATION 11-2- 2010 J.F.C. Cov. p. 1 CONVERGENCE ET APPROXIMATION I CONVERGENCE EN PROBABILITÉ 1. Défiitio 2. Ue coditio suffisate de covergece e probabilité 3. La loi faible des grads ombres 4. Ue coséquece de

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

Résumé de statistique inductive

Résumé de statistique inductive Uiversité de Bourgoge Faculté de Médecie et de Pharmacie Résumé de statistique iductive NB : les iformatios coteues das ce polycopié e fot e aucu cas office de référece pour le cocours, il s agit uiquemet

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

ANOVA avec un facteur aléatoire

ANOVA avec un facteur aléatoire Chapitre 7 ANOVA avec u facteur aléatoire Jusqu à maiteat, o a supposé que les modalités du facteur étudié ot été choisies parce qu elles étaiet itrisèquemet itéressates. Le modèle à effets fixes porte

Plus en détail

Texte Filtre de Kalman-Bucy

Texte Filtre de Kalman-Bucy Page 1. Texte Filtre de Kalma-Bucy 1 e modèle U avio se déplace etre Paris et odres. Il suit ue trajectoire théorique appelée trajectoire omiale dot les coordoées sot coues de tous. a trajectoire de l

Plus en détail

Estimation paramétrique

Estimation paramétrique Retour au pla du cours Soit Ω, A, P u espace probabilisé et X ue v.a. de Ω, A das E, E. La doée d u modèle statistique c est la doée d ue famille de probabilités sur E, E, {P θ, θ Θ}. Le modèle état doé,

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

Master Eseec Statistique pour l expertise - partie2

Master Eseec Statistique pour l expertise - partie2 Master Eseec Statistique pour l expertise - partie2 Christia Laverge Uiversité Paul Valéry - Motpellier 3 http://moodle-miap.uiv-motp3.fr http://www.uiv-motp3.fr/miap/es (UPV) Eseec 1 / 57 Lois limites

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Quelques notions élementaires de probabilités et statistiques

Quelques notions élementaires de probabilités et statistiques Chapitre 6 Quelques otios élemetaires de probabilités et statistiques 6.1 Probabilités U uivers Ω est u esemble modélisat les réalisatios possibles d ue expériece. U esemble A P(Ω) modélise la otio d évéemet

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques CHAPITRE 2 : Estimatio o-paramétrique 1. Estimateurs empiriques Soit u échatillo i.i.d. de durées T i i1,..., de foctio de survie S Défiitio: L estimateur empirique de la foctio de survie est S x 1 i1

Plus en détail

Séance 5 : Exercices récapitulatifs sur l estimation ponctuelle

Séance 5 : Exercices récapitulatifs sur l estimation ponctuelle Math-F-207 Corrigé Séace 5 Exercice 1 Séace 5 : Exercices récapitulatifs sur l estimatio poctuelle Les élémets d ue populatio possèdet u caractère X qui suit ue loi de desité f (x e x2 /2 2π où > 0. Pour

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

II - Estimation d'un paramètre par intervalle de confiance

II - Estimation d'un paramètre par intervalle de confiance II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1.

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1. Cours 5 Idépedace 1 Das le cours précédet, ous avos vu que la variable Y était idépedate de la variable X si ses distributios coditioelles e fréquece sot égales ; das ce cas e effet, la mesure de X sur

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Distributions d échantillonage

Distributions d échantillonage Chapitre 3 Distributios d échatilloage 3.1 Gééralités sur la otio d échatilloage 3.1.1 Populatio et échatillo O appelle populatio la totalité des uités de importe quel gere prises e cosidératio par le

Plus en détail

Estimation par intervalle de confiance

Estimation par intervalle de confiance 62 CHAPITRE 12 Estimatio par itervalle de cofiace 1. Estimatio de la moyee par itervalle de cofiace 1.1. Calcul de la marge d erreur. O veut maiteat faire ue estimatio par itervalle de cofiace de la moyee

Plus en détail

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE MATTHIEU KOWALSKI 1. INTRODUCTION La démarche statistique cosiste à observer ue expériece aléatoire das le but de mieux coaître ses caractéristiques.

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

10ème cours Une variable numérique : indices de localisation

10ème cours Une variable numérique : indices de localisation 10ème cours Ue variable umérique : idices de localisatio Das ce cours, o fait u rappel sur les idices de localisatio, médiae, quatiles et moyee, et o étudie la faço de les utiliser pour comparer les distributios

Plus en détail

Utilisation en modélisation. Régression linéaire

Utilisation en modélisation. Régression linéaire Utilisatio e modélisatio Régressio liéaire La régressio est l ue des otios basiques de la statistique et de l aalyse des doées. Gééralemet, le problème cosiste à décrire la dépedace etre deux variables

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

TUTORAT UE Biostatistiques Correction du concours blanc 03/11/2011

TUTORAT UE Biostatistiques Correction du concours blanc 03/11/2011 FACULTE De PHARMACIE TUTORAT UE4 2011-2012 Biostatistiques Correctio du cocours blac 03/11/2011 QCM 1 : b, c, d a Faux : P(AUB=P(A+P(B=0,55 et P(A B=Ø. b Vrai c Vrai d Vrai : C 5 - C 5 32 28 (ombre de

Plus en détail

i la moyenne empirique de X n n v =

i la moyenne empirique de X n n v = Corrigé Statistiques iféretielle par par Pierre Veuillez Itervalle de cofiace. Exercice Détermier ue valeur approchée de la loi de la moyee empirique : E X E X, V X V X doc X N E X, V X Exercices. Variace

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

CORRIGE DES EXERCICES : Exercices de révision

CORRIGE DES EXERCICES : Exercices de révision U.F.R. S.P.S.E. Licece de psychologie L5 PLPSTA03 Tests d'hypothèses statistiques UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Exercices de révisio Exercice 8. P{filles de 0 as}, X ombre de boes

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

Intervalles de confiance

Intervalles de confiance Itervalles de cofiace H4 H4 Itervalles de cofiace Vocabulaire : u correspod à ue fiabilité (ou cofiace) de 95 %, u correspod à ue fiabilité (ou cofiace) de 99 % 0 ) Echatillo o exhaustif La théorie des

Plus en détail

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs.

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs. Exercice Séace 2 : Estimateurs covergets, o biaisés et exhaustifs. Soiet les variables aléatoires X i i =,..., i.i.d. Motrez que S 2 = X i X 2 est u estimateur o biaisé de σ 2, où σ 2 = V ar[x ]. O utilise

Plus en détail

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne :

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne : I. Itroductio. LOIS NORMALES. Voici quelques exemples de courbes proveat de la vie quotidiee : La répartitio du QI das la populatio Le poids d ue populatio de chatos Répartitio des coscrits e 1907 Age

Plus en détail

BASES DE LA STATISTIQUE INFERENTIELLE

BASES DE LA STATISTIQUE INFERENTIELLE Polytech Paris-UPMC Probabilités-statistiques Chapitre 4 BASES DE LA STATISTIQUE INFERENTIELLE Ue equête statistique est ue étude gééralemet réalisée sur u petit groupe d objets, d uités, de persoes que

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

Divers exercices de probabilité

Divers exercices de probabilité Divers exercices de probabilité Traiter e priorité les quatre premiers exercices de chaque sectio. 1 Probabilité Exercice 1.1 Mo voisi a deux efats. 1- Le plus jeue est ue fille, quelle est la probabilité

Plus en détail

Intervalle de confiance - Données censurées

Intervalle de confiance - Données censurées Itervalle de cofiace - Doées cesurées Durées de vie expoetielles: Echatillo complet Supposos que ous avos eregistré u échatillo complet de durées de vie T,T 2,,T qui sot i.i.d. suivat ue expoetielle dot

Plus en détail

Éléments de probabilités

Éléments de probabilités Chapitre 1 Élémets de probabilités 1.1 Notio d expériece aléatoire Défiitio 1 Ue expériece, dot o coait les issues possibles, est appelé expériece aléatoire s il est impossible de savoir à l avace quelle

Plus en détail

Corrigé Fiche 6 Septembre 2016

Corrigé Fiche 6 Septembre 2016 Corrigé Fiche 6 Septembre 2016 1. Estimatio de la moyee, variace coue, cas gaussie O dispose d u -échatillo X 1,..., X i.i.d. tel que X i suit ue loi ormale N µ, σ 2 ). L objectif est d estimer µ. Supposos

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

CH V : Variables aléatoires - généralités

CH V : Variables aléatoires - généralités CH V : Variables aléatoires - gééralités I. Notio de variable aléatoire réelle Soit (Ω, A ) u espace probabilisable. O dit que X est ue variable aléatoire réelle défiie sur (Ω, A ) si : (i) X est ue applicatio

Plus en détail

Corrélation et régression linéaires

Corrélation et régression linéaires Corrélatio et régressio liéaires Corrélatio liéaire Situatio evisagée: u échatillo de sujets, deux variables umériques observées (ou ue variable observée das deux coditios). Doées : X Y s 1 x 1 y 1 s 2

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation U.F.R. S.P.S.E. Licece de psychologie L3 PLPSTA0 Bases de la statistique iféretielle UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Distributios d'échatilloage - Itervalles de variatio Exercice 1

Plus en détail

TD Modélisation Statistique

TD Modélisation Statistique Licece 3 Mathématiques TD Modélisatio Statistique Ex 1. Soit X ue variable aléatoire réelle de desité f cotiue et de foctio répartitio F. 1. Calculer la foctio de répartitio de Y = αx + β pour α, β R,

Plus en détail

Théorèmes limites et méthode delta

Théorèmes limites et méthode delta Chapitre. Théorèmes limites et méthode delta O suppose que les premiers théorèmes limites pour ue suite de variables i.i.d. sot cous : le lecteur peut se référer au cours de Mihai Gradiaru (), ou ecore

Plus en détail

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales Filtratios et martigales 1 [M. Gubielli - Processus discrets - M1 MMD 2009/2010-20100113 - v.6] IV Martigales 1 Filtratios et martigales O cosidère u espace probabilisé (Ω, F, P). Défiitio 1. Ue filtratio

Plus en détail

ANOVA Analyse de la Variance

ANOVA Analyse de la Variance Chapitre 8 ANOVA Aalyse de la Variace. Obectif de la méthode Chap 8.. Obectif de la méthode. Approche ituitive 3. Décompositio de la variace 4. ANOVA: le test et le modèle statistique sous-acet O s itéresse

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 006 EPREUVE SPECIIQUE ILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot autorisées * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

Calcul des probabilités 2 (M-2.1)

Calcul des probabilités 2 (M-2.1) Calcul des probabilités (M-.) I. Probabilités sur u esemble fii. Défiitios Défiitio Ue expériece aléatoire est ue expériece dot il est impossible de prévoir l issue (mais o coaît toutes les issues possibles)

Plus en détail

Lois normales et autres lois dérivées

Lois normales et autres lois dérivées Lois ormales et autres lois dérivées - Lois ormales a) - Défiitio O dit qu'ue variable aléatoire réelle X suit la loi ormale (ou gaussiee) de paramètres et, otée N ( ; ), si elle admet pour desité la foctio

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Statistique inférentielle I - Estimation

Statistique inférentielle I - Estimation Statistique iféretielle I - Estimatio Nathalie Cheze July 9, 2007 Itroductio. Notio d échatillo Soit u esemble de taille N, appelé populatio. O veut étudier la populatio relativemet à u caractère statistique

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P.

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. 351-355) Page 1 1. Notio de «série statistique» Il s agit d ue série de doées recueillies auprès des différetes uités statistiques d u

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

Notes de cours Biostatistiques MIV (L3) Vraisemblance

Notes de cours Biostatistiques MIV (L3) Vraisemblance Notes de cours Biostatistiques MIV (L3) Vraisemblace M. Bailly-Bechet Uiversité Claude Berard Lyo 1 Frace 1 Rappels sur les variables aléatoires : espérace et variace Pour otre usage, ue variable aléatoire

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Notes de Cours : STATISTIQUES. Christine Kazantsev http ://www-ljk.imag.fr/membres/frederique.leblanc/

Notes de Cours : STATISTIQUES. Christine Kazantsev http ://www-ljk.imag.fr/membres/frederique.leblanc/ Notes de Cours : STATISTIQUES Frédérique Leblac Christie Kazatsev http ://www-ljk.imag.fr/membres/frederique.leblac/ 27 octobre 2009 1 Chapitre 1 Itroductio O souhaite étudier u caractère X sur ue populatio

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

Chapitre 1 : Statistique descriptive univariée

Chapitre 1 : Statistique descriptive univariée Biostatistiques Licece Chapitre : Statistique descriptive uivariée Itroductio Statistique : esemble de méthodes scietifiques destiées à la collecte, la présetatio et l aalyse de doées. Jeux de doées Applicatio

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail