1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures)"

Transcription

1 S : DEVOIR SURVEILLÉ N 8 ( heres) Exercice ( poits) Calcler les sommes sivates : S et S Exercice (3 poits) La site ( ) est arithmétiqe de raiso r. O sait qe 5 46 et 86.. Calcler la raiso r et.. Calcler la somme S Exercice 3 (4 poits) Ue etreprise décide de verser à ses igéiers e prime aelle de 5 Eros. Por e pas se dévaler, il est prév qe chaqe aée la prime agmete de % par rapport à l'aée précédete. O ote ( ) la site des primes avec 5.. Calcler pis 3 (c'est-à-dire la prime versée par l'etreprise la ème aée et la 3 ème aée). Exprimer + e foctio de. E dédire la atre de la site ( ). U igéier compte rester as das cette etreprise à partir d momet où est versée la prime. 3. Calcler la prime q'il tochera la ème aée (c'est-à-dire ) 4. Calcler la somme totale S des primes tochées sr les aées (c'est-à-dire S ) Exercice 4 (4 poits) O cosidère les dex sites ( ) et (v ) défiies, por tot, par : et v Soit (w ) la site défiie par w + v. Démotrer qe (w ) est e site géométriqe.. Soit (t ) la site défiie par t v. Démotrer qe (t ) est e site arithmétiqe. 3. Démotrer qe : (w + t ) 4. Exprimer la somme sivate e foctio de : S Exercice 5 (7 poits) 3 O cosidère la site ( ) défiie par : + por tot etier atrel. +. Calcler et. La site ( ) est-elle arithmétiqe? Géométriqe?. Démotrer, par récrrece, qe por tot etier atrel, o a : O cosidère la site (v ) défiie por tot etier atrel par : v + a) Calcler v, v et v. Démotrer qe la site (v ) est géométriqe. b) Exprimer v e foctio de. c) Exprimer e foctio de v. Qe vat? DS 8 - S - Sites Page G. COSTANTINI

2 S : DEVOIR SURVEILLÉ SUR LES SUITES : CORRIGÉ Exercice Rappelos qe por tot * o a : ( +). O e dédit immédiatemet : S S + S d'où S 45 S 474. Exercice ) Calcl de la raiso r : O a : p + ( p)r D'où, lorsqe p : r p Avec et p 5, cela doe : r 5 5 Calcl de : O a : p r 8. D'où : r ) Rappelos qe das la somme S p , il y a N p + termes. La somme S cotiet doc N termes. E otre, S est e somme de termes coséctifs d'e site arithmétiqe de raiso r 8. Nos povos doc tiliser la formle : S N( P+ D) Avec P 5 46 et D 86, os obteos : Exercice 3 S 546 ( + 86) 36 Rappelos q'e agmetatio de t% se tradit par e mltiplicatio par + t. E particlier, le coefficiet mltiplicater associé à e agmetatio de % est,. ) + ( + ),, 5 5. De même, 3,, 5 5,. La dexième aée, l'igéier toche e prime de 5 eros et la troisième e prime de 5, eros. ) La prime + s'obtiet de la prime par agmetatio de % doc : +, por tot etier O e dédit, par défiitio, qe la site ( ) est géométriqe de raiso q,. 3) Calcl de : comme ( ) est e site géométriqe, o a : q E particlier, avec, q, et 5, cela doe :, 5 78,4 (à près) DS 8 - S - Sites Page G. COSTANTINI

3 La vigtième aée, l'igéier tochera e prime 78,4 eros (a cetime près). 4) S est e somme de N termes coséctifs d'e site géométriqe de raiso q,. Nos povos doc tiliser la formle : S P ( q ) q Ce qi, das otre cas (P 5), doe : N S 5(, ) 48,6 à près, La somme totale des primes tochées par l'igéier sr les aées est : 4 eros (à ero près) Exercice 4 ) O a : w + v La site (w ) est d type w ba avec b 3 et a. C'est doc e site géométriqe de raiso q a. E effet, les termes de (w ) sot clairemet o ls et por tot etier, o a : w + 3 w 3 ) O a : t v La site (t ) est d type t a + b avec a 4 et b 3. C'est e site arithmétiqe de raiso r a 4. E effet, por tot etier, o a : 3) O a, por tot etier : + t + t 4( + ) + 3 ( 4 + 3) 4 (w + t ) ( + v + v ). 4) D'après la qestio 3), chaqe terme k ( k ) de la somme S pet s'écrire : k (w k + t k ) Aisi : S (w + t ) + (w + t ) (w + t ) E factorisat par et e regropat les termes de la site (w ) et cex de la site (t ), o obtiet : S [(w + w w ) + (t + t t )] Or, d'après la qestio, la site (w ) est géométriqe de raiso q. O a doc : w + w w P q N ( ) w + ( ) 3( + ) q Et d'après la qestio, la site (t ) est arithmétiqe de raiso r 4. O a doc : t + t t N( P+ D) ( + )( t + t ) ( + )( ) ( + )(3 ) Fialemet : S [3(+ ) ( + )(3 )] 3 DS 8 - S - Sites Page 3 G. COSTANTINI

4 Exercice 5 ) 3 ; + ; O a : 5 et 5 6. Comme, o e dédit immédiatemet qe la site ( ) 'est pas arithmétiqe. O a : 6 et 8 3. Comme géométriqe. ) Cosidéros la propriété () : 3 défiie por tot. Comme 3, o a (). Motros : () ( + ) por tot. Spposos () : 3 Ajotos : + 4 La foctio iverse état décroissate sr ] ; + [, o dédit :, o e dédit immédiatemet qe la site ( ) 'est pas + 4 Mltiplios par : + D'où : + Or : 3 et, d'où : 3 + O a doc ( + ). D pricipe de raisoemet par récrrece, o dédit () por tot, c'est-à-dire : 3 por tot La site ( ) est doc bie défiie (pisqe por tot etier ) 3) Remarqos qe la site (v ) est bie défiie pisqe d'après la qestio précédete,. a) v + 5 ; v + 5 ; v +. La site (v ) semble géométriqe de raiso q. Démotros-le. Por tot etier, o a : v ( + ) + + ( + ) ( + ) + + v (Les qotiets ci-desss sot bie défiie pisqe et (d'après la qestio )) Ce qi prove qe la site (v ) est géométriqe de raiso q. b) Exprimos v e foctio de. Pisqe (v ) est e site géométriqe, os avos : DS 8 - S - Sites Page 4 G. COSTANTINI

5 v q v 5 c) Exprimos e foctio de v. Por cela, o tilise la relatio : v + E mltipliat par + : v ( + ) Factorisos par : Divisos par v : (v ) v v v + v v Calclos : + v v Or : v D'où : ,7 (à 5 près) 5 DS 8 - S - Sites Page 5 G. COSTANTINI

SUITES AFFINES - EXERCICES CORRIGES. ), définie à partir de la suite ( u. 1. On pose vn

SUITES AFFINES - EXERCICES CORRIGES. ), définie à partir de la suite ( u. 1. On pose vn Exercice SUITES AFFINES - EXERCICES CORRIGES Das chaqe cas, motrer qe la site ( v, défiie à partir de la site ( v pis de e foctio de = = Exercice = et v = = 4 O cosidère e site ( défiie sr N par : a Motrer

Plus en détail

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999 TS DS Ldi /0/07 Exercice : sr 6 poits O cosidère la site défiie par 0 0 et por tot, 3.. Démotrer, par récrrece, qe por tot,.. Etdier le ses de variatio de la site 3. Détermier la limite de la site 4. Recopier

Plus en détail

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Exercice O cosidère la site défiie par O pose Motrer qe ( est e site géométriqe Exprimer

Plus en détail

Premières S A et S C : pour s entraîner pour le devoir n 8

Premières S A et S C : pour s entraîner pour le devoir n 8 Premières S A et S C : por s etraîer por le devoir 8 Savoirs et savoir faire (oveax depis le DS7) : Barycetres das l espace : Démotrer qe des poits sot coplaaires à l aide de barycetres Savoir détermier

Plus en détail

1 ère S Exercices sur les suites (3)

1 ère S Exercices sur les suites (3) ère S Exercices sr les sites () (Sites arithmétiqes - sites géométriqes) Soit la site arithmétiqe de premier terme 0 et de raiso r Exprimer e foctio de Soit la site arithmétiqe de premier terme 0 et de

Plus en détail

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n 4 ème aée Maths Sites réelles Septembre 9 A LAATAOUI Exercice : O cosidère la site ( ) défiie par : a) Motrer qe por tot de IN, < 4 b) Motrer qe ( ) est strictemet croissate c) E dédire qe ( ) + 4+, por

Plus en détail

arlesrsuitesraurbacr2013r==corriges=z

arlesrsuitesraurbacr2013r==corriges=z arlesrsuitesraurbacrr==corriges=z Frace métropolitaie septembre 5 poits 7 La foctio x x, ratioelle, est dérivable sr tot itervalle cote das so esemble x de défiitio * doc f est dérivable sr ] ; + [ et,

Plus en détail

a. Une suite numérique est une liste de nombres (les termes) repérés par un numéro d ordre (l indice), cette liste peut être infinie.

a. Une suite numérique est une liste de nombres (les termes) repérés par un numéro d ordre (l indice), cette liste peut être infinie. Stg Les sites I. Notios sr les sites a. Ue site mériqe est e liste de ombres (les termes) repérés par méro d ordre (l idice), cette liste pet être ifiie. Exemple. La site des ombres impairs :,,... Exemple.

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie.

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie. NOM Tle S-A/B/C DS - Mathématiqes - Ldi 26 septembre 206 La présetatio, le soi et la riger des résltats etrerot por e part importate das l évalatio de la copie Exercice : sr 8 poits Cet exercice est costité

Plus en détail

SUITES RECURRENTES - EXERCICES CORRIGES

SUITES RECURRENTES - EXERCICES CORRIGES Exercice. SUITES RECURRENTES - EXERCICES CORRIGES O cosidère la site ( ) défiie par ) Etdier la mootoie de la site ( ) ) a) Démotrer qe, por tot etier atrel, b) Qelle est la limite de la site ( )? = por

Plus en détail

ESG MANAGEMENT SCHOOL

ESG MANAGEMENT SCHOOL ESG MANAGEMENT SCHOOL ETABLISSEMENT D ENSEIGNEMENT SUPERIEUR TECHNIQUE PRIVE RECONNU PAR L ETAT DIPLÔME VISÉ PAR LE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE/ GRADE MASTER MEMBRE DE LA CONFERENCE

Plus en détail

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ).

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ). Cors de Mathématiqe S CHAPITRE N Partie : Algebre & Aalyse SUITES - Cors D abord qelqes petits rappels : a = a = a m m a a = a + ( )( ) a m = m a a = b b a + a a = a si a, alors a a a a = + a m = a m Notio

Plus en détail

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose :

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose : T Exercices sr les limites de sites () Por tot etier atrel, o pose : O cosidère la site ( ) défiie sr N par so premier terme récrrece ( ) = + por tot etier atrel ) Démotrer par récrrece qe, por tot etier

Plus en détail

I. Suites géométriques

I. Suites géométriques Chapitre : Les sites géométriqes TES - Recoaître et exploiter e site géométriqe das e sitatio doée - Coaître la formle doat +q++q avec q - Détermier la limite d e site géométriqe de raiso strictemet positive

Plus en détail

Contrôle du samedi 1 er octobre 2016 (2 heures) TS1. III. (4 points : 1 ) 2 points ; 2 ) 2 points)

Contrôle du samedi 1 er octobre 2016 (2 heures) TS1. III. (4 points : 1 ) 2 points ; 2 ) 2 points) TS Cotrôle d samedi er octobre 6 ( heres) Préom et om : Note : / I ( poits : ) poit ; ) poit) O cosidère le polyôme 4 P 6 9 6 89 avec ) Démotrer qe por tot ombre complexe o a : P 6 89 III (4 poits : )

Plus en détail

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ;

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ; Les sites Rappel : désige l esemble des etiers atrels, ;;;; UNE SUITE DE NOMBRES REELS EST UNE LISTE ORDONNEE DE NOMBRES REELS, FINIE OU INFINIE I ) Gééralités Notio de site Défiitio : Ue site est e foctio

Plus en détail

BAC BLANC de MATHEMATIQUES TS

BAC BLANC de MATHEMATIQUES TS BAC BLANC de MATHEMATIQUES TS Décembre 205 Lycée Jea Calvi - Noyo Exercice Das cet exercice, les probabilités serot arrodies a cetième. Partie A U grossiste achète d soja chez dex forissers. Il achète

Plus en détail

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR SUITES I Calcls de termes Exercice : O cosidère la site ( ) défiie por tot etier atrel par : a) Calcler,, b) Calcler,, c) Calcler les trois premiers termes de la site 5 Exercice : O cosidère la site (

Plus en détail

u = 3 4 et q = 2 3. Calculer u

u = 3 4 et q = 2 3. Calculer u wwwmathseligecom SUITES GEOMETRIQUES EXERCICES A EXERCICE A O cosidère la site défiie por tot etier atrel par a Calcler ; et b Exprimer e foctio de c Démotrer e dot o précisera le premier terme est e site

Plus en détail

Exercices sur les suites (révisions de 1 ère et compléments)

Exercices sur les suites (révisions de 1 ère et compléments) T O cosidère la site Exercices sr les sites (révisios de ère et complémets) défiie sr par cos Étdier le ses de variatio de la site par étde de foctio Idicatio : O commecera par défiir e foctio f défiie

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

20, u 100. = 20.Calculez u0

20, u 100. = 20.Calculez u0 Cors et exercices de mathématiqes SUITES ARITHMETIQUES ET GEOMETRIQUES EXERCICES CORRIGES Exercice Les ombres sivats sot-ils e progressio arithmétiqe? 6 ; 6 ; 86 Exercice Parmi ces sites, lesqelles sot

Plus en détail

SUITES ARITHMETIQUES ET GEOMETRIQUES EXERCICES CORRIGES

SUITES ARITHMETIQUES ET GEOMETRIQUES EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES ARITHMETIQUES ET GEOMETRIQUES EXERCICES CORRIGES Exercice Les ombres sivats sot-ils e progressio arithmétiqe? ; ; 8 Exercice Parmi ces sites, lesqelles sot arithmétiqes?

Plus en détail

Cours et exercices de mathématiques SUITES NUMERIQUES EXERCICES CORRIGES

Cours et exercices de mathématiques SUITES NUMERIQUES EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES NUMERIQUES EXERCICES CORRIGES Exercice. Les sites sot défiies par f (. ( Doer la foctio mériqe f correspodate, idiqer le terme iitial de la site, pis calcler les

Plus en détail

Amérique du Nord Mai 2011 Série S Exercice Partie A : Restitution organisée des connaissances

Amérique du Nord Mai 2011 Série S Exercice Partie A : Restitution organisée des connaissances Amériqe d Nord Mai 0 Série S Exercice Partie A : Restittio orgaisée des coaissaces Démotrer le théorème de Gass e tilisat le théorème de Bézot Partie B O rappelle la propriété coe sos le om de petit théorème

Plus en détail

LES SUITES NUMERIQUES

LES SUITES NUMERIQUES LES SUITES NUMERIQUES I. Défiitio - Vocablaire - Notatios O appelle site mériqe tote foctio d'e partie P o ide de, das est le terme d'idice de la site. C'est l'image par de (o arait p la oter () mais est

Plus en détail

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u Sites gééralités A Sites mériqes Notio de site Défiitio : Ue site ( qe : : a La site se ote o avec des parethèses ( est e foctio qi à tot etier atrel associe ombre réel, oté tel Le terme iitial de la site

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

Calcul de rayon de convergence concret

Calcul de rayon de convergence concret [http://mp.cpgedpydelome.fr] édité le 24 septembre 206 Eocés Calcl de rayo de covergece cocret Exercice [ 0097 ] [Correctio] Détermier le rayo de covergece des séries etières : (a) 0 2 + 3 z (b) 0 e 2

Plus en détail

POUR PRENDRE UN BON DEPART EN TERMINALE S

POUR PRENDRE UN BON DEPART EN TERMINALE S Lycée Charles de Galle POUR PRENDRE UN BON DEPART EN TERMINALE S Foritres por le jor de la retrée : dex cahiers grad format (si possible 4x3) à petits carreax Ue calclatrice avec modle graphiqe Ue pochette

Plus en détail

Dans la suite de l exercice on s intéresse seulement aux puces livrées aux clients.

Dans la suite de l exercice on s intéresse seulement aux puces livrées aux clients. Exercice Ue etreprise fabriqe des pces électroiqes qi sot tilisées por des matériels assi différets qe des téléphoes portables, des lave-lige o des atomobiles. À la sortie de fabricatio, % d etre elles

Plus en détail

Algorithmes type BAC sur les suites

Algorithmes type BAC sur les suites Algorithmes type BAC sr les sites 1. Algorithme permettat de détermier rag à partir dqel e site croissate de limite ifiie est spériere à ombre réel A O cosidère la site ( ) défiie par 0 = et por tot etier,

Plus en détail

TS Exercices sur les suites (2) 10 Soit u n

TS Exercices sur les suites (2) 10 Soit u n TS Exercices sr les sites () Soit la site défiie sr * par Soit e site défiie sr Tradire sos la forme d e phrase qatifiée la propriété «coverge vers» O cosidère e site défiie sr Tradire e termes de limites

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

Terminale S Les ROC d analyse à connaître.

Terminale S Les ROC d analyse à connaître. Termiale S Les ROC d aalyse à coaître Vos troverez ici les démostratios qe vos avez officiellemet des faire e cors (das le programme) Il est importat de préciser qe cela e sigifie e ac cas q il e faille

Plus en détail

Suites arithmétiques et suites géométriques Bilan et croissances

Suites arithmétiques et suites géométriques Bilan et croissances Sites arithmétiqes et sites géométriqes Bila et croissaces I Bila sr les sites arithmétiqes et géométriqes ) Tablea de formles Défiitio Relatio etre dex termes coséctifs Calcl d terme 4 ) Ue qestio de

Plus en détail

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k *

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k * SUITES NUMERIQUES Le pricipe de récrrece Soit e propositio P dépedat d etier atrel. Por démotrer qe P est raie por tot etier 0, il sffit de motrer qe : La propositio est raie a rag 0 ; por etier qelcoqe

Plus en détail

Suites. . La suite se note u ou avec des parenthèses ( u. Notations et vocabulaire : est le terme général de la suite : c est le terme de rang n.

Suites. . La suite se note u ou avec des parenthèses ( u. Notations et vocabulaire : est le terme général de la suite : c est le terme de rang n. Sites A Sites mériqes Notio de site Défiitio : Ue site est e foctio qi à tot etier atrel associe ombre réel, oté ( o tel qe : : a La site se ote o avec des parethèses ( Le terme iitial de la site est o

Plus en détail

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un I-Défiitios, vocablaire I- : Notio de site : Défiitio : e site d élémets d esemble A est e foctio de N vers R dot l esemble de défiitio est d type A R Si AR, o dit alors qe cette site est e site réelle

Plus en détail

BD - COEFFICIENTS BINOMIAUX

BD - COEFFICIENTS BINOMIAUX BD - COEFFICIENTS BINOMIAUX O ose ( C!!(! si 0 0 or les atres coles ( de Z 2 Doc (2 (3 0 ( 0 ( ( 0 (4 (5 ( ( 2 2 2 ( ( ( ( 0 ( 0 0 Formles élémetaires (6 (7 (8 (9 (0 ( ( ( 0 ( ( 0 BD 2 Les trois formles

Plus en détail

Fiche 1 : les suites

Fiche 1 : les suites Fiche Cors Nº : 3 Fiche : les sites Pla de la fiche I - Défiir e site II - Comortemet global d e site III - Comortemet asymtotiqe d e site IV - Oératios et limites V - Théorèmes de comaraiso VI - Comortemet

Plus en détail

Suites numériques : une activité pour les introduire

Suites numériques : une activité pour les introduire Sites mériqes : e activité por les itrodire Cette activité imagiée por e classe de première STAE pet, e la simplifiat, être tilisée e Bac Pro. Avat de passer à la site échaffemet!. O doe les trois premiers

Plus en détail

SUITES DE NOMBRES RÉELS

SUITES DE NOMBRES RÉELS SUITES DE NOMBRES RÉELS SOMMAIRE. Covergece. Divergece. Gééralités.. Défiitio.. Propriété : icité de la limite 3.3. Défiitio : sites de Cachy. 3.4. Propriété : ( ) coverge ( ) de Cachy ( ) borée. Exemple

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière Mise à ivea licece de mathématiqes Les foctios racie carrée, valer absole o partie etière Eercice Détermier la limite de + + qad ted vers Eercice Vérifier qe ( 5) 6 5 A-t-o l'égalité 6 5 5? Eercice O sohaite

Plus en détail

3 Compléter la phrase suivante : «Chaque terme est obtenu en multipliant le précédent par. puis en ajoutant» Calculer alors u

3 Compléter la phrase suivante : «Chaque terme est obtenu en multipliant le précédent par. puis en ajoutant» Calculer alors u Chaitre : Sites (Termiales ES sécialité) Activités réaratoires Activité. :. Voici les remiers termes d e site ( ) ; 4 ; ; 4 ; Comléter la hrase sivate : «Chaqe terme est obte e mltiliat le récédet ar.

Plus en détail

CHAPITRE VI SUITES EXERCICES. ) rectangle en P 1 tel que CP. , etc. par récurrence et une formule explicite de cette suite.

CHAPITRE VI SUITES EXERCICES. ) rectangle en P 1 tel que CP. , etc. par récurrence et une formule explicite de cette suite. e B Chapitre VI Sites CHAPITRE VI SUITES EXERCICES ) Doez e défiitio géérale (explicite o par récrrece) des sites dot les premiers termes sot : a),,,, 4 b),, 5, 8, c) 4,,,, 4 5 d) 0,, 4, 9, e) 7, 6, 4,,,

Plus en détail

LES SUITES. 1 Suites. 1.1 Suites numériques Approche.

LES SUITES. 1 Suites. 1.1 Suites numériques Approche. UMN04 : Sites COURS Ji 000 LES SUITES. Sites.. Sites mériqes... Approche. O observe das e etreprise, qe les bééfices e millios de fracs réalisés a bot de x aées de foctioemet pevet être modéliser par la

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques Sites arithméties et géométries A Sites arithméties Défiitio et formles Défiitio : forme récrsive Ue site est arithmétie lorse, à partir d terme iitial, l o passe d' terme de la site a terme sivat e ajotat

Plus en détail

Convergence et limite de suites numériques

Convergence et limite de suites numériques Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe

Plus en détail

Les suites réelles. Comportement global d une suite : Suite croissante Suite décroissante Suite majorée Suite minorée. 1. Des suites Arithmétiques.

Les suites réelles. Comportement global d une suite : Suite croissante Suite décroissante Suite majorée Suite minorée. 1. Des suites Arithmétiques. Les sites réelles Cote discipliaire 2A Scieces 3A Scieces expérimetales 4AScieces expérimetales Sites arithmétiqes. Sites géométriqes. Comportemet global d e site : Site croissate Site décroissate Site

Plus en détail

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si :

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si : Sites mootoes Sites adjacetes Approximatios d réel Développemet décimal Pré reqis Axiome de la bore spériere Limite d e site Partie etière d réel Divisio eclidiee Sites mootoes Défiitios : O dit d e site

Plus en détail

Fonctions - Dérivation

Fonctions - Dérivation Termiale S Dériatio Chapitre 4 Foctios - Dériatio I- Dériabilité f est e foctio défiie sr D f (iteralle o réio d iteralles C f est sa corbe représatie Foctio dériable e a Nombre dérié Défiitio (Rappels

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Prodit scalaire das l'espace I) Norme d' ecter das l'espace : défiitio : Soit ecter de l'espace. Soiet dex poits et tels qe =. La orme de otée est la distace. = propriété : L'espace est mi d' repère orthoormé

Plus en détail

Nous définissons une suite numérique de la manière suivante : «A chaque étape n, on associe, u

Nous définissons une suite numérique de la manière suivante : «A chaque étape n, on associe, u Vdoie Termiale S Chapitre Sites mériqes et comportemet asymptotiqe Nos défiissos e site mériqe de la maière siate : «A chaqe étape, o associe, le ombre de carrés écessaires à la fabricatio de l escalier»

Plus en détail

Asie juin 2013 EXERCICE 1 5 points Commun à tous les candidats Partie A a. Partie B Partie C EXERCICE 2 6 points Commun à tous les candidats

Asie juin 2013 EXERCICE 1 5 points Commun à tous les candidats Partie A a. Partie B Partie C EXERCICE 2 6 points Commun à tous les candidats Asie ji 03 Das l esemble d sjet, et por chaqe qestio, tote trace de recherche même icomplète, o d iitiative même o frctese, sera prise e compte das l évalatio EXERCICE 5 poits Comm à tos les cadidats Das

Plus en détail

Centres étrangers juin n + 2.

Centres étrangers juin n + 2. Cetres étragers ji 3 EXERCICE poits Comm à tos les cadidats O défiit, por tot etier atrel >, la site ( ) de ombres réels strictemet positifs par = Por tot etier atrel >, o pose v = a Motrer qe v = b Motrer

Plus en détail

QCM Une seule des réponses proposées est correcte. Recopiez là sur votre copie. Attention! Toute réponse erronée sera pénalisée

QCM Une seule des réponses proposées est correcte. Recopiez là sur votre copie. Attention! Toute réponse erronée sera pénalisée S DS 7/04/ Exercice : sr 4 points QCM Une sele des réponses proposées est correcte Recopiez là sr votre copie Attention! Tote réponse erronée sera pénalisée ( )a por terme général n Alors Q La site Q La

Plus en détail

) ) ) n. Lois discretes. Quelques formules classiques, très utiles : ( + = ; 6 ²( + S en fonction de 1

) ) ) n. Lois discretes. Quelques formules classiques, très utiles : ( + = ; 6 ²( + S en fonction de 1 L.Glli age sr Lois discrètes Lois discretes Qelqes formles classiqes, très tiles : ; Remarqe : Il existe des formles de récrrece doat e foctio de, Ce sot les formles de Newto, Exercice calcl de? Doc E

Plus en détail

Elle est associative, commutative et son élément neutre est la suite nulle notée 0

Elle est associative, commutative et son élément neutre est la suite nulle notée 0 Chapitre 9 : Sites mériqes-résmé de cors 1. Gééralités 1.1 Défiitio et exemples Déf: O appelle site tote applicatio de das. Si la site est otée, l'image de est oté pltôt qe (). O otera idifféremmet la

Plus en détail

SUITES. I. Suites géométriques. 1) Définition

SUITES. I. Suites géométriques. 1) Définition SUITES I Suites géométriues ) Défiitio Exemple : Cosidéros ue suite umériue (u ) où le rapport etre u terme et so précédet reste costat et égale à 2 Si le premier terme est égal à 5, les premiers termes

Plus en détail

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible.

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible. Uiversité de Geève Sectio de Mathématiques Algèbre I Corrigé 2 Série 7, ex 3 Toutes les affirmatios sot vraies sauf la derière E effet, pour que deux espaces soiet e somme directe, il faut que leur itersectio

Plus en détail

2. Suites. Expliciter les savoirs et les procédures. 1. Suites numériques. 2. Représentation graphique d une suite arithmétique

2. Suites. Expliciter les savoirs et les procédures. 1. Suites numériques. 2. Représentation graphique d une suite arithmétique CQFD 5 e : corrigé (6P/S) http://mathsdeboeckcom De Boeck Edcatio sa, 0 Sites Expliciter les savoirs et les procédres Sites mériqes a Les ciq premiers termes de la site sot : 0,, 8, 5, b Les ciq premiers

Plus en détail

TS 2 QUADRATURE DE LA PARABOLE DM 1

TS 2 QUADRATURE DE LA PARABOLE DM 1 TS QUADRATURE DE LA PARABOLE DM Le pla P est mui d'u repère orthogoal (O, i, j ). O cosidère la foctio ƒ, défiie, sur, par : ƒ(x) = x Le but du problème est de calculer l'aire A du domaie D suivat : D

Plus en détail

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances Frace métropolitaie Jui 200 Série S Exercice Restitutio orgaisée de coaissaces Démotrer, à l aide de la défiitio et des deux propriétés cidessous que si ( u ) et ( v ) sot deux suites adjacetes, alors

Plus en détail

Ch.1. ( ) c est donc un multiple de 5. ( ) = 1 1. Suites numériques : corrigé FICHE 2 ( ) ( n + 2) ( ) ( )( n + 2) ( n +1) n + 2.

Ch.1. ( ) c est donc un multiple de 5. ( ) = 1 1. Suites numériques : corrigé FICHE 2 ( ) ( n + 2) ( ) ( )( n + 2) ( n +1) n + 2. LFA / Termiale S exercices mathématiques Mme MAINGUY Termiale S Ch. Suites umériques : corrigé FICHE Exercice Ê Raisoemets par récurrece : a / Démotros par récurrece que, pour tout etier aturel, + + +

Plus en détail

Article PanaMaths Irrationalité de e

Article PanaMaths Irrationalité de e Articl PaaMaths Irratioalité d Itrodctio L ombr, bas ds logarithms épéris, st bi co ds élèvs d trmial. Das ctt ot d lctr, o commc par établir c ombr st la limit d la sit ( d trm gééral =... = (pls tard,

Plus en détail

La récurrence à toutes les sauces

La récurrence à toutes les sauces o 57 Das os classes 5 La récrrece à totes les saces Démostratios par récrrece por la classe de TS Lois-Marie Boeval, Catherie Combelles et Jlie Morea Il est tojors itéressat d avoir das ses réserves e

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL SESSION aril 20 MATHÉMATIQUES Série S Drée de l épree : heres Coefficiet : 7 o 9 Les calclatrices électroiqes de poche sot atorisées, coformémet à la réglemetatio e iger. Le sjet est

Plus en détail

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h ECOLE DE HUTES ETUDES COMMERCILES DU NORD Cocors d'admissio sr classes préparatoires MTHEMTIQUES Optio scietifiqe Mardi 9 mai 6 de 8h à h La présetatio, la lisibilité, l'orthographe, la qalité de la rédactio,

Plus en détail

LIMITES DE SUITES EXERCICES CORRIGES

LIMITES DE SUITES EXERCICES CORRIGES Exercice Détermier la limite (évetelle) des sites LIMITES DE SUITES EXERCICES CORRIGES ci-dessos : ) ) 5) 5 4 6) 8 ) 7) 5 7 4 8) 4) ( ) ) ² Exercice Motrez qe la site satisfait la relatio (R), is vos e

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 7 Ce sujet comporte 7 pages umérotées de 1 à 7 Ce sujet écessite l utilisatio d ue feuille de papier

Plus en détail

4. Activité en Terminale S : «Vers les dérivées des fonctions composées»

4. Activité en Terminale S : «Vers les dérivées des fonctions composées» 4. Activité e Termiale S : «Vers les dérivées des octios composées» a. Eocé Partie I : de octio de la orme avec octio dérivable sr I.. A l aide de la calclatrice, compléter le tablea sivat. Foctio 5 g

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

Rappels. A-Oukhai Suites géométriques 2 e Science

Rappels. A-Oukhai Suites géométriques 2 e Science A-Oukhai Suites géométriques e Sciece Rappels Pour motrer que u est ue suite géométrique : Soit o exprime u +1 e foctio de u et o doit trouver ue relatio de la forme u +1 qu où q est u réel qui e déped

Plus en détail

TP - Introduction de la fonction exponentielle par la méthode d'euler -

TP - Introduction de la fonction exponentielle par la méthode d'euler - TP - Itroductio de la foctio expoetielle par la méthode d'euler - De ombreux phéomèes phsiques, biologiques, écoomiques ou autres sot modélisés par ue foctio ƒ qui est proportioelle à sa dérivée ƒ'. (Par

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1 SOLUTIONS AUX EXERCICES DE LA FEUILLE. Exercice. Ue suite de réels positifs qui coverge vers 0 est décroissate à partir d u certai rag. C est faux. Pour costruire u cotre-exemple, o pourrait cosidérer

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES ITE ARITHMETIQE ET GEOMETRIQE EXERCICE : Voc e sére de formle mse e place das le cors : ITE ARITHMETIQE r r p q (p q r 5 ( (...... ( ITE GEOMETRIQE q 6 q q... q q q 7 q 8... q q r s r s q Voc este e sére

Plus en détail

Suites numériques. Généralités. 5 novembre Introduction. Dénitions. Représentation graphique

Suites numériques. Généralités. 5 novembre Introduction. Dénitions. Représentation graphique Suites umériques 5 ovembre 009 I Gééralités Itroductio Exemple 1. [Si vous travaillez chaque mois, vous recevez u salaire : u ombre.] Juillet oût Septembre Octobre Novembre Décembre Javier Février Mars

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence Chapitre 1 Déombremet Objectifs du chapitre 1. A travers l axiomatisatio de Peao de N, rappeller les pricipes de récurrece forte et faible. 2. Défiir la otio de cardial et les opératios sur les cardiaux.

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail