REPONSE DES CIRCUITS A UN ECHELON DE TENSION

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "REPONSE DES CIRCUITS A UN ECHELON DE TENSION"

Transcription

1 LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans e les ensions s éablissen dans les circuis I chelon de ension Nous allons appliquer à des circuis ( série, L série e L série de façon soudaine, une ension coninue (on allume le généraeur à = e effe es modélisé par un échelon de ension représené sur la figure suivane : u G ( ension aux bornes du généraeur u G ZOOM Disconinuié de la ension : c es une modélisaion n réalié, il n y a pas de disconinuié mais une «moné» rès rapide de la ension II éponse à un échelon de ension d un circui d ordre 1 : Série 1 quaion différenielle qui gouverne la ension aux bornes du condensaeur i Loi des mailles : = u u = u i aracérisique condensaeur : i = dq d = du d u G u u Ainsi : = u du d On consae que es homogène à un emps, on pose par définiion : = consane de emps du circui chelon de ension On réécri l équaion différenielle du premier ordre sous une forme canonique : 1

2 du d u = ésoluion de l équaion différenielle a condiion iniiale 1 : < u = U : le condensaeur es chargé On va «séparer les variables» e u du d = u du u = d, on inègre: u du = 1 d U u ce qui donne : ln u = U ( soi u = U ( e ( Pour résumer : u U pour < ( = ( U e pour > Nous consaons que u ( es coninue à = u ( U oninuié de u à = b condiion iniiale : < u = : le condensaeur es déchargé On procède comme en a ce qui donne immédiaemen : u pour < ( = * 1 e ( pour >, Nous allons déerminer i ( i ( = du d = e pour > e i ( = pour <

3 i ( = pour < e pour > Nous consaons que i ( es disconinue à = i ( Disconinuié de i à = emarque : équaion de la angene di d = = 1 = L équaion de la angene s écri : y = cse A =, y = = cse y = 1 1 ( e à y = = = On rerouve l inerpréaion graphique de la consane de emps 3 égime ransioire e régime permanen éponse complèe du condensaeur = réponse du régime réponse du régime TANSITOI PMANNT (parie emporaire (parie permanene u ( = ( U e Quand, u =, se compore donc comme un inerrupeur ouver La réponse du régime ransioire disparaî (meur rapidemen, seule à long erme la réponse du régime permanen demeure On peu écrire la réponse complèe u ( sous la forme suivane : u ( = u ( u ( u ( e 3

4 Si l insan iniial es el que =, on écrira : u ( = u ( u ( u ( e ( n résumé, pour connaîre la réponse d un circui à un échelon de ension, il fau connaîre rois choses : La ension iniiale aux bornes du condensaeur u ( La ension finale aux bornes du condensaeur u ( La consane de emps du circui 4 Aspecs énergéiques nergie sockée par le condensaeur : = P ( d = u ( i ( d On par de la condiion iniiale : < u = = 1 e * ( e d = e -,- / - e,- / = ( = > On peu rerouver direcemen ce résula avec = 1 u avec u = quand nergie dissipée par la résisance : = P ( d = u ( i ( d = e d = e ( * * = = > nergie fournie par le généraeur : G = P G ( d = u G ( i ( d G = e d = e ( * * = < Le signe moins devan l inégrale provien du fai que nous sommes en convenion généraeur Par conre, le résula final es physique, G < car on a un généraeur physique, il fourni de l énergie au circui Pour conclure : nergie cédée par le généraeur (- < = nergie sockée par le condensaeur 1 > ( nergie reçue puis dissipée par la résisance * 1 > 4

5 Quelque soi la valeur de, = Si es pei, i es imporan pendan un emps cour Si es grand, i es faible pendan un emps long III éponse à un échelon de ension d un circui d ordre 1 : L Série 31 quaion différenielle qui gouverne l inensié i Loi des mailles : = u L u = u L i aracérisique de la bobine : u L = L di d u G u u L L Ainsi : di d L i = L On consae que L es homogène à un emps, on pose par définiion : chelon de ension L = consane de emps du circui On réécri l équaion différenielle du premier ordre sous une forme canonique : di d i = L 3 ésoluion de l équaion différenielle On procède comme dans le paragraphe condiion iniiale : i = On peu «séparer les variables» comme dans le paragraphe ou bien chercher la soluion sous la forme (ce qui es équivalen d un poin de vu mahémaique : ( = SGSSM Ae - i SPASM A, i = donc A = Au final : i ( = pour < 1 e * ( pour >, Nous consaons que i ( es coninue à = 5

6 i ( oninuié de i à = Nous allons déerminer u L ( u L ( = L di d = L e = e u L pour < ( = e pour > Nous consaons que u L ( es disconinue à = u L ( Disoninuié de u L à = 33 égime ransioire e régime permanen éponse complèe du circui en i ( = réponse du régime réponse du régime TANSITOI (parie emporaire Mahs SGSSM PMANNT (parie permanene Mahs SPASM ( = e i Quand, i =, L se compore donc comme un fil sans résisance La réponse du régime ransioire disparaî (meur rapidemen, seule à long erme la réponse du régime permanen demeure 6

7 On peu écrire la réponse complèe i ( sous la forme suivane : i ( = i ( i ( i ( e Si l insan iniial es el que =, on écrira : i ( = i ( i ( i ( e ( n résumé, pour connaîre la réponse d un circui L à un échelon de ension, il fau connaîre rois choses : ( L inensié iniiale du circui i L inensié finale du circui i ( La consane de emps du circui 34 Aspecs énergéiques nergie sockée par la bobine: L = P L ( d = u L ( i ( d L = 1 e * ( e d = e e * ( d = - e,- / - e,- / = L 1 L = 1 L > On peu rerouver direcemen ce résula avec L = 1 L i avec i = quand nergie dissipée par la résisance : = P ( d = u ( i ( d = 1 e * ( d = - e,- / - e,- / nergie fournie par le généraeur : G = P G ( d = u G ( i ( d G = 1 e * ( d = - e,- /, L / = <, L / = L = 3 L > Quand, la bobine devien un fil e le généraeur doi en permanence compenser les peres d énergie dues à la résisance Dans la réalié, le généraeur ne foncionne pas indéfinimen ela se radui mahémaiquemen par le fai que l on n inègre pas jusqu à l infini mais jusqu à un emps fini 7

8 Pour conclure : nergie cédée par le généraeur ( < = nergie sockée par la bobine 1 L > ( * nergie reçue puis dissipée par la résisance ( >, IV éponse à un échelon de ension d un circui d ordre : L Série 41 quaion différenielle qui gouverne la ension aux bornes du condensaeur i u Loi des mailles : = i L di d u i = dq d = du d soi : u G L L d u d du d u = u On obien une équaion différenielle du second ordre chelon de ension 4 criure canonique e résoluion L équaion différenielle précédene peu se mere, comme en mécanique, sous les formes canoniques usuelles : u 1 u u = 1 L = pulsaion propre, L = emps de relaxaion u u u = 1 = coefficien damorissemen u Q u u = Q = = 1 L = faceur de qualié (sans dimension La réponse complèe du circui à l échelon, c es-à-dire u ( peu se mere, comme on l a vu précédemmen, sous la forme : 8

9 réponse du régime ransioire : u r Parie emporaire du circui Mahs SGSSM éponse complèe : u ( = réponse du régime permanen : Parie permanene du circui Mahs SPASM ( Il nous rese donc à rouver u r ( ce qui es le plus délica Heureusemen, nous avons déjà réalisé le ravail en mécanique Nous allons suivre la même démarche, il s agi d un simple copier-coller u r ( es soluion de l équaion différenielle du second ordre sans second membre u r Q u r u r = On cherche une soluion de la forme e r que l on réinjece dans l équaion précédene On arrive à l équaion caracérisique de la forme r Q r = Il s agi à présen d une équaion algébrique Dans le cas général, r adme deux soluions r 1 e r qui son complexes ou réelles, ce qui donne: u r ( = A 1 e r 1 A e r, où A 1 e A son des consanes (complexes conjuguées car u r ( doi êre réelle que l on déermine à parir des condiions iniiales du problème La naure de l évoluion de u r ( va dépendre du faceur de qualié Q donc de l amorissemen du sysème n effe selon la valeur de Q, la naure des racines r 1 e r sera différene a égime pseudo périodique : Q > 1 Si Q > 1 alors < Soi le discriminan de l équaion caracérisique : = ( Q 4 1 = Q 4 ( < On pose = avec la pseudo-pulsaion 4 = 4 ( * = 4 ( = 4 < Q j On obien : r 1 = = j r = j e finalemen : u r ( ( = e A 1 e j A e j 9

10 On sai que cos( = e j e j e sin( = e j e j j ce qui perme de réécrire la soluion sous les formes équivalenes suivanes : u r ( = e A cos ( B sin ( = e cos décroissane exponenielle de lampliude (lenergie du sysème diminue ( faceur oscillan à la pseudo-pulsaion ( A, B, e son des consanes réelles que l on déermine à parir des condiions iniiales (ension iniiale u ( e inensié iniiale i (, par exemple i ( = A e u ( = V si le condensaeur es déchargé à l insan iniial Le sysème oscille, mais sans êre périodique à cause de l amorissemen, jusquà ce que le régime ransioire meure pour laisser place au régime permanen On a un mouvemen pseudopériodique de pseudo-période : T = = T ( 1 * = T 1 ( 1 Q * b égime apériodique : Q < 1 Si Q < 1 alors > On pose = avec la pseudo-pulsaion = 4 > On obien : r 1 = e finalemen : r = u r ( ( = e A 1 e A e ermes puremen exponeniels A 1 e A son des consanes réelles que l on déermine à parir des condiions iniiales (ension iniiale u ( e inensié iniiale i ( Le circui aein le régime permanen sans osciller car l amorissemen es devenu rop imporan c égime criique: Q = 1 Si Q = 1 alors = 1

11 ( = 4 = On peu écrire u r u r u r = soi ( es donc une foncion affine du emps u r e d d (u ( e = u ( e r r = a b ce qui donne : ( ( u r = a b e a e b son des consanes réelles que l on déermine à parir des condiions iniiales (ension ( ( iniiale u e inensié iniiale i Quand Q = L 1 alors = c =, on parle de résisance criique Le circui aein le régime permanen sans osciller car l amorissemen es devenu rop imporan Il s agi du cas où l équilibre (régime permanen es aein le plus rapidemen ( ( ( en foncion du emps Les figures ci-dessous donnen l évoluion de u = u r e de i ( ( Pour obenir i, il suffi de noer que i = ( du r d Quand, le condensaeur se compore comme un inerrupeur ouver e la bobine comme un fil sans résisance (bobine idéale donc i e u ( ( Si, à parir de ces nouvelles condiions iniiales ( u =, i =, on débranche le généraeur ( ug =, alors u évolue comme indiqué sur les figures ci-dessous en foncion de la valeur du faceur de qualié (en suivan exacemen la même démarche que ce que l on a fai jusquà présen, vous pouvez résoudre ce problème 11

12 43 Aspecs énergéiques a éponse à l échelon de ension On repar de l équaion différenielle sous sa forme iniiale: L q q L u u u = soi q di q = On muliplie par i de chaque côé ce qui donne : L i i i = i que l on d peu réécrire sous la forme : d 1 1q = Li i i d dissipée puissance fournie énergie de la bobine énergie du condensaeur puissance dans la résisance par le généraeur à un insan (effe Joule à un insan L énergie fournie par le généraeur es sockée dans le condensaeur e la bobine e dissipée dans la résisance b ondensaeur iniialemen chargé, absence de généraeur (décharge du condensaeur ( ( Si on par des condiions iniiales suivanes : u =, i = e ug = (courbes ci-dessus, on a : d 1 1q = Li i d puissance dissipée énergie de la bobine énergie du condensaeur dans la résisance à un insan (effe Joule à un insan L énergie sockée dans le condensaeur e la bobine es enièremen dissipée à erme dans la résisance par effe Joule c ondensaeur iniialemen chargé, absence de généraeur e absence de résisance Si il n y pas de résisance dans le circui ( = alors : d 1 1q = Li d énergie de la bobine énergie du condensaeur à un insan à un insan 1

13 1 1q Dans ce cas L = L i = consane au cours du emps Il y a échange d énergie permanen enre le condensaeur e la bobine Vous pouvez facilemen monrer que L = 1 La figure ci-dessous illusre ce échange d énergie (ce qui es noé U 1q correspond à l énergie du condensaeur = de la bobine L = e ce qui es noé UB correspond à l énergie 1 L i L énergie présene dans le condensaeur es due à la présence d un champ élecrique enre les armaures du condensaeur qui es symbolisé par les flèches sur le schéma ci-dessus (cf cours d élecrosaique en PTSI L énergie présene dans la bobine es due à la présence d un champ magnéique dans les spires de la bobine qui es symbolisé par les flèches sur le schéma cidessus (cf cours d élecromagnéisme en PT On peu qualifier ce sysème d oscillaeur élecromagnéique par analogie avec l oscillaeur mécanique (masse ressor nfin, pour erminer avec l aspec énergéique, l éude que nous avons menée dans le cas de l oscillaeur mécanique e qui nous a conduis à monrer que Q = m m dans le cas d un régime pseudopériodique peu se faire de façon oalemen analogue dans le cas présen pour l oscillaeur élecromagnéique 13

14 V Analogie élecromagnéomécanique Il y a analogie enre deux sysèmes physiques s ils son régis par les mêmes équaions différenielles L u G u = q ( k x ( m Oscillaeur élecromagnéique ( ( L d q dq 1 d d q harge q ( = m d x ( Oscillaeur mécanique d longaion x ( h dx d kx ( = Inensié i = dq d ésisance Viesse v = dx d oefficien d amorissemen h L m 1 u L = L di d aideur k m dv d (homogène à une force bobine = 1 Li c = 1 mv u c = q k x (homogène à une force q condensaeur = 1 p = 1 k x u = i h v (homogène à une force P = i P = h v 14

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

DIPÔLE CONDENSATEUR-DIPÔLE RC

DIPÔLE CONDENSATEUR-DIPÔLE RC HAPITE P7 DIPÔLE ONDENSATEUDIPÔLE I) DIPÔLE ONDENSATEU I.1. Définiion e symbole I.2. harge e décharge d un condensaeur I.3. Inerpréaion I.4. apacié d un condensaeur I.5. Énergie emmagasinée par un condensaeur

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

Signal 4 Les oscillateurs amortis

Signal 4 Les oscillateurs amortis Signal 4 Les oscillaeurs amoris Lycée Polyvalen de Monbéliard - Physique-Chimie - TSI 1-2016-2017 Conenu du programme officiel : Noions e conenus Circui RLC série e oscillaeur mécanique amori par froemen

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION CICUITS ELECTIQUES. DUPEAY Lycée F. BUISSON PTSI EPONSE DES CICUITS A UN ECHELON DE TENSION «Une panne d électricité laisse l aveugle indifférent» Grégoire Lacroix Dans les circuits électriques, les régimes

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs Circuis résisifs e réacifs Chapire 14 Circuis résisifs e réacifs Sommaire Elémens résisifs e réacifs Comporemen d une résisance en régime alernaif sinusoïdal Comporemen d un condensaeur en régime alernaif

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht)

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht) Corrigé des exercices de l examen du 3 janvier 7 (Les N de page fon référence au livre «Physique» de E. Hech) Q1. Deux charges poncuelles de +5 µc e +1 µc se rouven sur l axe des x aux poins des coordonnées

Plus en détail

La fonction générer un signal rectangulaire

La fonction générer un signal rectangulaire Sie Inerne : www.gecif.ne Discipline : Génie Elecrique La foncion générer un signal recangulaire I Idenificaion de la foncion Générer un signal élecrique consise à produire des variaions de ension don

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques

B. OSCILLATIONS, ONDES ET LUMIERE. 1. Introduction. ! Importance des phénomènes périodiques B. OSCILLATIONS, ONDES ET LUMIERE 1. Inroducion Un oscillaeur es un sysème qui effecue des mouvemens d aller-reour de par e d aure d une posiion moyenne, par un mouvemen plus ou moins régulier. Si les

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES Sommaire I- Equaions différenielles du premier ordre I-1- Résoluion des équaions du ype : a f () + f() = g() I-- Exemple de résoluion

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C.

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C. Principe d une minuerie (Afrique 2006) 1. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION. Le monage du circui élecrique schémaisé ci-dessous (figure 1) compore : - un généraeur idéal de

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

TP de physique n 7 charge et décharge d'un condensateur Terminale

TP de physique n 7 charge et décharge d'un condensateur Terminale TP de physique n 7 charge e décharge d'un condensaeur Terminale I. CHARG T DCHARG D'UN CONDNSATUR SOUS UN TNSION CONSTANT 1) Monage u R u C ma COM i + - 2 1 R = 5,6 k C = 1500 F = 10 V coninu V COM ATTNTION:

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

Équations différentielles du premier ordre

Équations différentielles du premier ordre Équaions différenielles du premier ordre Vous rouverez ici de brefs résumés e exemples sur les applicaions concrèes des équaions différenielles du premier ordre : variaion de empéraure désinégraion radioacive

Plus en détail

Réponse d un dipôle RL à un échelon de tension

Réponse d un dipôle RL à un échelon de tension éonse d un diôle L à un échelon de ension Tire Descriion emarques 1- Le diôle L es une associaion en série d une bobine e d un conduceur ohmique (ou résisor) : I- Inroducion 2- L échelon de ension : es

Plus en détail

Diode, thyristor : le redressement

Diode, thyristor : le redressement PAIE 11 FONCIONS 47, hyrisor : le redressemen La conversion d énergie appelée redressemen perme d obenir un couran unidirecionnel à parir d un couran alernaif sinusoïdal ne diode peu assurer cee foncion

Plus en détail

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan.

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan. Cas du circui I. Un exemple d applicaion d un circui : un composan du sysème d alimenaion en gazole d une ogan. xrai du suje IBAN 2006 a Dacia ogan, conçue par le consruceur français enaul es produie au

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

Lois générales de l'électrocinétique

Lois générales de l'électrocinétique Lois générales de l'élecrocinéique «Paience e longueur de emps Fon plus que force ni que rage.» Jean de La Fonaine in «Fables», le Lion e le Ra. Résumé L élecrocinéique raie de la circulaion des charges

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Secion : S Opion : Sciences de l ingénieur Discipline : Génie Elecrique Caracérisiques des signaux élecriques Domaine d applicaion : raiemen du signal ype de documen : Cours Classe : Première Dae : I Définiion

Plus en détail

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ )

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ ) SESSION 1998 Page 1/5 Examen : BTS Coef. : 2 Spécialié : MECANIQUE ET AUTOMATISME INDUSTRIEL Durée : 2h Epreuve : U.32 SCIENCES PHYSIQUES Code : MSE 3 SC ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT

Plus en détail

Notion d oscillateur mécanique

Notion d oscillateur mécanique CHAPITRE 11 SYSTÈMES OSCILLANTS 1 Noion d oscillaeur mécanique 1. Définiion On appelle oscillaeur (ou sysème oscillan) un sysème pouvan évoluer, du fai de ses caracérisiques propres, de façon périodique

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonne Maser GSI - Capeurs Chaînes de Mesures 1 Plan du Cours Propriéés générales des capeurs Noion de mesure Noion de capeur: principes, classes, caracérisiques

Plus en détail

La réponse d un système linéaire en questions

La réponse d un système linéaire en questions La réponse d un sysème linéaire en quesions Version juille 00 Quesions La réponse d un sysème linéaire en quesions _1_ Un sysème es caracérisé par la ransmiance : jω) = 3 + 5jω quelle es l équaion différenielle

Plus en détail

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU Soluionnaire hysique, Élecricié e Magnéisme, Harris Benson Soluionnaire rédigé par Maxime Verreaul, professeur CHATE 7 LES CCUTS À COUANT CONTNU 7 FAUX. Le couran es le même en ou poin du circui. 7 Comme

Plus en détail

COMPARATEURS ANALOGIQUES

COMPARATEURS ANALOGIQUES I/ RAPPEL COMPARATEURS ANALOGIQUES Page 1 Signal logique e signal On di qu'un signal élecrique es logique lorsqu'il. analogique V On di qu'un signal es analogique lorsque son évoluion (en général en foncion

Plus en détail

TPn 21 Régulation de vitesse d un train Durée: 4 heures

TPn 21 Régulation de vitesse d un train Durée: 4 heures TEE Sciences e Technologies de l'indusrie e du Développemen Durable Dae Lycée Nicolas Apper OBJECTIFS Régulaion de la viesse d un rain TP 2 Séquence 2 Décoder un schéma élecrique Décoder un schéma bloc

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

1 Représentation des fonctions élémentaires de l'électronique

1 Représentation des fonctions élémentaires de l'électronique EN1 Foncions e composans élémenaires de l élecronique Foncions élémenaires de l'élecronique Les foncions élémenaires de l'élecronique son celles que l'on rerouve régulièremen dans les différenes applicaions

Plus en détail

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur.

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur. Chapire 1 Eude des ensions élecriques ; Naure de la ension du seceur. On a vu que la ension produie par un alernaeur dans une cenrale élecrique changeai ou le emps. On ne peu donc pas se conener de brancher

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPREILS DE MESURE EN COURANT ALTERNATIF I- PARAMETRES CARACTERISTIQUES D UN SIGNAL ALTERNATIF : Un signal alernaif es caracérisé par sa forme (sinus, carré, den de scie, ), sa période (

Plus en détail

Les hacheurs à liaison directe

Les hacheurs à liaison directe es hacheurs à liaison direce I. Hacheur série (Buck) Exercice I n considère le monage ci conre : a ension d alimenaion es égale à 200 V, la fréquence de découpage es noée f (période ) e le rappor cyclique

Plus en détail

C est lui qui va fixer la rapidité de la boucle vitesse. Nous invitons le lecteur à se reporter à la fig 13.

C est lui qui va fixer la rapidité de la boucle vitesse. Nous invitons le lecteur à se reporter à la fig 13. 1.3/ Régulaeur Proporionnel C es lui qui va fixer la rapidié de la boucle viesse. 1.3.1/ Schéma du régulaeur P Nous invions le leceur à se reporer à la fig 13. 1.3.2/ Foncionnemen Le monage perme l ajusage

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Devoir de synthèse N 3 TECHNOLOGIE Classes : 1 ère Année

Devoir de synthèse N 3 TECHNOLOGIE Classes : 1 ère Année Lycée Secondaire Cherarda Kairouan Devoir de synhèse N 3 TECHNOLOGIE Classes : ère Année A.S :200/20 Durée : 2H Noe :./ 20 PATIE A : Les foncions logiques de base : (4 poins) Sysème : Anenne parabolique

Plus en détail

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B =

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B = 1. Couplage par inerie e amorisseur accordé a b α m k F F x 0 0 (a Bâimen de masse sans le disposiif d amorissemen Les forces qui s appliquen au bâimen son : - la force due aux rafales de ven, - la force

Plus en détail

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS Piloage, conrôle e comporemen des sysèmes - n 8 Page 1 MODULAION D'ÉNRGI, VARIAION D VISS I/ INRODUCION, DÉFINIIONS Cerains sysèmes nécessien, en exploiaion, une variaion de puissance. Celle-ci peu êre

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

Supplément EXERCICES EC3 Régime Transitoire 1/2. uc(t) u(t)

Supplément EXERCICES EC3 Régime Transitoire 1/2. uc(t) u(t) Suppléen XIS 3 égie ransioire / chauffeen xercice : onvenions rouver la relaion enre i, q, q e u sur les schéas suivans: a) q() i() q() c) i() q() q() b) i() q() q() d) i() q() q() xercice : nicié d une

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

Corrigés des exercices sur le dipôle RC

Corrigés des exercices sur le dipôle RC ORRIG XRIS TS /0 DIPOL R orrigés es exercices sur le ipôle R orrigé e l exercice Uiliser la loi aiivié es ensions e. Pour les ensions u AB e u BM e les connexions à l inerface acquisiion voir figure ci-conre.

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation INGOD Charloe MEYE Anne DAEAU Mayeul 22 GESSET omain éponse Temporelle d'un circui C dégradé en régime quelconque : foncions inégraion e dérivaion Philippe GUY 23-24 INGOD Charloe MEYE Anne DAEAU Mayeul

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur REGIME TRANSITOIRE Inroducion Lorsqu on ferme un circui pour le mere en foncion, les courans e les ensions meen un cerain emps à s éablir. C es le régime ransioire. Ce chapire fai l éude des composans

Plus en détail

Chapitre 8 : Onduleur autonome de tension

Chapitre 8 : Onduleur autonome de tension Terminale GT hapire 8 : Onduleur auonome de ension I / préambule : inerrupeurs en élecronique de puissance 1. diode à joncion 2. ransisor bipolaire II / principes des onduleurs auonomes 1. définiion 2.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé CINETIQUE CHIMIQUE. Viesse de réacion en réaceur fermé. Généraliés sur la cinéique chimique L obje de la cinéique chimique es l éude de l évoluion au cours du emps d une réacion hermodynamiquemen possible.

Plus en détail

deux valeurs pour v 2 : v 2 = ou v 2 = donc v 2moy =, B or il nous faut v 2moy =.

deux valeurs pour v 2 : v 2 = ou v 2 = donc v 2moy =, B or il nous faut v 2moy =. Chapire.3.3 Conversion coninu alernaif 1 ) Principe 1.1) Généraliés C es un converisseur saique, qui perme des échanges d énergie enre une enrée coninue e une sorie alernaive. Symbole: Si la source coninue

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Représenaion emporelle

Plus en détail

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3 PHYSIQUE APPLIQUÉE Durée : 4 heures Coefficien 3 Le problème éudie l enraînemen d un venilaeur conrôlan le irage d une chaudière de fore puissance équipan une usine de pâe à papier. La régulaion de empéraure

Plus en détail

CHAPITRE I : OSCILLATEURS MECANIQUES

CHAPITRE I : OSCILLATEURS MECANIQUES CHAIE I : OSCILLAEUS ECANIQUES I.1 Définiion I/ Osciaeur haronique (non aori pas de froeens ar définiion, un osciaeur haronique es un sysèe don e paraère (coordonnée carésienne, poaire es une foncion sinusoïdae

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

La transformée de Laplace

La transformée de Laplace a ransformée de alace Méhode mahémaique ayan our objecif: Conourner la difficulé de résoluion des équaions différenielles Offrir une résoluion algébrique Très bien adaée à l élecronique Commen le cours

Plus en détail

Commande d un moteur à courant continu

Commande d un moteur à courant continu Commande d un moeur à couran coninu 1. Généraliés Le hacheur es un disposiif classé dans la caégorie des converisseurs saiques d énergie coninu - coninu. l a pour rôle de ransférer l'énergie d'une source

Plus en détail

Les filtres passe-haut

Les filtres passe-haut Les filres passe-hau Je ais ener ici de ous expliquer le foncionnemen d un filre passe-hau. Nous allons oir dans l ordre : - le schéma ype - l éude de la ransmiance - l éude du diagramme de Bode - l uilié

Plus en détail

المادة: الفيزياء قسم : العلوم الفرع: علوم الحياة نموذج رقم 1

المادة: الفيزياء قسم : العلوم الفرع: علوم الحياة نموذج رقم 1 الهيئة األكاديمي ة المشتركة قسم : العلوم نموذج مسابقة )يراعي تعليق الدروس والتوصيف المعد ل للعام الدراسي 017-016 المادة: الفيزياء الشهادة: الثانوية العام ة الفرع: علوم الحياة نموذج رقم 1 المد ة : ساعتان

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

Chapitre n 10 LES RÉACTIONS D ESTÉRIFICATION ET D HYDROLYSE

Chapitre n 10 LES RÉACTIONS D ESTÉRIFICATION ET D HYDROLYSE Chapire n LES RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE T ale S I- Les esers )Formule générale Un eser comprend deux chaînes carbonées R e R séparées par la foncion eser : Rq. : Si les chaînes carbonées son

Plus en détail

COURS ELE2700 ANALYSE DES SIGNAUX

COURS ELE2700 ANALYSE DES SIGNAUX ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE ÉLECTRIQUE AUTOMNE 20 COURS ELE2700 ANALYSE DES SIGNAUX SÉANCE #3 (TP2) FENÊTRES TEMPORELLES OBJECTIFS Éudier e comparer l effe de différenes fenêres

Plus en détail

Merci! Evolution temporelle des systèmes électriques

Merci! Evolution temporelle des systèmes électriques voluion emporelle des sysèmes élecriques Monage : reard à l'éablissemen du couran Une alim Deux ampoules + suppor Un inerrupeur Une bobine Des fils Monage éincelles! Une alim Une bobine Une lime Un ournevis

Plus en détail

قسم: العلوم. Cette épreuve comporte trois exercices obligatoires. L'usage des calculatrices non programmables est autorisé.

قسم: العلوم. Cette épreuve comporte trois exercices obligatoires. L'usage des calculatrices non programmables est autorisé. الهيئة األكاديمي ة المشتركة قسم: العلوم نموذج مسابقة )يراعي تعليق الدروس والتوصيف المعد ل للعام الدراسي 017-016 المادة: الفيزياء الشهادة: الثانوية العام ة الفرع: علوم الحياة نموذج رقم 1 المد ة: ساعتان

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

Plan. Le timer 555. Présentation. Présentation. Anatomie du 555. Décomposition fonctionnelle. _ Présentation. _ Caractéristique statique

Plan. Le timer 555. Présentation. Présentation. Anatomie du 555. Décomposition fonctionnelle. _ Présentation. _ Caractéristique statique Plan _ Présenaion _ aracérisique saique _ Monage en monosable ou monovibraeur _ Monage en asable ou mulivibraeur ours d Elecronique, IGI, ENI, Bruno FANÇOI ours d Elecronique, IGI, ENI, Bruno FANÇOI Présenaion

Plus en détail

Régimes transitoires. Régimes forcés

Régimes transitoires. Régimes forcés Universié Monpellier II : UF Sciences Module A ours A : régimes ransioires égimes ransioires. égimes forcés harge/décharge d'un condensaeur à ravers une résisance. harge Soi le circui donné ci-dessous

Plus en détail

EL 20 - TD N 1. R1 = 10 k. R2 = 12 k. R3 = 15 k V0 = 12 V

EL 20 - TD N 1. R1 = 10 k. R2 = 12 k. R3 = 15 k V0 = 12 V EL 0 - TD N 1 Exercice 1 : Que vau la résisance vue enre A e B, soi AB? Exercice : Quelle es la valeur de la résisance vue enre A e B, soi AB? Exercice 3 : Déerminez l équivalen de Thévenin du monage suivan

Plus en détail

LA LOGIQUE SEQUENTIELLE

LA LOGIQUE SEQUENTIELLE Auomaique e Informaique Indusrielle LA LOGIQUE SEQUENTIELLE SOMMAIRE Tire Page I. Définiion (rappel) : Sysème séqueniel 2 II. Prise en compe du emps 2 a) foncion mémoire 2 b) foncion(s) reard(s), emporisaion

Plus en détail

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

Démarrage étoile triangle

Démarrage étoile triangle Dae: Page : sur 6 Démarrage éoile riangle Démarrage éoile riangle. Problémaique Lorsque la puissance des moeurs uilisés devien plus imporane (à parir d une peie dizaine de kilowas) l appel de couran au

Plus en détail