(6 points) c. En déduire les dimensions de la boîte ayant le plus grand volume et donner la valeur de volume maximal. (5 points)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "(6 points) c. En déduire les dimensions de la boîte ayant le plus grand volume et donner la valeur de volume maximal. (5 points)"

Transcription

1 Bac Blanc - Maths - 1S - 08/0/01 (sur 0 durée : h - calculatrice autorisée La présentation et la qualité de rédaction seront prises en compte dans la note EXERCICE 1 Un chocolatier veut faire fabriquer une nouvelle boîte de présentation pour Pâques. Elle aura la forme d un prisme droit dont deux faces sont des rectangles de 0 cm de longueur sur cm de largeur. Une section de ce prise par un plan perpendiculaire à la face BCDE est le triangle ABC isocèle en A. La longueur BC = x représente l écartement entre les deux rectangles. Le but de ce problème est de déterminer x tel que le volume de cette boîte soit le plus grand possible. 1. a. Quelles sont les valeurs possibles pour x? b. Démontrer que la hauteur h issue de A du triangle ABC est telle que : h 100 x = c. Exprimer l aire du triangle ABC en fonction de x. d. Exprimer le volume V (x du prisme en fonction de x.. Soit la fonction f définie sur [0;10] par : f (x = x ( 100 x. a. Étudier le sens de variation de f. b. Pour quelle valeur de x f admet-elle un maximum?. a. Vérifier : V (x = f (x. b. En utilisant les variations de f, déterminer les variations de la fonction V sur [0;10]. ( points c. En déduire les dimensions de la boîte ayant le plus grand volume et donner la valeur de volume maximal. EXERCICE On considère la fonction f définie sur R par : f (x = On note C f sa courbe représentative. (1 x x + 1. ( points 1. a Vérifier que : f (x = (x x 1 (x + 1. b Déterminer les variations de f. On ne demande pas les valeurs exactes des extrema mais une valeur arrondie au centième.. Déterminer l équation de la tangente T à C f au point A d abscisse 1.. On veut montrer qu il existe un point B de C f tel que la tangente à C f en B soit parallèle à la droite d équation y = x. a Montrer que le problème revient à résoudre l équation :x + x + = 0. b Vérifier : x + x + = (x + 1 (x x +. c Conclure. Page 1 sur

2 EXERCICE ABC est un triangle quelconque. Le point I est tel que : B I = 1 B A Le point J est tel que : C J = CB Le point K est tel que : AK = AC. On souhaite démontrer que les droites (AJ, (BK et (CI sont concourantes. (7 points Soit E le point d intersection ( des droites (BK et (AJ. On se place dans le repère B, BC, B A. 1. a. Donner sans justification les coordonnées des points B, C, A, I et J. b. Calculer les coordonnées du point K. ( Dans la suite, on admet que les coordonnées de K sont : ;.. a. Déterminer une équation cartésienne de la droite (AJ et montrer qu elle peut se mettre sous la forme :x + y 1 = 0. b. Déterminer une équation cartésienne de la droite (BK. c. En déduire les coordonnées du point E.. Démontrer que le point E appartient à la droite (C I et conclure. EXERCICE Une coopérative laitière fabrique un fromage qui doit contenir, selon l étiquette, 0% de matière grasse. Un organisme de contrôle de qualité prélève 100 fromages afin d analyser leur taux de matière grasse. ( points Voici les résultats de l analyse : Taux [; 7[ [7; 9[ [9; 1[ [1; [ [; [ Effectif 1 1. Calculer une valeur approchée du taux moyen t et de l écart-type σ.. Une production de fromage peut être vendue sous l appellation "0% de matière grasse" si les deux conditions suivantes sont remplies : a. 0 appartient à l intervalle [ t 0,; t + 0, ] ; b. Plus de 90 % des fromages analysés appartiennent à l intervalle [ t σ; t + σ ]. Que pensez-vous de la production de cette coopérative? Page sur

3 EXERCICE 1. Donner la mesure principale des angles orientés suivants : Mesures Mesures principales 1π 19π 7π 9π. Résoudre dans [0;π[ l équation :cosx =. Vrai ou Faux :soit le carré ABCD de sens direct. ( suite colonne de droite 100π 7π 8 ( (7 points OI Le point A étant tel que :, OA = π [π]. Préciser si les affirmations suivantes sont vraies ou fausses.(schéma ci-dessous redonné en fin de sujet a. OA, OB = π [π] b. ( OB, OI = π [π] ( OI c., OD = π [π] d. OB, OJ = π [π] e. ( OI, OC = 11π 1 [π] EXERCICE ( points Une urne contient n boules indiscernables au toucher : boules rouges et n boules noires ( n est un entier supérieur ou égal à. Un joueur tire au hasard successivement et sans remise deux boules de l urne. 1. Construire un arbre pondéré décrivant cette expérience aléatoire.. Le joueur gagne esi les deux boules tirées sont de couleur différente et perd 1esinon. On note A l évènement :"les deux boules tirées sont de couleurs différentes" et X la variable aléatoire donnant le gain algébrique du joueur. 10n 0 a. Montrer que : P(A = n n c. Montrer que : E(X = n + 1n 10 n n. Comment choisir n pour que le jeu soit équitable? b. Déterminer la loi de probabilité de X.. Le tirage se fait maintenant avec remise et le nombre de boules au total est de 1. On fait 7 tirages successifs et on considère X la variable aléatoire,le nombre de boules rouges tirées. Déterminer la loi de probabilité de X ; ensuite, calculer la probabilité de tirer au moins une boule rouge. EXERCICE 7 ( points Une association constate que chaque année, 0% de ses adhérents de l année précédente ne renouvellent pas leur adhésion et qu il y a 00 nouveaux adhérents. On veut étudier l évolution du nombre d adhérents au cours des années. On note u n le nombre d adhérents de l association lors de la n-ième année. 1. Sachant que : u 1 = 1000, calculer u et u.. Montrer que pour tout entier naturel n non nul, u n+1 = 0.8u n On pose : v n = 100 u n. Montrer que (v n est une suite géométrique dont on précisera la raison et le premier rang.. Démontrer que pour tout entier naturel n non nul : u n = (0.8 n 1.. En déduire le nombre d adhérents la dixième année.. A l aide de la calculatrice, déterminer l entier naturel n à partir duquel : u n [199,9;100,1[ Page sur

4 Page sur Brouillon :

5 EXERCICE 1 Bac Blanc 01 : correction 1. a. D après l inégalité triangulaire : BC < AB + AC. On peut aussi prendre en compte l alignement de B, A et C. Soit : BC = x AB + AC = 10. De plus, x représente une longueur, soit : x 0. Donc : x [0;10]. b. ABC étant un triangle isocèle, la hauteur issue de A coupe le segment [BC ] en son milieu. En nommant H le pied de la hauteur issue de A sur [BC ] et d après le théorème de Pythagore : ( x AH + HC = AC h + = h = x 100 x = 100 x c. Soit A ABC (x l aire du triangle ABC en fonction de x : A ABC (x = x = x 100 x d. Soit V (x le volume du prisme : V (x = x 100 x 0 = x 100 x = x ( 100 x.. a. Étude du sens de variation de f en étudiant le signe de la dérivée de f : f, comme fonction polynôme, est dérivable sur R, soit sur [0;10]. Donc : f (x = x ( 100 x +x ( x = x ( 00 x x f (x = x ( 0 x = x ( x ( + x. Voir tableau de variation ci-contre. b. D après ce tableau, f admet un maximum sur [0; 10] pour : x =. a. V (x = x ( 100 x = f (x. x 0 x x f (x f (x Tableau de variation : f ( b. Utilisons le sens de variations de la fonction racine carrée : elle est croissante sur [0;10] ; Donc, V possède les mêmes variations que f (x sur [0;10]. c. Donc, le volume est maximal pour : x =, soit la mesure de BC. On obtient un volume :V ( = 0, soit un volume maximal de 0cm EXERCICE 1. a f est une fonction rationnelle ; elle est donc dérivable sur son ensemble de définition, R. f (x = (x ( x(x (x + 1 = (x x x (x + 1 = (x x 1 (x + 1 ( égalité prouvée. b Étude de signes de f (x en calculant le discriminant du numérateur : x Tableau de variations de f : = b (ac = 8 > 0. Donc, le numérateur a deux racines : f (x x 1 = b = 1 et a x = b + = 1 + f (x. 1 a. Soit l équation de la tangente T à C f au point A d abscisse a :y = f (a(x a + f (a. 1 + Sachant, pour a = 1 : f (1 = et f (1 = 1. Donc : (T : y = 1(x 1 +, soit : (T : y = x a Soit B(x 0 ; y 0. La tangente à C f en B est parallèle à d équation y = x. Donc : f (x 0 = 1.On résout donc : (x 0 x 0 1 (x0 + = 1 (x 0 x (x (x 0 x (x (x0 + = 0 1 x 0 + x x 0 + x = 0 x 0 + x 0 + = 0 Page 1 sur

6 b Développons : (x + 1 (x x + = (x + x + 1(x x + = x x + x + x x + x + x x + = x + x +. c Concluons en factorisant : x x + : = 8 < 0 donc : x x + > 0 quelque soit le réel x. Donc : f (x s annule pour : x 0 = 1. f (x 0 = 1. Donc le point B existe, est de coordonnées ( 1;1. EXERCICE 1. a. Coordonnées des points sont : B(0;0, C (1;0, A(0;1, I (0; 1 et J(1 ;0. b. On sait : ( xc x A = 1 AK = AC. Or : AC. Donc : AK y C y A = 1. x K x A = x K = x A + Soit : y K y A = y K = y A. Donc : K ( ;. a. La droite (AJ est de vecteur directeur 1 AJ ; soit le point M(x; y appartenant à cette droite. 1 Donc les vecteurs AJ et AM sont colinéaires. D après : soit ( x u et ( x v y y deux vecteurs non nuls. Ils sont colinéaires ssi : x y x y = 0. Donc : x y y x AJ AM AJ AM = 0 1 (y 1 ( 1(x = 0 1 y 1 +x = 0 x + 1 y 1 = 0 x +y 1 = 0. Donc : (AJ : x + y 1 = 0. et BM b. De même pour la droite (BK, sachant : ( x BK. On obtient : y y x = 0 (BK : y x = 0 c. Le point E(x 1 ; y 1 est le point d intersection des droites (AJ et (BK, donc ses coordonnées vérifient le { { x1 + y 1 = 1 L 1 9x1 + y 1 = L 1 système suivant : 11x 1 = x 1 = x 1 + y 1 = 0 L x 1 + y 1 = 0 L 11. Dans L 1 : y 1 = 1 x 1 = = ( 11. Donc : E 11 ;. 11. Démontrons que E appartient à (C I en montrant que C, E et I sont alignés, soit que les vecteurs 8 sont colinéaires, sachant : CE 11 et C I Calculons : x CE y C I y C I x CE = 8 ( ( 1 ( E est le point d intersection des droites (C I, (BC et (AJ. = CE et C I 11 + = 0. Donc : C, E et I sont alignés. Donc, 11 Page sur

7 EXERCICE 1. Calcul de la valeur approchée du taux moyen t avec le centre de chaque classe : t = = 9, Pour calculer l écart-type, calculons d abord la variance : V = ( 9,8 + (8 9,8 + (0 9,8 + 1( 9,8 + ( 9,8. Soit : σ = V = a. Déterminons l intervalle I = [ t 0,; t + 0, ] = [9,;0,1] :0 I. b. De même : J = [ t σ; t + σ ] = [,;,].A priori, au moins 97% de la production - si on enlève la dernière catégorie ( dont la borne inférieure est - sont dans J. La production peut donc être vendue sous l appellation "0% de matière grasse". EXERCICE 1. Mesure principale des angles orientés suivants : Mesures Mesures principales 1π π. Dans [0;π[ :cosx = 19π π 7π π 9π π cosx = cos π x = π ou x = π + π = 7π S = {π ; 7π } 100π π 7π 8 π 8. a. b. c. d. e. OA, OB = π [π] : vrai OB, OI = π [π] : vrai ( OI, OD = π [π] : faux ( π OB, OJ = π [π] : vrai ( OI, OC = 11π 1 [π] : faux ( 7π EXERCICE 1. Voir l arbre pondéré ci-contre.. a. P(A = n n n 1 + n n (n 10n 0 = = n 1 n(n 1 n n b. Détermination de la loi de probabilité : Soit X la variable donnant le gain algébrique : P(x = = P(A et P(x = 1 = 1 P(x = = n 11n + 0 n. n. a. E(X = (10n 0 + ( 1(n 11n + 0 n n = 0n 100 n + 11n 0 n n = n + 1n 10 n n. Le jeu est équitable si : E(X = 0 n +1n 10 = 0. Calculons le discriminant de ce trinôme : = 1 > 0. Il existe donc deux racines :n 1 = et n =. Il faut donc ou boules au total pour que le jeu soit équitable.. Le tirage se faisant maintenant avec remise, l expérience aléatoire est répétitive et identique et à double issues ( rouge ou noire.il s agit donc d une loi binomiale B(7;.(P(tirer une boule rouge = 1 1. ( ( 7 k ( P(X = k = 1 7 k k 1 1 La probabilité de tirer au moins une boule rouge : P(x 1 = 1 P(x = 0 = 1 ( ( 7 0 ( 1 7 = 0, Page sur

8 EXERCICE 7 1. Sachant qu une baisse de 0% correspond à une multiplication par 0.8, on effectue les calculs suivants : u 1 = 1000 ;u = u = = 1100 et u = u = = D après les calculs précédents : u n+1 = 0.8u n Soit : v n = 100 u n. D après : une suite (u n est dite géométrique s il existe un réel q tel que : v n+1 = q. v n On peut alors écrire : v n = v 0 q n. Calculons : v n+1 = 100 u n+1 = 1 [100 (0,8u n + 00] = 1 [100 0,8u n ] v n v n v n v n Sachant : u n = 100 v n : v n+1 = 1 [100 0,8(100 u n ] = 1 ( ,8v n = 0,8 ( terme constant. v n v n v n Donc, (v n est une suite géométrique de raison q = 0,8 et de premier terme : v 1 = 100 u 1 = 00. Et on obtient, en fonction de n : v n = v 1 q n 1 = 00(0,8 n 1.. Donc, pour tout entier naturel n non nul : u n = 100 v n = (0.8 n 1.. Nombre d adhérents la dixième année : u 10 = (0, Il y aura donc 1 adhérents la dixième année.. A partir de n = 0 : u 0 199,9 est le premier terme supérieur à 199,9. Page sur

I. PROBABILITES (13 points)

I. PROBABILITES (13 points) 1S Corrigé de l Evaluation n de mathématiques Exercice n 1 (7 points) I. PROBABILITES (1 points) Une urne contient boules rouges et (n ) boules noires numérotées de 1 à n, où n. Partie A : Tirage avec

Plus en détail

Taux (ti) [45 ; 47[ [47 ; 49[ [49 ; 51[ [51 ; 53[ [53 ; 55[ Effectif (ni)

Taux (ti) [45 ; 47[ [47 ; 49[ [49 ; 51[ [51 ; 53[ [53 ; 55[ Effectif (ni) 1 ère S4 Devoir de mathématiques Le 10-1-004 Durée : heures Exercice 1 : Vrai-faux 6 points Pour chacune des affirmations proposées, indiquer clairement sur la copie si elles sont vraies ou fausses, en

Plus en détail

DEVOIR DE VACANCE TS

DEVOIR DE VACANCE TS DEVOIR DE VACANCE TS EXERCICE 1 Partie A Un grossiste achète des boîtes de thé vert chez deux fournisseurs. Il achète 80% de ses boîtes chez le fournisseur A et 20% chez le fournisseur B. 10% des boîtes

Plus en détail

( ) et de vecteur directeur u 3 5

( ) et de vecteur directeur u 3 5 Révisions conseillées pour un passage en terminale S rentrée 2014 Pour que le passage de la classe de première S à la terminale se fasse de façon fluide, nous vous conseillons de prévoir dix jours de révision

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

Nouvelle-Calédonie mars 2012

Nouvelle-Calédonie mars 2012 Nouvelle-Calédonie mars EXERCICE 5 points Commun à tous les candidats Partie A : On considère le polynôme P défini sur C par P() = ( + i ) + ( + i ) i.. Montrer que le nombre complee = i est solution de

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Corrigé de l examen de mathématiques

Corrigé de l examen de mathématiques Collège notre Dame de Jamhour Juin 2014 Classe de première S Corrigé de l examen de mathématiques Exercice 1 1. a. admet pour vecteur directeur ; admet pour vecteur directeur Alors et sont orthogonales.

Plus en détail

Corrigé du baccalauréat S Centres étrangers 12 juin 2014

Corrigé du baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers juin 4 A. P. M. E. P. Exercice 4 points Commun à tous les candidats Question Dans un hypermarché, 75 % des clients sont des femmes. Une femme

Plus en détail

Correction BB de Mathématiques Classe de Première S

Correction BB de Mathématiques Classe de Première S le 0 mars 013 La présentation de la copie et la rédaction des réponses seront prises en compte dans la note. Les résultats seront encadrés et chaque exercice sera commencé sur une nouvelle page. Le barème

Plus en détail

Mathématiques. préparation à la Terminale S

Mathématiques. préparation à la Terminale S Mathématiques préparation à la Terminale S Le programme de Terminale S est chargé et est la continuité de celui de 1 ère ère S. Les nouvelles notions sont nombreuses et le rythme de progression est rapide.

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

Baccalauréat S (obligatoire) Polynésie septembre 2009

Baccalauréat S (obligatoire) Polynésie septembre 2009 Baccalauréat S (obligatoire) Polynésie septembre 2009 EXERCICE 1 Commun à tous les candidats 4 points On considère le cube OABCDEFG d arête de longueur 1 représenté ci-dessous. Il n est pas demandé de

Plus en détail

1S Evaluation n 3 de mathématiques Le 21 Mai 2013 Corrigé 1 ère PARTIE Sans calculatrice Durée : 1h30 min

1S Evaluation n 3 de mathématiques Le 21 Mai 2013 Corrigé 1 ère PARTIE Sans calculatrice Durée : 1h30 min 1S Evaluation n 3 de mathématiques Le 1 Mai 013 Corrigé 1 ère PARTIE Sans calculatrice Durée : 1h30 min QCM : (13 points) : 1 point par bonne réponse, 0,5 point par mauvaise réponse, 0 si pas de réponse

Plus en détail

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Nous vous conseillons de répartir équitablement les 3 heures d épreuves entre les sujets de mathématiques et de physique-chimie

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

GEOMETRIE ANALYTIQUE DANS LE PLAN

GEOMETRIE ANALYTIQUE DANS LE PLAN WORKBOOK PCD -GEOMETRIE ANALYTIQUE DU PLAN 016 GEOMETRIE ANALYTIQUE DANS LE PLAN 1 Déterminer l'équation du cercle centré en C et de rayon r si : a) C (0; 0) et r = 1; b) C = (1; ) et r c) C (3; -4) et

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages numérotées de 1 à 6 Du papier millimétré est mis

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique

Plus en détail

NOM : PRÉNOM : Série S

NOM : PRÉNOM : Série S Ne rien inscrire dans ce cadre NOM : PRÉNOM : Centre d'écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série S Mercredi 11 mai 2016 1 Nous vous conseillons de répartir équitablement

Plus en détail

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11 Table des matières Chapitre 1 Les trinômes du second degré 11 I. Les trinômes du second degré : caractérisation... 1 II. Variations des fonctions trinôme du second degré... 13 III. Représentation graphique...

Plus en détail

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h.

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h. Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIERSITAIRE 206 Samedi 20 février 206 MATHÉMATIQUES durée de l épreuve : 3 h A. P. M. E. P. Les calculatrices sont autorisées. Problème La partie A est

Plus en détail

Mathématiques pour les vacances à l attention des élèves entrant en Terminale S

Mathématiques pour les vacances à l attention des élèves entrant en Terminale S Mathématiques pour les vacances à l attention des élèves entrant en Terminale S Afin de débuter l année 2016-2017 de terminale S dans les meilleures conditions en mathématiques, les élèves trouveront en

Plus en détail

1 x. 5 2x 5 2x. 2 nde A EXAMEN BLANC de MATHEMATIQUES Nom : Mme Hobraiche

1 x. 5 2x 5 2x. 2 nde A EXAMEN BLANC de MATHEMATIQUES Nom : Mme Hobraiche 2 nde A EXAMEN BLANC de MATHEMATIQUES Nom : Avril 2013 Durée : 2h Mme Hobraiche Prénom : La calculatrice est autorisée. Le sujet, noté sur 30, comporte 4 exercices indépendants les uns des autres. La note

Plus en détail

ANGLES ORIENTES+TRIGONOMETRIE

ANGLES ORIENTES+TRIGONOMETRIE ANGLES ORIENTES+TRIGONOMETRIE LISTE DES COMPETENCES CODE DENOMINATION T0 T0 T0 T0 T05 T0 T07 T08 T09 T0 T T T T T5 T T7 T8 T9 T0 T T T 99 Douala Mathematical Society : www.doualamaths.net : Workbook :

Plus en détail

EXERCICE 1. 6 points. Corrigé du baccalauréat S Amérique du Nord 1 er juin 2016 TS

EXERCICE 1. 6 points. Corrigé du baccalauréat S Amérique du Nord 1 er juin 2016 TS Corrigé du baccalauréat S Amérique du Nord er juin 06 EXERCICE 6 points Commun a tous les candidats Une entreprise fabrique des billes en bois sphériques grâce à deux machines de production A et B. L entreprise

Plus en détail

EXERCICES SUR LES SUITES

EXERCICES SUR LES SUITES EXERCICES SUR LES SUITES EXERCICE 1 u est une suite définie sur IN par u 7 = 6 et u 10 = 162 Déterminer sa raison, son premier terme u 0, ainsi que la somme S = u 10 + u 11 + + u 25 : 1) dans le cas où

Plus en détail

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014 TES/TL spé maths Eléments de correction du Bac Blanc n Jeudi 8 décembre 4 Calculatrice autorisée - Aucun document n'est autorisé. Exercice. (5 points) Le barème est noté sur points. Partie : Fonctions

Plus en détail

Annales sur la géométrie dans l espace

Annales sur la géométrie dans l espace Annales sur la géométrie dans l espace Exercice I : France juin 200 Soient a un réel strictement positif et OABC un tétraèdre tel que : OAB, OAC et OBC sont des triangles rectangles en O, OA = OB = OC

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban.

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban. COMPLEXES Sujets septembre 01 novembre 01 avril 01 mai 01 Antilles-Guyane Amérique du Sud Pondichéry Liban Formulaire COMPLEXES 1 Antilles-Guyane septembre 01. EXERCICE Le plan complexe est rapporté à

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Bac Blanc février 2009 Terminale ES Epreuve de mathématiques 3 heures

Bac Blanc février 2009 Terminale ES Epreuve de mathématiques 3 heures Bac Blanc février 2009 Terminale ES Epreuve de mathématiques 3 heures Exercice Pour tous les candidats 5 points Les Parties A et B sont indépendantes. Partie A On considère une fonction f définie et dérivable

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 EXERCICE 0 points Commun à tous les candidats Partie I Sur le graphique ci-dessous, on a représenté dans un repère orthonormal, les courbes c et c 2 représentatives de deux fonctions f et f 2 définies

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

/1 point n, c est-à-dire que

/1 point n, c est-à-dire que Externat Notre Dame Devoir n Tle S) Samedi 5 octobre 204 Proposition de corrigé Exercice : / point Restitution organisée de connaissances Dans cet exercice n désigne un entier naturel. On définit une suite

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir. Vous devez composer sur le sujet.

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté au devoir. Vous devez composer sur le sujet. NOM : Prénom : Observations : Composition n 2 de Mathématiques février 2010 Seconde... Note : Signature : février 2010 /20 La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apporté

Plus en détail

Correction du devoir commun de Seconde : Mathématiques

Correction du devoir commun de Seconde : Mathématiques Correction du devoir commun de Seconde : Mathématiques Exercice 1 5 points On se place dans un repère orthonormé, on donne les points suivants : Enfin, I est le milieu du segment 1 ) Faire une figure soignée

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui n ont pas suivi la spécialité Mathématiques

Plus en détail

Rochambeau Enseignement spécifique. Corrigé

Rochambeau Enseignement spécifique. Corrigé Rochambeau. 016. Enseignement spécifique. Corrigé EXERCICE 1 Partie A 1 L énoncé donne P = 0,96, PA = 0,6 et P A = 0,98. Représentons la situation par un arbre de probabilités. 0,98 0,6 A 0,0 0,4 B La

Plus en détail

Bien préparer sa rentrée en TS Mathématiques math

Bien préparer sa rentrée en TS Mathématiques math Bien préparer sa rentrée en TS Mathématiques TS math 1/11 Thème 1: Fonctions Savoir faire : -Signe d'un polynôme du second degré, factorisation -Utiliser le sens de variation pour comparer l'image de deux

Plus en détail

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats Eercice sur 5 points Cet eercice est commun à tous les candidats Soit f une fonction définie sur ]0 ; + [. On note C f sa courbe représentative dans un repère orthonormal représentée en annee. - La courbe

Plus en détail

Repérage dans le plan

Repérage dans le plan Repérage dans le plan I Les repères a) Définition Définition : Un repère du plan est défini par la donnée de trois points distincts non alignés O, I et J. Le repère est alors noté (O ; I ; J). Le point

Plus en détail

Exercices Géométrie plane

Exercices Géométrie plane I Notions élémentaires et compléments sur les vecteurs Savoir-faire 1 : Démontrer avec des vecteurs Exercice 1 ABCD et BDFE sont deux parallélogrammes. Le point K est défini par BK = CB. 1. Justifier les

Plus en détail

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution.

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution. Polynésie septembre 2010 Partie1 Soit g la fonction définie sur [0;+ [ par 1. Déterminer la limite de g en +. 2. Étudier les variations de la fonction g. 3. Donner le tableau de variations de g. 4. a.

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

I. Fonction de référence

I. Fonction de référence I. Fonction de référence Fonction x x 2 x x 3 x x x x Nom Domaine de définition x 3 2,5 2,5 0,5 0 0,5,5 2 2,5 3 Tableau de valeurs x² x 3 x /x Graphes Extremum Eléments de symétrie de la courbe Fonctions

Plus en détail

b) Montrer que le vecteur 2 est normal au plan (ABE).

b) Montrer que le vecteur 2 est normal au plan (ABE). Baccalauréat S Liban 3mai 206\ XRCIC (4 points Commun à tous les candidats On considère un solide ADCBF constitué de deux pyramides identiques ayant pour base commune le carré ABCD de centre I. Une représentation

Plus en détail

http://oral.bac.free.fr Pour préparer efficacement l oral de rattrapage du Baccalauréat SERIE S REPONSES AUX QUESTIONS LES PLUS FREQUENTES Après l oral, on conserve la meilleure des deux notes. L oral

Plus en détail

Mathématiques Positionnements niveau Lycée

Mathématiques Positionnements niveau Lycée Mathématiques Positionnements niveau Lycée NOM : Prénom : Matériel nécessaire : feuille quadrillée, règle et calculatrice scientifique. L'usage de la calculatrice est autorisé pour tout le positionnement

Plus en détail

Exercices Trigonométrie

Exercices Trigonométrie I Le cercle trigonométrique Savoir-faire 1 : Associer nombres réels et points du cercle trigonométrique Exercice 1 Tracer le cercle trigonométrique, puis placer les points A, B, C et D, images par enroulement

Plus en détail

lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S (obligatoire + spécialité)

lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S (obligatoire + spécialité) Décembre 2015 lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S obligatoire + spécialité) * * * * * * * DUREE DE L EPREUVE = 4 h 00 * * * * * * *

Plus en détail

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apportés au devoir. Vous devez composer sur le sujet.

La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apportés au devoir. Vous devez composer sur le sujet. NOM : Prénom : Observations : Composition n 3 de Mathématiques Seconde... 15 Mai 013 Note : /0 Signature : La calculatrice est autorisée. Il sera tenu compte de la rigueur et du soin apportés au devoir.

Plus en détail

Baccalauréat S Métropole 19 juin 2014

Baccalauréat S Métropole 19 juin 2014 Baccalauréat S Métropole 19 juin 2014 EXERCICE 1 Partie A A. P. M. E. P. Dans le plan muni d un repère orthonormé, on désigne par C 1 la courbe représentative de la fonction f 1 définie sur R par : f 1

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé.

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Activités numériques (12 points) Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Exercice 1 :(détailler chacun des calculs suivants)

Plus en détail

Baccalauréat S Pondichéry 8 avril 2014

Baccalauréat S Pondichéry 8 avril 2014 Baccalauréat S Pondichéry 8 avril 014 EXERCICE 1 Commun à tous les candidats 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée

Plus en détail

Corrigé du devoir commun de Mathématiques du deuxième trimestre ; Premières S Durée 2 heures. Calculatrice autorisée.

Corrigé du devoir commun de Mathématiques du deuxième trimestre ; Premières S Durée 2 heures. Calculatrice autorisée. Corrigé du devoir commun de Mathématiques du deuxième trimestre ; 201-201 Premières S Durée 2 heures. Calculatrice autorisée. Toute réponse doit être justifiée. La rédaction et la présentation du devoir

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

G 1. a) Traduire la situation ci-dessus à l aide d un arbre pondéré. P. P p(p G) = 0,2 0,3 = 0,06

G 1. a) Traduire la situation ci-dessus à l aide d un arbre pondéré. P. P p(p G) = 0,2 0,3 = 0,06 1S CORRIGÉ DE L ÉVALUATION N 3 DE MATHÉMATIQUES Le 20/05/2014 Durée : 4h EXERCICE 1. (12 points) PROBABILITÉS. Calculatrice autorisée. Les membres d un club sportif se présentent à l accueil soit pour

Plus en détail

Mathématiques. préparation à la Terminale ES

Mathématiques. préparation à la Terminale ES Mathématiques préparation à la Terminale ES Le programme de Terminale ES est chargé et est la continuité de celui de 1 ère ère ES. Les nouvelles notions sont nombreuses et le rythme de progression est

Plus en détail

Clamaths.fr - Première S

Clamaths.fr - Première S Clamaths.fr - Première S Sommaire 1 Foncions affines et de degré... 1.1 Fonctions affines - fx = ax + b... 1. Fonctions polynôme de degré - fx = ax + bx + c... 3 Suites... 4.1 Suites Arithmétiques et Suites

Plus en détail

Corrigé du baccalauréat S Centres étrangers 15 juin 2009

Corrigé du baccalauréat S Centres étrangers 15 juin 2009 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers 5 juin 9 EXERCICE 5 points Restitution organisée de connaissances : ) a Démontrer que pb)=pb A)+ p B A b Démontrer que, si les évènements A

Plus en détail

Baccalauréat S Antilles-Guyane ჼ septembre 2011

Baccalauréat S Antilles-Guyane ჼ septembre 2011 Baccalauréat S Antilles-Guyane ჼ septembre 011 EXERCICE 1 Commun à tous les candidats ( point) On considère la fonction f définie ]0 ; + [ par : f (x) = x ln x 1. Partie A : Étude d une fonction 1. a.

Plus en détail

Brevet blanc des Collèges Collège Saint-Joseph ETAPLES - Académie de Lille.

Brevet blanc des Collèges Collège Saint-Joseph ETAPLES - Académie de Lille. Brevet blanc des Collèges Collège Saint-Joseph ETAPLES - Académie de Lille. La calculatrice personnelle est autorisée, mais aucun matériel ne peut être prêté ou emprunté au voisin. La qualité de la rédaction

Plus en détail

1 e S - programme 2011 mathématiques ch.3 cahier élève Page 1 sur 30 Ch.2 : Fonctions de référence Partir d'un bon pied. sur IR.

1 e S - programme 2011 mathématiques ch.3 cahier élève Page 1 sur 30 Ch.2 : Fonctions de référence Partir d'un bon pied. sur IR. 1 e S - programme 011 mathématiques ch3 cahier élève Page 1 sur 30 Ch : Fonctions de référence Partir d'un bon pied Exercice n A page 46 : Maîtriser le vocabulaire de base relatif aux fonctions Vrai ou

Plus en détail

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1 TES BAC BLANC 2013 durée 3h Exercice 1 ( 4,5 points ) Cet exercice est un questionnaire à choix multiples. Pour chacune des trois questions, trois réponses sont proposées ; une seule de ces réponses convient.

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

Exercices supplémentaires Géométrie plane

Exercices supplémentaires Géométrie plane Exercices supplémentaires Géométrie plane Partie A : Coordonnées de vecteurs, colinéarité Exercice 1 Dans un repère, on considère 6; 1, ; 1, 15; 4 et ; 2. 1) Les points, et sont-ils alignés? Justifier.

Plus en détail

( ) Exercice 1. Exercice 5

( ) Exercice 1. Exercice 5 Exercice 1 1. Effectuer : A 11 5 4 B F + 5 4 6 7 C G 7 1 + 7 Exercice 5 1 5 5 5 5 D 1 6 1+ 6 E 1 H 18 0. Compléter alors le tableau suivant en utilisant le symbole ou. A B C D E F G H IN On donne Ax x

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

Terminale S1. Devoir Surveillé

Terminale S1. Devoir Surveillé Devoir Surveillé EXERCICE 1 : 5 POINTS Cet exercice est un QCM (questionnaire à choix multiple). Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera SUR la copie

Plus en détail

Exercices sur le barycentre

Exercices sur le barycentre Exercices sur le barycentre Exercice 1 : ABCD est un quadrilatère quelconque, I le milieu de [AD] et J celui de [BC]. 1) Ecrire IJ comme la somme de AB et de deux autres vecteurs que l on précisera. 2)

Plus en détail

NOM : SECOND DEGRE 1ère S

NOM : SECOND DEGRE 1ère S Exercice 1 Dans un triangle ABC rectangle en A, on place les points D et E respectivement sur [AC] et [AB] tels que AD = BE = x. Déterminer x pour que l aire du triangle ADE soit égale à la moitié de celle

Plus en détail

PROGRAMME DE REVISION CLASSE DE SECONDE 1 er TRIMESTRE

PROGRAMME DE REVISION CLASSE DE SECONDE 1 er TRIMESTRE PROGRAMME DE REVISION CLASSE DE SECONDE 1 er TRIMESTRE 1 ORDRE ET INTERVALLES Exercice 1 Compléter le tableau suivant : Intervalle Inégalité Représentation graphique Lecture de l intervalle Borné ou non

Plus en détail

Exercice (4 points) Deux bateaux et sont au large d une île et souhaitent la rejoindre pour y passer la nuit. Ils constatent qu ils sont séparés de 80

Exercice (4 points) Deux bateaux et sont au large d une île et souhaitent la rejoindre pour y passer la nuit. Ils constatent qu ils sont séparés de 80 Les exercices présentés sont soit des 0 02 0 04 05 exercices DST DE MATHEMATIQUES de brevet, soit extraits d ouvrages Mardi Mars 205 Nom : Prénom ( : Nathan et Hatier je crois ). Classe :. Le copyright

Plus en détail

BACCALAUREAT BLANC. Série S MATHEMATIQUES SPECIFIQUE

BACCALAUREAT BLANC. Série S MATHEMATIQUES SPECIFIQUE BACCALAUREAT BLANC Série S MATHEMATIQUES SPECIFIQUE Coefficient 7 Durée 4 heures Cesujetcomporte 6pagesnumérotéesde1à6. Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

Devoir Commun de Mathématiques - Classes de premières S Lycée Saint-Exupéry - durée : 3h

Devoir Commun de Mathématiques - Classes de premières S Lycée Saint-Exupéry - durée : 3h Devoir Commun de Mathématiques - Classes de premières S Lycée Saint-Exupéry - durée : h Nom : Prénom : Classe : Il sera tenu compte de la qualité de la rédaction et de la présentation. Les calculatrices

Plus en détail

Partie A - bilan numérique

Partie A - bilan numérique Partie A - bilan numérique Exercice 1. Effectuer les calculs suivants. A = 1 3 1 3 4 7 ; B = 2 3 + 3 2 ; C = (5 3 1 5 ) (1 6 + 3 2 ) ; D = 1 + 1 3 3 4 1 ; E = 10 3 (10 2 1 10 ) ; 2 F = 114 3 2 5 6 5 7

Plus en détail

Concours Fesic Puissance mai 2015

Concours Fesic Puissance mai 2015 Concours Fesic Puissance 6 mai 05 Calculatrice interdite ; traiter exercices sur les 6 en h 30 ; répondre par Vrai ou Faux sans justification + si bonne réponse, si mauvaise réponse, 0 si pas de réponse,

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

Baccalauréat S Amérique du Nord mai 2006

Baccalauréat S Amérique du Nord mai 2006 Baccalauréat S Amérique du Nord mai 006 EXERCICE 3points Commun à tous les candidats Pour chacune des 3 questions, une seule des trois propositions est exacte. Le candidat indiquera sur la copie le numéro

Plus en détail

Seconde 4 Exercices pour préparer la composition du deuxième trimestre VECTEURS

Seconde 4 Exercices pour préparer la composition du deuxième trimestre VECTEURS Seconde Exercices pour préparer la composition du deuxième trimestre 00-0 VETEURS EXERIE : Quadrilatères On donne (- ;0), ( ;) et (- ;). ) éterminer les coordonnées du point tel que soit un parallélogramme.

Plus en détail

2nde - Maths - CORRECTION D.S Commun (SUJET B)

2nde - Maths - CORRECTION D.S Commun (SUJET B) nde - Maths - CORRECTION D.S Commun (SUJET B) Jeudi 18 février - 1h30 Exercice 1 (5,5 points) Variations, signes et fonctions affines La courbe C fournie ci-dessous est la représentation graphique d une

Plus en détail

BREVET BLANC DE MATHEMATIQUES 2013

BREVET BLANC DE MATHEMATIQUES 2013 BREVET BLANC DE MATHEMATIQUES 2013 L usage de la calculatrice est autorisée. Toutes les réponses doivent être justifiées sauf si une indication contraire est donnée. L épreuve est notée sur 40 points dont

Plus en détail

Exercice 1 Problème 10 points

Exercice 1 Problème 10 points On révise... Eercice 1 Problème 10 points Partie A Soit g la fonction définie sur l intervalle ]0 ; [ par : g ()= 2 2 2ln() 1. Déterminer la fonction dérivée g de la fonction g et montrer que cette dérivée

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

Baccalauréat S Asie 16 juin 2015 Corrigé

Baccalauréat S Asie 16 juin 2015 Corrigé Baccalauréat S Asie 16 juin 015 Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats Partie A Un concurrent participe à un concours de tir à l arc, sur une cible circulaire. À chaque

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 010 Enoncés On demandait de résoudre trois questions

Plus en détail

TS Bac blanc n 4 (corrigé) Avril 2016

TS Bac blanc n 4 (corrigé) Avril 2016 TS Bac blanc n (corrigé) Avril 06 Exercice (Pour les non spécialistes) Les parties sont indépendantes. Partie A ) Avec la calculatrice, PX 85 0, La probabilité qu un bocal soit mal rempli est 0,. ) Avec

Plus en détail

Corrigé du baccalauréat S Polynésie 12 juin 2015

Corrigé du baccalauréat S Polynésie 12 juin 2015 Corrigé du baccalauréat S Polynésie 1 juin 015 A. P. M. E. P. EXERCICE 1 points 1. AI = 1 AB AB = 6AI B(6 ; 0 ; 0) ; 6 AJ = 1 AD AD = 4 AJ D(0 ; 4 ; 0) ; 4 AK = 1 AE AE = AK K(0 ; 0 ; ). Comme AG = AC

Plus en détail

Bilan fin de seconde. 1. Statistiques

Bilan fin de seconde. 1. Statistiques Bilan fin de seconde Les questions concernant des notions pour une première particulière sont précisées (remarque : les programmes de mathématiques de TL et TID sont les mêmes) Pour chaque question, il

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE Session 2006 BACCALAUREAT GENERAL Session 2006 MATHEMATIQUES Série S ENSEIGNEMENT de SPECIALITE Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail