LES DROITES PARALLELES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "LES DROITES PARALLELES"

Transcription

1 LES DROITES PARALLELES D. LE FUR Lycée Pasteur, São Paulo

2 Le théorème de Thalès

3 Les configurations de Thalès Le triangle N B O M A

4 Les configurations de Thalès Le triangle La figure papillon N B B O M A M N O A

5 Les configurations de Thalès Le triangle La figure papillon N B B O M A M N O A Sur les deux figures suivantes, les droites (AB) et (MN) sont parallèles.

6 Les configurations de Thalès Le triangle La figure papillon N B B O M A M N O A Sur les deux figures suivantes, les droites (AB) et (MN) sont parallèles. Chacune des configurations fait intervenir cinq points :

7 Les configurations de Thalès Le triangle La figure papillon N B B O M A M N O A Sur les deux figures suivantes, les droites (AB) et (MN) sont parallèles. Chacune des configurations fait intervenir cinq points : les quatre points situés sur les parallèles : A, B, M et N ;

8 Les configurations de Thalès Le triangle La figure papillon N B B O M A M N O A Sur les deux figures suivantes, les droites (AB) et (MN) sont parallèles. Chacune des configurations fait intervenir cinq points : les quatre points situés sur les parallèles : A, B, M et N ; le dernier point O intersection des sécantes.

9 Conseil : pour une meilleure lisibilité de la configuration de Thalès, il sera important de mettre en couleurs les parallèles et le point d intersection des sécantes.

10 L énoncé du théorème

11 L énoncé du théorème M est sur (OA)

12 L énoncé du théorème M est sur (OA) N est sur (OB)

13 L énoncé du théorème M est sur (OA) N est sur (OB) (MN) // (AB)

14 L énoncé du théorème M est sur (OA) N est sur (OB) (MN) // (AB) D après le théorème de Thalès,

15 L énoncé du théorème M est sur (OA) N est sur (OB) (MN) // (AB) D après le théorème de Thalès, OM OA = ON OB = MN AB

16 L énoncé du théorème M est sur (OA) N est sur (OB) (MN) // (AB) D après le théorème de Thalès, OM OA = ON OB = MN AB NB : il est très important de respecter cette présentation et de mettre en couleur le fameux point O.

17 Le but du théorème Le théorème de Thalès sert à calculer une longueur.

18 Le but du théorème Le théorème de Thalès sert à calculer une longueur. Pour celà, on choisira deux des trois rapports du théorème dans lesquels on connaîtra trois longueurs et où la quatrième est la longueur à calculer.

19 Première application : dans un triangle Enoncé L K R S M Sur la figure ci-contre, les dimensions ne sont pas respectées. Les droites (RS) et (LK) sont parallèles. On donne : LM = 6cm, LK = 5cm, KM = 8cm et SM = 6cm. Calculer RM.

20 Solution Calculons RM.

21 Solution Calculons RM. R est sur (ML)

22 Solution Calculons RM. R est sur (ML) S est sur (MK)

23 Solution Calculons RM. R est sur (ML) S est sur (MK) (RS) // (LK)

24 Solution Calculons RM. R est sur (ML) S est sur (MK) (RS) // (LK) D après le théorème de Thalès,

25 Solution Calculons RM. R est sur (ML) S est sur (MK) (RS) // (LK) D après le théorème de Thalès, MR ML = MS MK = RS LK

26 Solution Calculons RM. D où MR ML = MS MK R est sur (ML) S est sur (MK) (RS) // (LK) D après le théorème de Thalès, MR ML = MS MK = RS LK

27 Solution Calculons RM. R est sur (ML) S est sur (MK) (RS) // (LK) D après le théorème de Thalès, MR ML = MS MK = RS LK D où MR ML = MS MK MR 6 = 6 8

28 Solution Calculons RM. R est sur (ML) S est sur (MK) (RS) // (LK) D après le théorème de Thalès, MR ML = MS MK = RS LK D où MR ML = MS MK MR 6 = MR = 6 6

29 Solution Calculons RM. R est sur (ML) S est sur (MK) (RS) // (LK) D après le théorème de Thalès, MR ML = MS MK = RS LK D où MR ML = MS MK MR 6 = MR = 6 6 MR = 36 8

30 Solution Calculons RM. R est sur (ML) S est sur (MK) (RS) // (LK) D après le théorème de Thalès, MR ML = MS MK = RS LK D où MR ML = MS MK MR 6 = MR = 6 6 MR = 36 8 MR = 9 2

31 Deuxième application : dans un figure papillon Enoncé A B E D C Sur la figure ci-contre, les dimensions ne sont pas respectées. Les droites (AB) et (CD) sont parallèles. Les droites (AC) et (BD) sont sécantes en E. On donne : AB = 3cm, BD = 9cm, AC = 6cm et BE = 5cm. Calculer CD.

32 Solution Calculons CD.

33 Solution Calculons CD. C est sur (EA)

34 Solution Calculons CD. C est sur (EA) D est sur (EB)

35 Solution Calculons CD. C est sur (EA) D est sur (EB) (CD) // (AB)

36 Solution Calculons CD. C est sur (EA) D est sur (EB) (CD) // (AB) D après le théorème de Thalès,

37 Solution Calculons CD. C est sur (EA) D est sur (EB) (CD) // (AB) D après le théorème de Thalès, EC EA = ED EB = CD AB

38 Solution Calculons CD. D où ED EB = CD AB C est sur (EA) D est sur (EB) (CD) // (AB) D après le théorème de Thalès, EC EA = ED EB = CD AB

39 Solution Calculons CD. C est sur (EA) D est sur (EB) (CD) // (AB) D après le théorème de Thalès, EC EA = ED EB = CD AB D où ED EB = CD AB avec ED = BD BE ED = 9 5 = 4cm

40 Solution Calculons CD. C est sur (EA) D est sur (EB) (CD) // (AB) D après le théorème de Thalès, EC EA = ED EB = CD AB D où ED EB = CD AB avec ED = BD BE ED = 9 5 = 4cm 4 5 = CD 3

41 Solution Calculons CD. C est sur (EA) D est sur (EB) (CD) // (AB) D après le théorème de Thalès, EC EA = ED EB = CD AB D où ED EB = CD AB avec ED = BD BE ED = 9 5 = 4cm 4 5 = CD 3 5 CD = 4 3

42 Solution Calculons CD. C est sur (EA) D est sur (EB) (CD) // (AB) D après le théorème de Thalès, EC EA = ED EB = CD AB D où ED EB = CD AB avec ED = BD BE ED = 9 5 = 4cm 4 5 = CD 3 5 CD = 4 3 CD = 12 5

43 La réciproque du théorème de Thalès

44 Enoncé de la réciproque

45 Enoncé de la réciproque A est sur (RS)

46 Enoncé de la réciproque A est sur (RS) B est sur (RT)

47 Enoncé de la réciproque A est sur (RS) B est sur (RT) L ordre des points est respecté.

48 Enoncé de la réciproque A est sur (RS) B est sur (RT) L ordre des points est respecté. D après la réciproque du théorème de Thalès,

49 Enoncé de la réciproque A est sur (RS) B est sur (RT) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si

50 Enoncé de la réciproque A est sur (RS) B est sur (RT) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si RA RS = RB RT,

51 Enoncé de la réciproque A est sur (RS) B est sur (RT) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si alors RA RS = RB RT,

52 Enoncé de la réciproque A est sur (RS) B est sur (RT) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si RA RS = RB RT, alors (AB) // (ST).

53 Enoncé de la réciproque A est sur (RS) B est sur (RT) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si RA RS = RB RT, alors (AB) // (ST).

54 Cet énoncé est valable pour l une des deux configurations suivantes : Le triangle La figure papillon B T T R A S A B R S

55 L hypothèse sur l ordre des points sert à éliminer les figures du type ci-contre pour lesquelles les rapports sont égaux alors que les droites ne sont de toute évidence pas parallèles. A R B T S

56 L hypothèse sur l ordre des points sert à éliminer les figures du type ci-contre pour lesquelles les rapports sont égaux alors que les droites ne sont de toute évidence pas parallèles. A R B T S RA RS = RB RT = 2, mais les droites ne sont pas parallèles. 3

57 But de la réciproque La réciproque du théorème de Thalès sert à vérifier si deux droites sont parallèles.

58 But de la réciproque La réciproque du théorème de Thalès sert à vérifier si deux droites sont parallèles. Pour cela, on est amené à comparer les deux rapports de l énoncé.

59 But de la réciproque La réciproque du théorème de Thalès sert à vérifier si deux droites sont parallèles. Pour cela, on est amené à comparer les deux rapports de l énoncé. Il faut donc connaître les quatre longueurs concernées ou du moins les deux rapports.

60 Première application : les droites sont parallèles Enoncé E V U G F Sur la figure ci-contre, les dimensions ne sont pas respectées. On donne : EF = 6cm, EG = 5cm, FG = 4cm, EU = 2,4cm et EV = 2cm Les droites (FG) et (UV ) sontelles parallèles?

61 Solution Vérifions si (FG) // (UV )..

62 Solution Vérifions si (FG) // (UV ). U est sur (EF).

63 Solution Vérifions si (FG) // (UV ). U est sur (EF) V est sur (EG).

64 Solution Vérifions si (FG) // (UV ). U est sur (EF) V est sur (EG) L ordre des points est respecté..

65 Solution Vérifions si (FG) // (UV ). U est sur (EF) V est sur (EG) L ordre des points est respecté. D après la réciproque du théorème de Thalès,.

66 Solution Vérifions si (FG) // (UV ). U est sur (EF) V est sur (EG) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si EU EF = EV EG,.

67 Solution Vérifions si (FG) // (UV ). U est sur (EF) V est sur (EG) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si EU EF = EV EG, alors (UV ) // (EF).

68 Solution Vérifions si (FG) // (UV ). Vérifions en calculant les produits en croix : U est sur (EF) V est sur (EG) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si EU EF = EV EG, alors (UV ) // (EF).

69 Solution Vérifions si (FG) // (UV ). U est sur (EF) V est sur (EG) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si EU EF = EV EG, Vérifions en calculant les produits en croix : EU EG = 2,4 5 = 12 alors (UV ) // (EF).

70 Solution Vérifions si (FG) // (UV ). U est sur (EF) V est sur (EG) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si EU EF = EV EG, Vérifions en calculant les produits en croix : EU EG = 2,4 5 = 12 EV EF = 2 6 = 12 alors (UV ) // (EF).

71 Solution Vérifions si (FG) // (UV ). U est sur (EF) V est sur (EG) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si EU EF = EV EG, Vérifions en calculant les produits en croix : EU EG = 2,4 5 = 12 EV EF = 2 6 = 12 Comme EU EF = EV EG, alors (UV ) // (EF).

72 Solution Vérifions si (FG) // (UV ). U est sur (EF) V est sur (EG) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si EU EF = EV EG, Vérifions en calculant les produits en croix : EU EG = 2,4 5 = 12 EV EF = 2 6 = 12 Comme EU EF = EV EG, (UV ) // (EF). alors (UV ) // (EF).

73 Deuxième application : les droites ne sont pas parallèles Enoncé E F A C B Sur la figure ci-contre, les dimensions ne sont pas respectées. On donne : AB = 6cm, BC = 4cm, AC = 5cm, EA = 5cm et AF = 4cm Les droites (EF) et (BC) sont-elles parallèles?

74 Solution Vérifions si (EF) // (BC).

75 Solution Vérifions si (EF) // (BC). E est sur (AB)

76 Solution Vérifions si (EF) // (BC). E est sur (AB) F est sur (AC)

77 Solution Vérifions si (EF) // (BC). E est sur (AB) F est sur (AC) L ordre des points est respecté.

78 Solution Vérifions si (EF) // (BC). E est sur (AB) F est sur (AC) L ordre des points est respecté. D après la réciproque du théorème de Thalès,

79 Solution Vérifions si (EF) // (BC). E est sur (AB) F est sur (AC) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si AE AB = AF AC,

80 Solution Vérifions si (EF) // (BC). E est sur (AB) F est sur (AC) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si AE AB = AF AC, alors (EF) // (BC).

81 Solution Vérifions si (EF) // (BC). Vérifions en calculant les produits en croix : E est sur (AB) F est sur (AC) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si AE AB = AF AC, alors (EF) // (BC).

82 Solution Vérifions si (EF) // (BC). E est sur (AB) F est sur (AC) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si AE AB = AF AC, Vérifions en calculant les produits en croix : AE AC = 5 5 = 25 alors (EF) // (BC).

83 Solution Vérifions si (EF) // (BC). E est sur (AB) F est sur (AC) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si AE AB = AF AC, Vérifions en calculant les produits en croix : AE AC = 5 5 = 25 AB AF = 6 4 = 24 alors (EF) // (BC).

84 Solution Vérifions si (EF) // (BC). E est sur (AB) F est sur (AC) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si AE AB = AF AC, Vérifions en calculant les produits en croix : AE AC = 5 5 = 25 AB AF = 6 4 = 24 Comme AE AB AF AC, alors (EF) // (BC).

85 Solution Vérifions si (EF) // (BC). E est sur (AB) F est sur (AC) L ordre des points est respecté. D après la réciproque du théorème de Thalès, si AE AB = AF AC, alors (EF) // (BC). Vérifions en calculant les produits en croix : AE AC = 5 5 = 25 AB AF = 6 4 = 24 Comme AE AB AF AC, les droites (UV ) et (EF) ne sont pas parallèles.

86 La droite des milieux

87 Première propriété A I J B C Dans le triangle ABC, I milieu de [AB]. J milieu de [AC]. D après la première propriété des milieux, IJ = BC 2 et (IJ) // BC.

88 Deuxième propriété E R S F G Dans le triangle EFG, R milieu de [EF]. La parallèle à (FG) passant par R coupe [EG] en S. D après la seconde propriété des milieux, R est le milieu de [EG].

89 Angles et parallélisme

90 Les angles alternes internes x A x z y B y z Sur le dessin ci-dessus, les angles alternes internes xab et ÂBy étant de même mesure, alors les droites (xx ) et (yy ) sont parallèles.

91 Les angles correspondants x R x z y S y z Sur le dessin ci-dessus, les angles correspondants zrx et RSy étant de même mesure, alors les droites (xx ) et (yy ) sont parallèles.

92 Les droites perpendiculaires A (d) B (d ) Sur le dessin ci-dessus, (d) (AB) (d ) (AB) alors, (d) // (d ).

1 Le théorème de Pythagore

1 Le théorème de Pythagore OJCIF du chapitre Numéro héorème de halès Pour toi G1 Connaître et utiliser le théorème de Pythagore G2 Connaître et utiliser la réciproque du théorème de Pythagore G3 Connaître et utiliser le théorème

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

3 ème BREVET THEOREME DE THALES

3 ème BREVET THEOREME DE THALES Exercice 1 1 Construire un triangle ABC tel que AB = 6 cm AC = 7,2 cm et BC = 10 cm Placer les points R, T et E tels que : R [AB] et AR = 4,5 cm T [AC] et (RT) // (BC) E [AB) et E [AB] et BE = 2 cm 1 2

Plus en détail

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

Théorème de Thalès. 1 Qui était Thalès? 2 Théorème de Thalès. 2.1 Enoncé du théorème de Thalès

Théorème de Thalès. 1 Qui était Thalès? 2 Théorème de Thalès. 2.1 Enoncé du théorème de Thalès Théorème de Thalès 1 Qui était Thalès? Thalès serait né autour de 625 avant J.C. à Milet en Asie Mineure (actuelle Turquie). Considéré comme l un des sept sages de l Antiquité, il est à la fois mathématicien,

Plus en détail

NOM : THALES 4ème. Exercice 1

NOM : THALES 4ème. Exercice 1 Exercice 1 1) Construire un triangle RST tel que RT = 7cm et RS = 6cm. 2) Placer le point A sur le segment [RS] tel que RA = 2cm. Tracer la parallèle à la droite (ST ) passant par A : elle coupe le segment

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

Théorème de Thalès Corrigés d exercices / Version de décembre 2012

Théorème de Thalès Corrigés d exercices / Version de décembre 2012 Corrigés d exercices / Version de décembre 0 Les exercices du livre corrigés dans ce document sont les suivants : Page 06 : N, 4, 7, 8 Page 07 : N 0, 4 Page : N 5 Page : N 53 N page 06 Le segment [ AB

Plus en détail

Théorèmes et réciproques de Pythagore et Thales

Théorèmes et réciproques de Pythagore et Thales Théorèmes et réciproques de Pythagore et Thales I) Théorème de Pythagore : Soit ABC un triangle rectangle en B : Théorème de Pythagore : Si ABC est un triangle rectangle en B alors AC² = AB² + BC² Exemple

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Symétrie axiale. Translation Rotation LES TRANSFORMATIONS D. LE FUR. Lycée Pasteur, São Paulo D. LE FUR LES TRANSFORMATIONS

Symétrie axiale. Translation Rotation LES TRANSFORMATIONS D. LE FUR. Lycée Pasteur, São Paulo D. LE FUR LES TRANSFORMATIONS LES TRANSFORMATIONS D. LE FUR Lycée Pasteur, São Paulo Symétrie centrale Symétrique d un point A O A Symétrique d un point A O A Le symétrique A du point A dans la symétrie de centre O est tel que O soit

Plus en détail

Si le travail n est pas terminé, laisse tout de même une trace de recherche. Elle sera prise en compte dans la notation.

Si le travail n est pas terminé, laisse tout de même une trace de recherche. Elle sera prise en compte dans la notation. 3 ème E IE3 théorème de Thalès 2015-2016 S1 Les droites (TP) et (YG) sont sécantes en I. IP = 5 cm ; IG = 7 cm ; IY = 1,4 cm ; YT = 0,8 cm ; TI = 1 cm. 1) Les droites (PG) et (YT) sont-elles parallèles?

Plus en détail

THEOREME DE THALES et sa réciproque

THEOREME DE THALES et sa réciproque Chapitre 3 THEOREME DE THALES et sa réciproque 1 I. Théor orème de Thalès 1) Rappel Soient a, b, c et d 4 nombres tels que b 0 et d 0, Si a b = c d alors a d = b c {égalité des «produits en croix»} On

Plus en détail

Exercice p 219, n 3 : Quatre droites sont tracées et les deux droites rouges sont parallèles. Enoncer le théorème de Thalès.

Exercice p 219, n 3 : Quatre droites sont tracées et les deux droites rouges sont parallèles. Enoncer le théorème de Thalès. Exercice p 219, n 3 : Quatre droites sont tracées et les deux droites rouges sont parallèles Enoncer le théorème de Thalès Les droites ( BA ) et ( ZI ) sont sécantes en R, et les droites ( AI ) et ( BZ

Plus en détail

NOM : DROITE DES MILIEUX 4ème

NOM : DROITE DES MILIEUX 4ème Exercice 1 Soit ABCD un carré de côté 8cm. On appelle I le milieu de [AB] et L le milieu de [DA]. 1) Faire une figure. 2) Montrer que les droites (IL) et (BD) sont parallèles. 3) En utilisant les propriétés

Plus en détail

1 Rappels C est quoi une propriété? Démontrer... 4

1 Rappels C est quoi une propriété? Démontrer... 4 Sommaire 1 Rappels. 2 1.1 C est quoi une propriété?...................... 2 1.2 Démontrer............................... 4 2 Théorème des milieux. 5 2.1 Propriété n 1.............................. 5 2.2

Plus en détail

Chapitre 14 Propriétés de Thalès

Chapitre 14 Propriétés de Thalès Chapitre 14 Propriétés de Thalès Pour les exercices 1 et 2, écrire les égalités données par le théorème de Thalès sans rédiger la justification. 1 a. Les droites (NP) et (QM) sont parallèles. b. Les droites

Plus en détail

Chapitre 5 : Droites perpendiculaires et droites parallèles

Chapitre 5 : Droites perpendiculaires et droites parallèles Chapitre 5 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

Mercredi 28 janvier Collège La Charme

Mercredi 28 janvier Collège La Charme BREVET BLANC ÉPREUVE DE MATHÉMATIQUES Mercredi 28 janvier 2009 Collège La Charme Durée : 2 heures L emploi des calculatrices est autorisé En plus des point prévus pour chacune des trois parties de l épreuve,

Plus en détail

Chapitre 4 : Droites perpendiculaires et droites parallèles

Chapitre 4 : Droites perpendiculaires et droites parallèles Chapitre 4 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

FG² = EF² + EG² 7² = 2² + EG² 49 = 4 + EG² EF = 2, FG = 7, EG =? EG² = 49 4 = 45 EG = = 3 EG 6,7

FG² = EF² + EG² 7² = 2² + EG² 49 = 4 + EG² EF = 2, FG = 7, EG =? EG² = 49 4 = 45 EG = = 3 EG 6,7 EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES EXERCICES CORRECTION EXERCICE N 1 : Figure 1 : ABC est rectangle en A, donc, BC² = AB² + AC² BC² = 5² + 7² BC² = 25 + 49 AB = 5, AC

Plus en détail

S14C. Autour de la TRIGONOMETRIE Corrigé

S14C. Autour de la TRIGONOMETRIE Corrigé CRPE S4C. Autour de la TRIGONOMETRIE Corrigé Mise en route A. Le triangle MNP étant rectangle en P, on peut utiliser la trigonométrie. [MN] est l hypoténuse du triangle, [MP] est le côté adjacent à et

Plus en détail

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que

ANNEXES. I. Documents cinquième. a. Fiche modèle à rendre avec la figure. Données. Je sais que D après la propriété J en conclus que ANNEXES I. Documents cinquième a. Fiche modèle à rendre avec la figure Noms : Données Je sais que D après la propriété J en conclus que Travail en groupe Exercice Groupe 1 Construire un triangle ABC rectangle

Plus en détail

TRIANGLES ET PARALLELES (DROITE DES MILIEUX - PROPRIETE DE THALES) II- Droite passant par le milieu d'un côté et parallèle à un deuxième côté:

TRIANGLES ET PARALLELES (DROITE DES MILIEUX - PROPRIETE DE THALES) II- Droite passant par le milieu d'un côté et parallèle à un deuxième côté: TRIANGLES ET PARALLELES (DROITE DES MILIEUX - PROPRIETE DE THALES) I- Droite passant par les milieux de deux côtés : Soit ABC un triangle, M le milieu de [AB], N le milieu de [AC] Alors (MN) est parallèle

Plus en détail

agrandissement > 1 rapport coefficient d agrandissement réduction 0 < k < 1 rapport coefficient de réduction et k sont inverses k = 1

agrandissement   > 1 rapport coefficient d agrandissement    réduction 0 < k < 1 rapport coefficient de réduction et k sont inverses k = 1 ET SA RECIPROQUE I Agrandissement et réduction d un triangle Sur cette figure nous avons M (AB) et N () et (MN) // (). On peut dire que le triangle AMN est un agrandissement du triangle A. Toutes les longueurs

Plus en détail

QUADRILATERES. Exercice 1. Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles.

QUADRILATERES. Exercice 1. Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles. Exercice 1 Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles. A B 70 E 2) Montrer que (AE) et (CD) sont parallèles. 3) En déduire que AEDC est un parallélogramme.

Plus en détail

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9

THEOREMES DES MILIEUX DROITES PARALLELES Corrigés 1/9 DROITES PARALLELES Corrigés 1/9 Corrigé 01 Corrigé 02 On sait que ABC est un triangle, que I est le milieu de [ AB ] et J le milieu de [ BC ]. (IJ) est donc parallèle à la droite (BC). Corrigé 03 On sait

Plus en détail

Si k > 1, il s agit d un agrandissement à l échelle k. Si 0 < k < 1, il s agit d une réduction à l échelle k. Si k = 1, on parle de reproduction.

Si k > 1, il s agit d un agrandissement à l échelle k. Si 0 < k < 1, il s agit d une réduction à l échelle k. Si k = 1, on parle de reproduction. 1 THALES : THEOREME, RECIPROQUE CONTRAPOSEE I- AGRANDISSEMENT REDUCTION Définition : On appelle agrandissement ou réduction d une figure, la figure obtenue en multipliant toutes les longueurs de la figure

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Le théorème de Thalès

Le théorème de Thalès Le théorème de Thalès Programmes : 4 e : - Triangles, milieux et parallèles : théorèmes relatifs aux milieux de deux côtés d un triangle - Triangles déterminés par 2 droites parallèles coupant deux demi-droites

Plus en détail

Triangles et parallèles

Triangles et parallèles Triangles et parallèles I) Propriétés sur les droites des milieux : a) Première propriété ( pour montrer que deux droites sont parallèles ) : Soit ABC un triangle, M le milieu de [AB] et N le milieu de

Plus en détail

I- RACINE CARRÉE D UN NOMBRE

I- RACINE CARRÉE D UN NOMBRE Fiche d activités : activité 1 (vérification des acquis de 5 ème ) I- RACINE CARRÉE D UN NOMBRE Rappel : le carré d un nombre s obtient en multipliant ce nombre par lui-même. Soit a un nombre : a² = a

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Troisième Le théorème de Thalès et sa réciproque sguhel Collège Grand Parc ... 0 1 Le théorème de Thalès : calculer une distance... 2 1.1 Conjecture... 2 1.2 Démonstration... 3 1.3 Théorème... 4 1.4 Application...

Plus en détail

DROITES ET PLANS DE L'ESPACE

DROITES ET PLANS DE L'ESPACE DROITES ET PLANS DE L'ESPACE I. Positions relatives de droites et de plans 1) Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires.

Plus en détail

4) Sachant que l aire du triangle ABC est de 6 cm², calculer l aire du triangle AMN. Fiche d exercices : AGRANDISSEMENT REDUCTION

4) Sachant que l aire du triangle ABC est de 6 cm², calculer l aire du triangle AMN. Fiche d exercices : AGRANDISSEMENT REDUCTION Fiche d exercices : AGRANDISSEMENT REDUCTION Le format normal d une photo est 10 cm sur 15 cm. On propose des «agrandissements» : 13 19 ; 20 30 ; 30 45 ; 50 75. 1) L un des formats proposés n est pas correct?

Plus en détail

I. Le théorème de Thalès

I. Le théorème de Thalès lasse de 3ème hapitre 3 Le théorème de Thalès et sa réciproque I. Le théorème de Thalès 1 ère configuration : dans le triangle (4 e ) 1 ère configuration : Nœud papillon A N M M N A (MN) // (B) B B Théorème

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

Le théorème de Thalès et sa réciproque.

Le théorème de Thalès et sa réciproque. Le théorème de Thalès et sa réciproque. 1. Le théorème de Thalès. a. Première configuration. b. Deuxième configuration c. Enoncé général du théorème de Thalès. d. Exercices résolus et non résolus première

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

TRIANGLE RECTANGLE - REVISIONS. Le cercle circonscrit à un triangle rectangle a pour diamètre l'hypoténuse ou encore:

TRIANGLE RECTANGLE - REVISIONS. Le cercle circonscrit à un triangle rectangle a pour diamètre l'hypoténuse ou encore: TRIANGLE RECTANGLE - REVISIONS I- Cercle circonscrit à un triangle rectangle: 1) Propriété 1: Soit ABC un triangle rectangle en A. Le cercle circonscrit au triangle ABC a pour centre le point I milieu

Plus en détail

3 On rencontre 4 configurations de base selon la position de la variable. 7

3 On rencontre 4 configurations de base selon la position de la variable. 7 Théorème de THLES I - Produit en croix : x On utilise le produit en croix pour résoudre des équations du style : On rencontre 4 configurations de base selon la position de la variable. 7x 7 6 a) b) c)

Plus en détail

FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER

FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER Exercice n 1 : FICHE REVISION GEOMETRIE EN PREVISION DU DEVOIR COMMUN DE FEVRIER Sur la figure ci-contre : les points K, A, F, C sont alignés ; les points G, A, E, B sont alignés ; (EF) et (BC) sont parallèles

Plus en détail

Contrôle de MATHEMATIQUES

Contrôle de MATHEMATIQUES 6 ème M. QUET Contrôle de MTHEMTIQUES Exercice 1 : (Questions de cours) Compléter : (3 pts) Si deux droites ne sont pas parallèles alors on dit qu elles sont Si deux droites sont parallèles alors une perpendiculaire

Plus en détail

THEME : THEOREME DE THALES. Exercices corriges

THEME : THEOREME DE THALES. Exercices corriges THEME : THEOREME DE THALES Exercices corriges Exercice 1 : On sait que les droites (BC) et (MP) sont parallèles De plus, on a : AP = AM = 5 et AC = 6. Calculer AB. Dans les triangles ACB et APM P [AC]

Plus en détail

Exercice 1. Tracer un triangle RST tel que RS = 6 cm, RT = 8 cm et ST = 11 cm. Construire ses médiatrices et son cercle circonscrit.

Exercice 1. Tracer un triangle RST tel que RS = 6 cm, RT = 8 cm et ST = 11 cm. Construire ses médiatrices et son cercle circonscrit. Exercice 1 Tracer un triangle RST tel que RS = 6 cm, RT = 8 cm et ST = 11 cm. Construire ses médiatrices et son cercle circonscrit. On fera attention à la propreté et à la précision de la figure. R S T

Plus en détail

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires.

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires. 3 ème A IE3 théorème de Thalès 2015-2016 S1 Utiliser la figure suivante pour démontrer que les droites (TU) et (RS) sont parallèles. Calculer ensuite RS. UT = 3,5 cm OT = 3 cm OU = 2,7 cm OR = 7,2 cm OS

Plus en détail

Le théorème de Thalès et sa réciproque.

Le théorème de Thalès et sa réciproque. Le théorème de Thalès et sa réciproque. 1. Le théorème de Thalès. a. Première configuration. b. Deuxième configuration c. Enoncé général du théorème de Thalès. d. Exercices résolus et non résolus première

Plus en détail

Corrigé des exercices concernant les théorèmes de Pythagore et de Thalès

Corrigé des exercices concernant les théorèmes de Pythagore et de Thalès Corrigé des exercices concernant les théorèmes de Pythagore et de Thalès 1. utour du théorème de Pythagore Exercice 1 a. Dans C rectangle en d après le théorème de Pythagore: C² = ² + C² = 5 ² + 7 ² =

Plus en détail

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin.

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin. 3 ème A - B C Composition 2 de MATHÉMATIQUES Date : 03/03/2010 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 0 Présentation : / Les calculatrices sont autorisées (il est interdit de se

Plus en détail

I. Théorème de Thalès

I. Théorème de Thalès MDI Lycée Clément Ader THEOREME DE THALES I. Théorème de Thalès 1. Rappel (4ème) Dans un triangle ABC, si M est un point du côté [AB], N un point du côté [AC], et si les droites (BC) et (MN) sont parallèles,

Plus en détail

S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé

S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé CRPE Mise en route S13C. Autour des théorèmes de PYTHAGORE et THALES Corrigé A. Dans chaque exercice une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. Si le triangle

Plus en détail

Si un triangle est inscrit dans un cercle de diamètre l un de ses côtés alors, il est rectangle.

Si un triangle est inscrit dans un cercle de diamètre l un de ses côtés alors, il est rectangle. Correction des exercices de géométrie Exercice 1 2. Nature des triangles AMB et ANB : Les triangles AMB et ANB sont inscrits dans un cercle ayant pour diamètre [AB]. Propriété (4 ème ) Si un triangle est

Plus en détail

CHAPITRE 9 GÉOMÉTRIE

CHAPITRE 9 GÉOMÉTRIE CHAPITRE 9 GÉOMÉTRIE A) Le triangle (Rappels) 1) Droites et points remarquables a) Médianes et centre de gravité Les médianes sont les droites issues des sommets et passant par le milieu du côté opposé

Plus en détail

Chapitre 2 : Théorème de Thalès ; Pythagore (révisions)

Chapitre 2 : Théorème de Thalès ; Pythagore (révisions) hapitre 2 : Théorème de Thalès ; Pythagore (révisions) I. Théorème de Thalès 1/ ctivité (Polycopié donné en classe) 2/ Énoncé onfigurations de Thalès «Deux parallèles sur deux sécantes» ()//() ()//() ()//()

Plus en détail

3 ème Cours : Théorème de Thalès

3 ème Cours : Théorème de Thalès I Points alignés : Deux droites sont parallèles si elles n ont aucun point commun ou si elles sont confondues. Conséquence : Si deux droites sont parallèles et possèdent un point commun alors elles sont

Plus en détail

Brevet - Session 2005 Corrigé

Brevet - Session 2005 Corrigé Brevet - Session 005 Corrigé ACTIVITES NUMERIQUES (1 points) 1. Exercice 1 : (4 points) A = 13 3 4 3 5 = 13 3 5 3 = 3 3 = 1. A = 1. = 13 3 5 3 = 13 3 10 3. B = 7 1015 8 10 8 5 10 4 = 7 8 1015 10 8 5 10

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Configurations du plan et trigonométrie

Configurations du plan et trigonométrie Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Correction Interrogation de Mathématiques

Correction Interrogation de Mathématiques Correction Interrogation de Mathématiques A Exercice 1 : En utilisant les informations portées sur le dessin, calculer les longueurs CD et E. 5,4 On donnera l arrondi à 0,1 cm près. (Les mesures sont exprimées

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

DISTANCES ET TANGENTES Corrigés 1/7

DISTANCES ET TANGENTES Corrigés 1/7 DISTANCES ET TANGENTES Corrigés 1/7 Corrigé 01 Soit une droite D et un point A, on appelle distance du point A à la droite D la distance de A au pied de la perpendiculaire à D passant par A. Corrigé 02

Plus en détail

Corrigé brevet Maths 2005 Série Collèges

Corrigé brevet Maths 2005 Série Collèges Corrigé brevet Maths 2005 Série Collèges Activités algébriques Exercice 1 1) Calcul de l expression 2) Expression scientifique de 3) Ecriture sous la forme le nombre Page 1 sur 10 4) Développons et simplifions

Plus en détail

Correction et barème.

Correction et barème. Correction et barème. Activités numériques (12 points) Exercice 1 : (0,5 points par réponses) Réponses : 1 0,028 2 5 2 3 5 16 4 5 6 5 12 5 Exercice 2 : (4,5 points) 1) Développer et réduire D (1 point)

Plus en détail

I/ Vocabulaire et définitions. 1 ) Mises au point

I/ Vocabulaire et définitions. 1 ) Mises au point Angles I/ Vocabulaire et définitions 1 ) Mises au point Remarques 1 2 ) Définition d un angle: Application Soit la figure ci-contre Compléter L angle dessiné a pour sommet E Ses côtés sont les deux Demi-droites

Plus en détail

I. Théorème de Thalès. a. Configuration de Thalès :

I. Théorème de Thalès. a. Configuration de Thalès : I. Théorème de Thalès. a. onfiguration de Thalès : hapitre n 1 : le théorème de Thalès et sa réciproque Soient (d)et (d ) deux droites sécantes en Soient et deux points de (d), distincts de } "configuration

Plus en détail

DROITES ET PLANS DE L'ESPACE

DROITES ET PLANS DE L'ESPACE 1 DROITES ET PLANS DE L'ESPACE I. Positions relatives de droites et de plans 1) Positions relatives de deux droites Propriété : Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5 BREVET BLANC de MATHEMATIQUES Classe de troisième Correction des exercices 1. Racines carrées Connaître les règles de calcul avec des racines carrées Savoir effectuer un produit ou un quotient avec des

Plus en détail

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Analyse de la figure Notes Géométrie 2016 Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Construire et décrire une figure géométrique Un programme de tracé est une

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Leçon 24 Théorème de Thalès. Applications à la géométrie du plan et de l espace.

Leçon 24 Théorème de Thalès. Applications à la géométrie du plan et de l espace. Leçon 24 Théorème de Thalès. Applications à la géométrie du plan et de l espace. Pré-requis : - Calcul vectoriel (en particulier la relation de Chasles) Pré-requis : - Définition et propriété d un parallélogramme

Plus en détail

Cosinus d un angle aigu

Cosinus d un angle aigu Cosinus d un angle aigu Chapitre G4 du livre I. Le cosinus d un angle aigu : 1.) Côté adjacent a. Définition Le côté adjacent à un angle aigu dans un triangle rectangle est le côté qui forme cet angle

Plus en détail

Chapitre M6. Géométrie 1

Chapitre M6. Géométrie 1 SBP Chapitre M6 (G1) Page 1/22 Chapitre M6 DE LA GEOMETRIE DANS L ESPACE A LA GEOMETRIE PLANE Capacités Représenter avec ou sans TIC un solide usuel. Lire et interpréter une représentation en perspective

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

DROITES ET PLANS DANS L ESPACE

DROITES ET PLANS DANS L ESPACE DROITES ET PLANS DANS L ESPACE Cours Terminale S 1. Positions relatives de droites et de plans 1) Positions relatives de deux droites Propriété 1 : Deux droites de l espace sont soit coplanaires (dans

Plus en détail

Cours de mathématiques Classe de Quatrième

Cours de mathématiques Classe de Quatrième CHAPITRE 5 PROJECTION ET COSINUS Le calcul d'erathostène 76 Cosinus d'un angle aigu 77 Projection ; Cosinus d'un angle aigu 78 Projection et milieu 83 Exercices de démonstration 83 Utilisation du Cos 85

Plus en détail

Classes de 3 ème MATHEMATIQUES 1 février NOM : Prénom : Classe : Observations : Note : Signature :

Classes de 3 ème MATHEMATIQUES 1 février NOM : Prénom : Classe : Observations : Note : Signature : NOM : Prénom : Classe : Observations : Note : Signature : Durée 2 heures Il sera tenu compte de la clarté et de la présentation de la copie. Exercice 1 (2 points) Calculer et simplifier : A = 34 2 : 4

Plus en détail

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau)

(Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) (Programmation) (Programme de Construction) Support : cahier d entrainement (1 programme par semaine, à écrire au tableau) Comment faire? Le PE marque sur un côté du tableau le programme de construction.

Plus en détail

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle.

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle. Géométrie Espace 2 nde 1 Géométrie dans l espace I. Rappels de collège A. Formumaire 1. Hauteurs Une hauteur est une droite passant par un sommet et perpendiculaire au côté opposé. Il y a donc 3 hauteurs

Plus en détail

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun.

Chapitre 8 : Droites et plans de l espace - Vecteurs. Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Elles ont un point commun. Chapitre 8 : Droites et plans de l espace - Vecteurs I Positions relatives de droites et de plans Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires, soit non coplanaires

Plus en détail

Cet exercice comporte une tâche non guidée. Toute trace de recherche, même incomplète sera prise en compte.

Cet exercice comporte une tâche non guidée. Toute trace de recherche, même incomplète sera prise en compte. Il sera tenu compte de la qualité de la rédaction et de la présentation (4 points). L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Exercice 1 (3 points) Cet exercice

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Les droites parallèles et perpendiculaires

Les droites parallèles et perpendiculaires Les droites parallèles et perpendiculaires 1. Rappels du vocabulaire Je lis Point Droite Segment Demi- droite J écris Je dessine M [AB] est (AB) est AB est Le point A appartient à la droite (d). On note

Plus en détail

I) Milieux et droites parallèles dans un triangle

I) Milieux et droites parallèles dans un triangle Chapitre 9 Triangles et droites parallèles I) Milieux et droites parallèles dans un triangle 1) Activités Activité 1 1) Effectuer la construction suivante : Tracer un triangle ABC ; Placer le milieu I

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Droites et Plans de l Espace

Droites et Plans de l Espace Droites et Plans de l Espace 1 Rappels Depuis le début de l année, les figures de géométries étudiées sont planes : elles peuvent être représentée sans ambigüité et en vraie grandeur sur une feuille de

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

Connaissances Capacités Commentaires

Connaissances Capacités Commentaires Chapitre Théorème de Thalès I. Programme de la classe de troisième Connaissances Capacités Commentaires Configuration de Thalès. Connaître utiliser la proportionnalité des longueurs pour les côtés des

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

LE THÉORÈME DE THALÈS.

LE THÉORÈME DE THALÈS. LE THÉORÈME DE THALÈS. 1. Rappels. (Cours de 4 ème ) 1.1 Droites parallèles. 1.1.1 Définition : Des droites parallèles sont des droites qui ont la même direction. 1.1.2 Propriétés : Deux droites parallèles

Plus en détail

I. Angles et parallélisme II. Triangles égaux III. Triangles semblables IV. Propriété de Thalès. Triangles semblables. maths-cfm.

I. Angles et parallélisme II. Triangles égaux III. Triangles semblables IV. Propriété de Thalès. Triangles semblables. maths-cfm. III. 4e Table des matières III. 1 2 3 III. 4 a. Angles opposés III. Définition Deux angles sont opposés par le sommet s ils ont le même sommet et si leurs côtés sont dans le prolongement l un de l autre.

Plus en détail

I) Activités numériques

I) Activités numériques Brevet 1994 : Bordeaux I) Activités numériques Exercice 1 : Écrire sous la forme a b (où a et b sont des entiers) le nombre : E 75 + 3 1 4 3. Calculer : 3(3 3) ; G ( 5 + )( 5 ). Exercice : Résoudre les

Plus en détail

Correction du Devoircommun n 1 3 ème

Correction du Devoircommun n 1 3 ème Mathématiques Novembre 2014 Correction du Devoircommun n 1 3 ème Soin et qualité de la rédaction de votre copie / 4 points Exercice 1 : / 5 points (soit 5 x 1 pt) Cet exercice est un questionnaire à choix

Plus en détail

Géométrie _ Equations de droites

Géométrie _ Equations de droites Géométrie _ Equations de droites Exercice 1 : Cinéma et concert Sous thème : Coordonnées d un point, droites (livre Maths, 2 nde, Nathan 2010) Un groupe d amis, dont certains sont étudiants, va au cinéma.

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. : la perspective cavalière Pour représenter un objet de l espace par une figure plane, on adopte un mode de représentation appelé «perspective cavalière» qui est

Plus en détail

Corrigé des exercices sur les vecteurs. Septembre 2010

Corrigé des exercices sur les vecteurs. Septembre 2010 Septembre 2010 Exercice 1 Soient un triangle ABC et les points I et J tels que AI = 1 AB et AJ = 3 AC 3 1 Exprimer le vecteur BJ en fonction des vecteurs BA et AC. 2 Exprimer le vecteur IC en fonction

Plus en détail

On ne demande pas de la reproduire.. CO = 3 cm. CA = 5 cm. CB = 8 cm. Les droites (OF) et (AB) sont parallèles. Calculer CF en justifiant.

On ne demande pas de la reproduire.. CO = 3 cm. CA = 5 cm. CB = 8 cm. Les droites (OF) et (AB) sont parallèles. Calculer CF en justifiant. THALES DIRECT Exercice 1 : (Nancy_sept 97) On donne la figure ci-contre. On ne demande pas de la reproduire.. CO 3 cm. CA cm. CB 8 cm. Les droites (OF) et (AB) sont parallèles. Calculer CF en justifiant.

Plus en détail

Collège Blanche de Castille. Partie I : Activités numériques (12 points)

Collège Blanche de Castille. Partie I : Activités numériques (12 points) 3 ème A - B - C Composition 1 de MATHÉMATIQUES Date : 10/11/2010 Durée : 2h Collège Blanche de Castille Coefficient : 3 Note sur : 40 Présentation : /4 Les calculatrices sont autorisées (il est interdit

Plus en détail