Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )"

Transcription

1 BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON AUTORISE : Calculatrice autorisée Aucun échange de matériel autorisé Avant de composer le candidat s'assure que le sujet comporte 6 pages numérotées 1/6 à 6/6 Terminale S non spé maths Bac Blanc d avril 2015 page 1/6

2 Exercice 1 ( 6 points ) commun à tous les candidats Sur le graphique en annexe 1, on a tracé, dans un repère orthonormé ;,, une courbe et la droite où et sont les points de coordonnées respectives 0 ; 1 et 1 ; 3. On désigne par la fonction dérivable sur R dont la courbe représentative est. On suppose, de plus, qu il existe un réel tel que pour tout réel, = a. Justifier que la courbe passe par le point. b. Déterminer le coefficient directeur de la droite. c. Démontrer que pour tout réel, =1 2 1 d. On suppose que la droite est tangente à la courbe au point. Déterminer la valeur du réel. Dans les questions suivantes, on prendra : Pour tout réel, =+1 3 et = a. Démontrer que pour tout réel de l intervalle 1 ;0, >0. b. Démontrer que pour tout réel inférieur ou égal à 1, >0. c. Démontrer qu il existe un unique réel de l intervalle ; 1 tel que =0. Justifier que < On désigne par l aire, exprimée en unités d aire, du domaine défini par : 0 et 0 a. Hachurer ce domaine sur l annexe 1 puis écrire sous la forme d une intégrale.. On admet que l intégrale = est une valeur approchée de à 10 près. Calculer la valeur exacte de l intégrale. Terminale S non spé maths Bac Blanc d avril 2015 page 2/6

3 Exercice 2 ( 5 points ) commun à tous les candidats Partie A : étude d une fonction On considère la fonction définie et dérivable sur l intervalle 1 ;+ [ par = ln Sur l annexe 2 jointe, on a tracé dans un repère orthogonal la courbe représentative de la fonction ainsi que la droite d équation = 1. Calculer les limites de la fonction en + et en Étudier les variations de la fonction sur l intervalle 1 ; + [. 3. En déduire que si alors. Partie B : étude d une suite récurrente 1. On considère la suite définie par : =5 pour tout entier naturel, = Sur l annexe jointe, à rendre avec la copie, en utilisant la courbe et la droite, placer les points, et d ordonnée nulle et d abscisses respectives, et. On laissera apparents les traits de construction. Quelle conjecture peut-on faire sur le sens de variation de la suite? 2. a. Démontrer que, pour tout entier naturel, on a :. b. Déterminer le sens de variation de la suite. c. En déduire que la suite est convergente. 3. On donne l algorithme suivant : est une variable réelle ; est une variable entière Affecter 5 à X Affecter 0 à Tant que >2,72 faire Affecter /ln à Affecter +1 à Fin de Tant que Afficher A l aide du tableau suivant, obtenu avec un tableur, déterminer la valeur affichée par l algorithme , , , , , Terminale S non spé maths Bac Blanc d avril 2015 page 3/6

4 Exercice 3 ( 4 points ) commun à tous les candidats Cet exercice est un QCM (questionnaire à choix multiple). Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera SUR la copie le numéro de la question et la réponse choisie. Chaque réponse exacte rapporte un point. Aucune justification n est demandée. Aucun point n est enlevé en l absence de réponse ou en cas de réponse fausse. Le plan complexe est rapporté au repère orthonormal direct ;,. Soit un nombre complexe de la forme +, où et sont des réels. 1. Soit le nombre complexe d affixe 1+. L écriture exponentielle de est : a. 2 b. 4 c. 2 d L ensemble des points du plan d affixe =+ tels que 1+ = 3 a pour équation : a =2 b =2 c =4 d. =+ 3. On considère la suite de nombres complexes définie pour tout entier naturel par =1+ et =. On note le point du plan d affixe. a. Pour tout entier naturel, le point appartient au cercle de centre O et de rayon 2. b. Pour tout entier naturel, le triangle est équilatéral. c. La suite définie par = est convergente.. Pour tout entier naturel,un argument de est 2 4. Soit,, trois points du plan complexe d affixes respectives : = 1 ; =2 2 et =1+5. On pose : = a. est un nombre réel. b. Le triangle est isocèle en. c. Le triangle est rectangle en. d. Le point d affixe appartient à la médiatrice du segment [. Terminale S non spé maths Bac Blanc d avril 2015 page 4/6

5 Exercice 4 ( 5 points ) pour les candidats n ayant pas suivi l enseignement de spécialité Une grande entreprise dispose d un vaste réseau informatique. On observe le temps de fonctionnement normal séparant deux pannes informatiques. Ce temps sera appelé «temps de fonctionnement». Soit la variable aléatoire égale au temps de fonctionnement, exprimé en heures. On admet que suit une loi exponentielle de paramètre. Le paramètre est un réel strictement positif. On rappelle que,pour tout réel 0, =. 1. On sait que la probabilité que le temps de fonctionnement soit inférieur à 7 heures est égale à 0,6. Montrer qu une valeur approchée de à 10 près est 0,131. Dans les questions suivantes, on prendra 0,131 pour valeur de et les résultats seront donnés à près. 2. Montrer qu une valeur approchée de la probabilité que le temps de fonctionnement soit supérieur à 5 heures est égale à 0, Calculer la probabilité que le temps de fonctionnement soit supérieur à 9 heures sachant qu il n y a pas eu de panne au cours des quatre premières heures. 4. Calculer la probabilité que le temps de fonctionnement soit compris entre 6 et 10 heures. 5. Déterminer le temps moyen de fonctionnement, en arrondissant à la demi-heure. 6. On relève aléatoirement huit temps de fonctionnement, qu on suppose indépendants. Soit la variable aléatoire égale au nombre de relevés correspondant à des temps de fonctionnement supérieurs ou égaux à 5 heures. a. Quelle est la loi suivie par? b. Calculer la probabilité que trois temps parmi ces huit soient supérieurs ou égaux à 5 heures. Terminale S non spé maths Bac Blanc d avril 2015 page 5/6

6 Nom, Prénom : Annexe à rendre avec la copie Annexe 1 - Exercice 1 Annexe 2 - Exercice 2 Terminale S non spé maths Bac Blanc d avril 2015 page 6/6

BACCALAUREAT BLANC. Session Durée de l'épreuve : 4 heures Coefficient : 7

BACCALAUREAT BLANC. Session Durée de l'épreuve : 4 heures Coefficient : 7 BACCALAUREAT BLANC Session 2014 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures Coefficient : 7 MATERIEL AUTORISE OU NON AUTORISE

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE :

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats ayant suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE : Calculatrice

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

4. Calculer. En déduire la nature du triangle DAC.

4. Calculer. En déduire la nature du triangle DAC. Nouvelle-alédonie novembre 2011 EXERIE 1 5 points ommun à tous les candidats Le plan complexe est muni d un repère orthonormal direct (O ; u, v). On prendra 1 cm pour unité graphique. 1. Résoudre dans

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL SESSION 2011 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail

EXERCICE 1 (4 points)

EXERCICE 1 (4 points) EXERCICE 1 4 points) Pour chaque question de cet exercice, plusieurs réponses sont proposées. Parmi elles, une seule est exacte. Le candidat devra choisir l une des réponses et justifier son choix. 1.

Plus en détail

TS - Maths - D.S.7. Spécialités : Physique - SVT. Samedi 28 mars h

TS - Maths - D.S.7. Spécialités : Physique - SVT. Samedi 28 mars h TS - Maths - D.S.7 Samedi 28 mars 205-4h Spécialités : Physique - SVT Exercice (5 points) Fonctions trigonométriques Soit f la fonction définie surrpar : f (x)=sin 2 x+ 3cos x et C sa courbe dans un repére

Plus en détail

Baccalauréat S Pondichéry 8 avril 2014

Baccalauréat S Pondichéry 8 avril 2014 Baccalauréat S Pondichéry 8 avril 014 EXERCICE 1 Commun à tous les candidats 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages numérotées de 1 à 6 Du papier millimétré est mis

Plus en détail

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S - 2016 Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL Session 2012 MATHÉMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages numérotées de 1 à 6. Du papier millimétré est mis

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES - Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures Coefficient : 5 MATHÉMATIQUES - Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve :

Plus en détail

Baccalauréat S (obligatoire) Polynésie septembre 2009

Baccalauréat S (obligatoire) Polynésie septembre 2009 Baccalauréat S (obligatoire) Polynésie septembre 2009 EXERCICE 1 Commun à tous les candidats 4 points On considère le cube OABCDEFG d arête de longueur 1 représenté ci-dessous. Il n est pas demandé de

Plus en détail

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques Classe de terminale ES Mathématiques Sujet abordé : exponentielle (lecture graphique) Exercice (BAC ES national ). Un nouveau modèle de mini-ordinateur portable est mis sur le marché. Soit x la quantité

Plus en détail

BAC BLANC. Epreuve de Mathématiques obligatoire. Durée 4 heures

BAC BLANC. Epreuve de Mathématiques obligatoire. Durée 4 heures BAC BLANC Terminale S Epreuve de Mathématiques obligatoire Coefficient 7 Durée 4 heures Le sujet comporte 7 pages. L utilisation de la calculatrice est autorisée. Aucun document n est permis. Le candidat

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique

Plus en détail

Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée

Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée ... Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée Le sujet comporte 4 exercices : Les élèves n ayant pas choisi l option Mathématiques en spécialité traiteront

Plus en détail

Mathématiques obligatoires Terminales S, , Lycée Newton

Mathématiques obligatoires Terminales S, , Lycée Newton Mathématiques obligatoires -6-05-3- Terminales S, 0-03, Lycée Newton Exercice. reservé aux élèves qui ne suivent pas l enseignement de spécialité 5 points Les résultats seront arrondis à 0 près. On s intéresse

Plus en détail

SESSION 2017 ÉPREUVE DU MERCREDI 21 JUIN 2017 MATHÉMATIQUES. - Série S - Enseignement Spécialité Coefficient : 9. Durée de l épreuve : 4 heures

SESSION 2017 ÉPREUVE DU MERCREDI 21 JUIN 2017 MATHÉMATIQUES. - Série S - Enseignement Spécialité Coefficient : 9. Durée de l épreuve : 4 heures BACCALAURÉAT GÉNÉRAL SESSION 2017 ÉPREUVE DU MERCREDI 21 JUIN 2017 MATHÉMATIQUES - Série S - Enseignement Spécialité Coefficient : 9 Durée de l épreuve : 4 heures Les calculatrices électroniques de poche

Plus en détail

Baccalauréat S Amérique du Nord mai 2006

Baccalauréat S Amérique du Nord mai 2006 Baccalauréat S Amérique du Nord mai 006 EXERCICE 3points Commun à tous les candidats Pour chacune des 3 questions, une seule des trois propositions est exacte. Le candidat indiquera sur la copie le numéro

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité Durée de l épreuve : 4 heures Coefficient : 7 OBLIGATOIRE Ce sujet comporte 5 pages numérotées

Plus en détail

BAC BLANC. Terminale S. Epreuve de Mathématiques spécialité Coefficient 9. Durée 4 heures

BAC BLANC. Terminale S. Epreuve de Mathématiques spécialité Coefficient 9. Durée 4 heures BAC BLANC Terminale S Epreuve de Mathématiques spécialité Coefficient 9 Durée 4 heures Le candidat doit rédiger l exercice de spécialité sur une copie à part Le sujet comporte 5 pages. L utilisation de

Plus en détail

Bac Blanc - Mathématiques

Bac Blanc - Mathématiques Bac Blanc - Mathématiques série S (obligatoire et Spécialité) mars 014 Durée : 4 h Les calculatrices sont autorisées. Le barème prend en compte la rédaction, la qualité de l expression et la présentation

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail

Sujet + Corrigé. Correction Réalisée SUJET 3 ANTILLES - GUYANE BAC S ANNALES MATHÉMATIQUES BAC S PROBABILITÉS alainpiller.

Sujet + Corrigé. Correction Réalisée SUJET 3 ANTILLES - GUYANE BAC S ANNALES MATHÉMATIQUES BAC S PROBABILITÉS alainpiller. Sujet + Corrigé ANNALES MATHÉMATIQUES BAC S PROBABILITÉS - 2016 SUJET 3 ANTILLES - GUYANE BAC S - 2016 Correction Réalisée Par Alain PILLER alainpiller.fr Sujets Bac Maths 2016 Annales Mathématiques Bac

Plus en détail

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

Baccalauréat ES Centres étrangers 15 juin 2009

Baccalauréat ES Centres étrangers 15 juin 2009 Durée : 3 heures Baccalauréat ES Centres étrangers 15 juin 009 EXERCICE 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions proposées,

Plus en détail

DEVOIR COMMUN n 2 Mathématiques LIAD Mardi 17 Janvier 2012 Durée de l'épreuve : 4 heures

DEVOIR COMMUN n 2 Mathématiques LIAD Mardi 17 Janvier 2012 Durée de l'épreuve : 4 heures DEVOIR COMMUN n 2 Mathématiques T S LIAD Mardi 17 Janvier 2012 Durée de l'épreuve : 4 heures Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation. Le sujet est composé

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 9 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr Sujet Bac Maths SUJET 3 ANTILLES - GUYANE 2016 alainpiller. fr Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui n ont pas suivi la spécialité Mathématiques

Plus en détail

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm).

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm). Bac Blanc wicky-math.fr.nf Février 0 BAC BLANC Exercice. Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : cm). Partie A On considère l équation : (E) : z + 6z +

Plus en détail

Baccalauréat S Polynésie juin 2007

Baccalauréat S Polynésie juin 2007 Baccalauréat S Polynésie juin 007 EXERCICE Commun à tous les candidats Pour réaliser une loterie, un organisateur dispose d une part d un sac contenant exactement un jeton blanc et 9 jetons noirs indiscernables

Plus en détail

Éléments de correction du contrôle type bac

Éléments de correction du contrôle type bac Éléments de correction du contrôle type bac Exercice (Restitution organisée de connaissances points) Pré-requis : Si une variable aléatoire T suit la loi exponentielle de paramètre λ (avec λ > ), la densité

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session MATHÉMATIQUES Série ES ENSEIGNEMENT DE SPÉCIALITÉ SUJET. Durée de l épreuve : 3 heures coefficient : 7

BACCALAURÉAT GÉNÉRAL. Session MATHÉMATIQUES Série ES ENSEIGNEMENT DE SPÉCIALITÉ SUJET. Durée de l épreuve : 3 heures coefficient : 7 BACCALAURÉAT GÉNÉRAL Session 2016 MATHÉMATIQUES Série ES ENSEIGNEMENT DE SPÉCIALITÉ SUJET Durée de l épreuve : 3 heures coefficient : 7 L usage de la calculatrice est autorisé. Le candidat est invité à

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 7 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement Obligatoire

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement Obligatoire Session 2011 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7 Du papier millimétré est mis

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures coefficient : 4

BACCALAURÉAT GÉNÉRAL. Session MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures coefficient : 4 BACCALAURÉAT GÉNÉRAL Session 2016 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement Obligatoire

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement Obligatoire Session 2010 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7. Ce sujet comporte 6 pages numérotées de 1 à 6 Du papier millimétré est mis

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE Session 2006 BACCALAUREAT GENERAL Session 2006 MATHEMATIQUES Série S ENSEIGNEMENT de SPECIALITE Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

BACCALAURÉAT GÉNÉRAL Session 2007 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9. Commun à tous les candidats

BACCALAURÉAT GÉNÉRAL Session 2007 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9. Commun à tous les candidats Dans nos classes 797 BACCALAURÉAT GÉNÉRAL Session 2007 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014

Baccalauréat S Antilles-Guyane 11 septembre 2014 Durée : 4 heures Baccalauréat S Antilles-Guyane 11 septembre 2014 EXERCICE 1 6 points Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue divers tests

Plus en détail

BACCALAUREAT BLANC. Série S MATHEMATIQUES SPECIFIQUE

BACCALAUREAT BLANC. Série S MATHEMATIQUES SPECIFIQUE BACCALAUREAT BLANC Série S MATHEMATIQUES SPECIFIQUE Coefficient 7 Durée 4 heures Cesujetcomporte 6pagesnumérotéesde1à6. Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL SESSION 2013 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution.

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution. Polynésie septembre 2010 Partie1 Soit g la fonction définie sur [0;+ [ par 1. Déterminer la limite de g en +. 2. Étudier les variations de la fonction g. 3. Donner le tableau de variations de g. 4. a.

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures BACCALAURÉAT GÉNÉRAL SESSION 015 MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité Durée de l épreuve : 4 heures Coefficient : 7 OBLIGATOIRE Ce sujet comporte 7 pages numérotées

Plus en détail

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures Baccalauréat blanc 2014-2015 Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures L usage de la calculatrice est autorisé Le numéro de la classe devra figurer dans la partie anonymée.

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015 Lycée Marlioz - Aix les Bains Bac Blanc 205 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 2 avril 205 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire Epreuve commune mathématiques TS mardi 4 avril 2017 Sujet obligatoire EXERCICE 1 Dans le plan muni d un repère orthonormé ( O, ı, j représentative de la fonction u définie sur l intervalle ]0 ; + [ par

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSIN 2016 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT BLIGATIRE Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

BACCALAURÉAT BLANC SPÉCIALITÉ. Lycée JANSON DE SAILLY MATHÉMATIQUES. Série ES. Ce sujet comporte 4 pages numérotées de 1 à 4

BACCALAURÉAT BLANC SPÉCIALITÉ. Lycée JANSON DE SAILLY MATHÉMATIQUES. Série ES. Ce sujet comporte 4 pages numérotées de 1 à 4 BACCALAURÉAT BLANC Lycée JANSON DE SAILLY MATHÉMATIQUES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT 7 Ce sujet comporte 4 pages numérotées de 1 à 4 L utilisation de la calculatrice est autorisé SPÉCIALITÉ

Plus en détail

lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S (obligatoire + spécialité)

lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S (obligatoire + spécialité) Décembre 2015 lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S obligatoire + spécialité) * * * * * * * DUREE DE L EPREUVE = 4 h 00 * * * * * * *

Plus en détail

Baccalauréat S Liban 27 mai 2014

Baccalauréat S Liban 27 mai 2014 EXERCICE 1 Baccalauréat S Liban 27 mai 2014 Les trois parties A, B et C peuvent être traitées de façon indépendante. Les probabilités seront arrondies au dix millième. Un élève doit se rendre à son lycée

Plus en détail

ENSEIGNEMENT DE SPÉCIALITÉ

ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSIN 016 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Baccalauréat S Pondichéry 18 avril 2012

Baccalauréat S Pondichéry 18 avril 2012 Baccalauréat S Pondichéry 18 avril 2012 EXERCICE 1 Commun à tous les candidats Les deux parties sont indépendantes. Partie A 6 points Un groupe de 50 coureurs, portant des dossards numérotés de 1 à 50,

Plus en détail

Bac Blanc GE épreuve de mathématiques Année 2005/2006

Bac Blanc GE épreuve de mathématiques Année 2005/2006 Bac Blanc GE épreuve de mathématiques Année 005/00 L usage de la calculatrice est autorisée. Le prêt de calculatrice entre les candidats n est pas autorisé. La qualité de la rédaction et de la présentation,

Plus en détail

Baccalauréat S Asie 16 juin 2015

Baccalauréat S Asie 16 juin 2015 Exercice 1 Baccalauréat S Asie 16 juin 15 A. P. M. E. P. Les trois parties de cet exercice sont indépendantes. Les probabilités seront arrondies au millième. Partie A Un concurrent participe à un concours

Plus en détail

Baccalauréat ES Métropole 23 juin 2010

Baccalauréat ES Métropole 23 juin 2010 Baccalauréat ES Métropole 23 juin 2010 EXERCICE 1 Commun tous les candidats 4 points Cet exercice est un questionnaire à choix multiples (QCM). Les questions sont indépendantes les unes des autres. Pour

Plus en détail

Sujets de bac : Complexes

Sujets de bac : Complexes Sujets de bac : Complexes Sujet n 1 : extrait d Asie juin 2002 1) Dans le plan complexe ; ;, on considère quatre points,, et d affixes respectives 3 ; 4 ; 2 3 et 1. Placer les points,, et dans un plan.

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Equations à coefficients Complexes. Dans tous les exercices le plan P complexe est rapporté à un repère orthonormé direct,,.

Equations à coefficients Complexes. Dans tous les exercices le plan P complexe est rapporté à un repère orthonormé direct,,. Equations à coefficients Complexes 4 ème Mathématiques Dans tous les exercices le plan P complexe est rapporté à un repère orthonormé direct,,. Exercice 1 1) Résoudre dans C l équation : 3 + + 2 + 2 3

Plus en détail

Baccalauréat série S Amérique du Sud 17 novembre 2014

Baccalauréat série S Amérique du Sud 17 novembre 2014 Baccalauréat série S Amérique du Sud 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 6 points Une entreprise est spécialisée dans la fabrication de ballons de football. Cette entreprise

Plus en détail

Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée

Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée Le sujet comporte 4 exercices : Les élèves n ayant pas choisi l option Mathématiques en spécialité traiteront

Plus en détail

Devoir surveillé de mathématiques Enseignement de spécialité

Devoir surveillé de mathématiques Enseignement de spécialité Lycée Eugène Delacroix Terminales S samedi décembre 04 Devoir surveillé de mathématiques Enseignement de spécialité Durée : 4 heures L utilisation d UNE ET D UNE SEULE calculatrice est autorisée. Tout

Plus en détail

Terminale S1. Devoir Surveillé

Terminale S1. Devoir Surveillé Devoir Surveillé EXERCICE 1 : 5 POINTS Cet exercice est un QCM (questionnaire à choix multiple). Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera SUR la copie

Plus en détail

Baccalauréat STI Génie électronique Antilles septembre 2005

Baccalauréat STI Génie électronique Antilles septembre 2005 Durée : 4 heures Baccalauréat SI Génie électronique Antilles septembre 5 EXERCICE 5 points Un professeur d Éducation Physique et Sportive s adresse à un groupe de vingt élèves au sujet de leurs loisirs

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session 2015 MATHÉMATIQUES. - Série ES - ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l'épreuve : 3 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL. Session 2015 MATHÉMATIQUES. - Série ES - ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l'épreuve : 3 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES - Série ES - ENSEIGNEMENT DE SPÉCIALITÉ Durée de l'épreuve : 3 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Nous vous conseillons de répartir équitablement les 3 heures d épreuves entre les sujets de mathématiques et de physique-chimie

Plus en détail

Baccalauréat série ES France septembre 2004

Baccalauréat série ES France septembre 2004 Baccalauréat série ES France septembre 2004 EXERCICE 1 Commun à tous les candidats Soit f la fonction définie pour tout x élément derpar f (x)=0e x. Soit g la fonction définie pour tout x élément derpar

Plus en détail

Baccalauréat S Métropole La Réunion 9 septembre 2015

Baccalauréat S Métropole La Réunion 9 septembre 2015 accalauréat S Métropole La Réunion 9 septembre 215 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 POINTS Cet exercice est un questionnaire à choix multiples. Pour chacune des questions, quatre

Plus en détail

Baccalauréat S Polynésie juin 2012

Baccalauréat S Polynésie juin 2012 Baccalauréat S Polynésie juin 01 EXERCICE 1 Le plan est rapporté à un repère orthonormal ( On considère les points B (100 ; 100) et C 50 ; ( O ; i ; ) j. 50 e ) et la droite (D) d équation y = x. On note

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

SESSION 2016 ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures Coefficient : 7

SESSION 2016 ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES - Série ES ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

Lycée l Oiselet Lundi 24 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE STI2D. Bac Blanc

Lycée l Oiselet Lundi 24 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE STI2D. Bac Blanc Lycée l Oiselet Lundi 24 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE STI2D Durée de l épreuve : 4 HEURES Les calculatrices sont AUTORISÉES Bac Blanc Coefficient : 4 Le candidat doit traiter

Plus en détail

DEVOIR SURVEILLÉ N 9

DEVOIR SURVEILLÉ N 9 DEVOIR SURVEILLÉ N 9 Devoir «type Bac» Le 20 mai 2015 Le plus grand soin doit être apporté aux calculs et à la rédaction Soulignez ou encadrez vos résultats Exercice 1 (5 points) On considère la fonction

Plus en détail

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Lycée Albert CAMUS 28 mars 2012 BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Durée de l épreuve : 4H - Coefficient : 9 (Spécialité) Les calculatrices sont AUTORISÉES Le candidat doit traiter les

Plus en détail

Baccalauréat S Polynésie 7 juin 2013

Baccalauréat S Polynésie 7 juin 2013 Baccalauréat S Polynésie 7 juin 203 EXERCICE Commun à tous les candidats 6 points On considère la fonction f définie sur R par f (x)=(x+ 2)e x. On note C la courbe représentative de la fonction f dans

Plus en détail

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015 NOM : Terminale ES Devoir n 9 Mardi 9 mai 5 Eercice. QCM sur 4 points Cet eercice est un questionnaire à choi multiples. Chaque question ci-après comporte quatre propositions de réponse. Pour chacune de

Plus en détail

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail

Bac Blanc Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths. 18 avril 2011

Bac Blanc Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths. 18 avril 2011 Lycée Marlioz - Aix les Bains Bac Blanc 0 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 8 avril 0 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Bac blanc - Mathématiques spécialité Terminales ES-L, , Lycée Newton

Bac blanc - Mathématiques spécialité Terminales ES-L, , Lycée Newton Bac blanc - Mathématiques spécialité -04-04-13- Terminales ES-L, 2012-2013, Lycée Newton Exercice 1. pour les élèves ayant suivi l enseignement de spécialité 6 points Dans une grande entreprise, tous les

Plus en détail

Baccalauréat ES Polynésie 13 septembre 2012

Baccalauréat ES Polynésie 13 septembre 2012 Baccalauréat ES Polynésie 13 septembre 01 EXERCICE 1 Commun à tous les candidats 4 points Le tableau ci-dessous représente l évolution de l indice du PIB de la Chine de 1985 à 005, base 100 en 1985 année

Plus en détail

Terminale S Vendredi 13 décembre 2013 MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S OBLIGATOIRE. Durée de l épreuve : 3 HEURES

Terminale S Vendredi 13 décembre 2013 MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S OBLIGATOIRE. Durée de l épreuve : 3 HEURES MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 3 HEURES Les calculatrices électroniques de poche sont autorisées conformément à la réglementation en vigueur, pas leur échange. Le

Plus en détail

Exercice n 1. On note An l'évènement " le tirage a lieu dans l'urne U1 à l'étape n " et pn sa probabilité. On a donc p1 = Calculer p2.

Exercice n 1. On note An l'évènement  le tirage a lieu dans l'urne U1 à l'étape n  et pn sa probabilité. On a donc p1 = Calculer p2. Exercice n 1 On considère deux urnes U1 et U2. L'urne U1 contient 17 boules blanches et 3 boules noires indiscernables au toucher. L'urne U2 contient 1 boule blanche et 19 boules noires indiscernables

Plus en détail

NOM : PRÉNOM : Série S

NOM : PRÉNOM : Série S Ne rien inscrire dans ce cadre NOM : PRÉNOM : Centre d'écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série S Mercredi 11 mai 2016 1 Nous vous conseillons de répartir équitablement

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Session 2013

BACCALAURÉAT TECHNOLOGIQUE Session 2013 BACCALAURÉAT TECHNOLOGIQUE Session 013 Épreuve : MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU DESIGN ET DES ARTS APPLIQUÉS Le sujet comporte neuf pages numérotées de 1 à 9. Les annexes (pages 7, 8

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement de Spécialité

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement de Spécialité Session de septembre 203 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement de Spécialité Durée de l épreuve : 4 heures Coefficient : 9. Ce sujet comporte 7 pages numérotées de à 7 Du papier millimétré

Plus en détail

Corrigé du baccalauréat S Centres étrangers 12 juin 2014

Corrigé du baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers juin 4 A. P. M. E. P. Exercice 4 points Commun à tous les candidats Question Dans un hypermarché, 75 % des clients sont des femmes. Une femme

Plus en détail