Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013"

Transcription

1 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie (u i i I d élémets de E, la somme u i a u ses et ous savos que cette somme possède les propriétés d associativité et commutativité gééralisées i I O se propose alors de doer u ses à ue expressio de la forme u i lorsque l esemble des idices I est ifii i I Séries : propriétés géérales E désige das cette sectio u ev sur le corps K = R ou C, et la orme d u élémet x de E sera otée x Défiitio Soit (u ue suite d élémets de E et, pour chaque N, soit S = u 0 + u + + u la somme des + premiers termes de cette suite O dit que la série de terme gééral u est covergete si la suite (S a ue limite das E La limite S = lim S est alors appelée somme de la série u et désigée par u + Si la suite (S a pas de limite, o dit que la série u est divergete =0 Iversemet, si (S est ue suite doée d élémets de E, o peut lui associer la série dot le terme gééral u est défii par : u 0 et u = S S pour Propriété Soiet (u et (v deux suites d élémets de E Si ces deux suites e diffèret que par u ombre fii de termes, les séries u et v sot de même ature, c est-à-dire simultaémet covergetes ou divergetes E d autres termes, o e modifie pas la ature d ue série e modifiat u ombre fii de ses termes Propriété 2 Pour qu ue série coverge, il est écessaire mais o suffisat, que so terme gééral tede vers zéro Exemple Soit das R, la série de terme gééral u = + = + + So terme gééral ted vers zéro mais la suite S = u 0 + u + + u = + ted vers + Cette série est doc divergete Propriété 3 Soiet (u et (v deux suites d élémets de E telles que les séries u et v soiet covergetes Alors la série (u + v est covergete et o a : (u + v = u + v =0 =0 Propriété 4 Soit E u ev sur le corps K = R ou C et soit (u ue suite d élémets de E telle que la série u coverge Alors, pour tout λ K, la série λu est covergete et o a : λu = λ u =0 Théorème Critère de Cauchy Soit (u ue suite d élémets de E Pour que la série u soit covergete, il faut qu à chaque ombre ε > 0, o puisse associer u etier N ε tel que les iégalités p > N ε etraîet : p u k = u + + u u p ε k=+ et cette coditio est suffisate lorsque E est complet =0 =0

2 Propriété 5 Soit (u ue suite d élémets d u ev quelcoque E Pour que la série u vérifie la coditio de Cauchy, il suffit que la série umérique (à termes positifs u la vérifie Défiitio 2 Soit (u ue suite d élémets d u ev E O dit que la série u est absolumet covergete si la série des ormes u est covergete Propriété 6 Das u ev complet, toute série absolumet covergete est covergete Exercice Théorème des gedarmes pour les séries Soiet (u, (v et (w trois suites réelles telles que u v w pour chaque 0 O suppose que les séries u et w sot covergetes Démotrer que la série v est covergete 2 Séries à termes positifs et séries absolumet covergetes Propriété 2 Soit (u ue suite de ombres réels positifs Pour que la série u soit covergete, il faut et il suffit que la suite (S défiie par S = u 0 + u + + u soit majorée La somme S = u est alors égale à la bore supérieure des ombres S : o a doc =0 et tout majorat des S est u majorat de S u k S pour tout N k=0 Propriété 22 Critère de comparaiso Soiet (u et (v deux suites de ombres positifs vérifiat u v à partir d u certai rag Si la série v coverge, il e est de même de u Si l iégalité u v est vérifiée pour tout N, o a de plus, l iégalité : u v =0 =0 Efi, si la série u diverge, il e est de même de v Propriété 23 Critère d équivalece Soiet (u et (v deux suites de ombres positifs telles que le rapport u /v soit défii pour assez grad et admette u limite fiie k lorsque ted vers + Alors la covergece de v etraîe celle de u Si k 0, les deux séries u et v sot de même ature E particulier, si (u et (v sot deux suites de ombres positifs telles que la suite deux séries u et v sot de même ature ( u v tede vers, alors les Propriété 24 Soit (u ue suite d élémets d u ev E Pour que la série u soit absolumet covergete, il suffit qu il existe ue série covergete à termes positifs, soit v, et u ombre k 0 vérifiat u kv pour assez grad Propriété 25 Soiet (u et (v deux suites de ombres réels ou complexes telles que les séries soiet absolumet covergetes et pour tout N, posos w = u p v p = u 0 v + u v + + u v 0 p=0 Alors la série w est absolumet covergete et o a : =0 u et v 2/7

3 ( ( u v = w =0 =0 =0 Exercice 2 Iégalité de Carlema Soit (a ue suite à termes positifs tels que a coverge Prouver que la série de terme gééral a + 2a a coverge et est de même somme que la série de ( + terme gééral a 2 Motrer l iégalité (! e / + 3 E coclure que + = (a a / e Exercice 3 Soit (u ue suite de réels positifs O pose v = u + u Prouver que la foctio x x est croissate sur [0, + [ + x 2 Démotrer que les séries u et + = v sot de même ature a 3 Exemples de séries à termes positifs, étude des séries de Riema Propriété 3 Règle α u Pour qu ue série u à termes réels positifs soit covergete, il suffit qu il existe u réel α > tel que la suite ( α u soit majorée Pour qu elle soit divergete, il suffit qu il existe u ombre k > 0 tel que l o ait, à partir d u certai rag, u k O e déduit que la série de Riema où α R est covergete pour α > et divergete pour α α la série de Riema est absolumet covergete pour x = R(z > z Exercice 4 Soiet (u et (v deux suites de réels strictemet positifs O suppose qu à partir d u certai rag Motrer que u = (v 2 O suppose que u + u u + u v + v = α + ( avec α > Motrer, à l aide d ue comparaiso avec ue série de Riema, que Exercice 5 Séries de Bertrad Étudier, suivat la valeur de α et β, la covergece des séries suivates : 2 α (l( β 4 Règles de Cauchy, d Alembert, Duhamel u coverge Propriété 4 Soit (u ue suite de ombres complexes Si pour assez grad o a u k avec k < alors la série u est absolumet covergete 3/7

4 Pour savoir s il existe u ombre k vérifiat l iégalité u k, l idée la plus aturelle ( est d étudier la suite ( u / u+ qui coduit à la règle de Cauchy U autre procédé cosiste à étudier la suite, qui coduit à la ( u u+ règle de d Alembert Efi, u étude plus poussée de la suite coduit à la règle de Duhamel Propriété 42 Règle de Cauchy Soit (u ue suite de ombres réels ou complexes, et soit : u L = lim sup u / (0 L + Si L <, la série Si L >, la série u est absolumet covergete u est divergete, car so terme gééral e ted pas vers zéro E particulier, si la suite ( u / a ue limite L (fiie ou ifiie lorsque ted vers + et si L < (resp L >, la série u est covergete (resp divergete Propriété 43 Règle de d Alembert ( u + Soit (u ue suite de ombres réels ou complexes telle que la suite u soit défiie pour assez grad, et admette ue limite L, fiie ou ifiie (0 L + Si L <, la série u est absolumet covergete Si L >, la série u est divergete car so terme gééral e ted pas vers zéro Propriété 44 Si la suite ( u+ Propriété 45 Règle de Duhamel Soit (u ue suite de ombres positifs satisfaisat à u ted vers L das R (0 L + alors la suite (u / ted aussi vers L u + u = β + ( (β =cste Si β >, la série Si β <, la série u est covergete u est divergete Exercice 6 Quelques covergeces Étudier la covergece des séries u suivates : ( u = si 2 u = 2 ( 3 u = 4 u = l 2 ( + 5 u = cos π 6 u = ( u = a!, a R 8 u = exp( ( u = l u = l( Exercice 7 Cas limite de la règle de d Alembert Soit, pour et a > 0, la suite u = a! Étudier la covergece de la série u lorsque a e 2 Lorsque a = e, prouver que, pour assez grad, u + /u Que dire de la ature de la série u? Exercice 8 Cas limite de la règle de d Alembert 4/7

5 Soit, pour tout etier, u = 3 5 ( (2 Quelle est la limite de u + /u? Motrer que la série de terme gééral u est croissate E déduire que la série de terme gééral u est divergete 2 Soit, pour tout etier 2, v = 3 5 ( (2 Quelle est la limite de v + /v? Motrer que, si 0 < α < 3/2, o a ( + α v + α v E déduire que la série de terme gééral v coverge Exercice 9 Règle de Raabe-Duhamel Soit (u ue suite à termes positifs telle qu il existe a R vérifiat u + = a ( u + O suppose a > Soit b ], a[ et posos v = b Comparer u et v E déduire que u coverge si a > 2 Démotrer que u diverge si a < 3 E utilisat les séries de Bertrad, motrer que le cas a = est douteux = ( + 2 O pose v = l(u et w = v + v 4 O suppose que u + u (a Motrer que w = (b E déduire que u ( 2 λ + avec λ > 0 et que 5 Exemples de séries semi-covergetes u est divergete Défiitio 5 Ue série est dite semi-covergete si elle est covergete sas être absolumet covergete Défiitio 52 O appelle série alterée ue série umérique dot le terme gééral u est de la forme u = ( v où (v désige ue suite décroissate de ombres positifs covergeat vers zéro Théorème 5 Toute série alterée u est covergete, et si o pose sa somme S = S = u 0 + u + + u, vérifie : S 2p+ S S 2p pour tout p N =0 De faço plus précise, les sommes S 2p d idice pair tedet e décroissat vers S, tadis que les sommes S 2p+ d idice impair, tedet e croissat vers S Propriété 5 Règle d Abel Soiet (v ue suite de ombres réels ou complexes telle que la suite S = v 0 + v + + v soit borée et (ε ue suite de ombres positifs, décroissate et tedat vers zéro Alors la série ε v est covergete Propriété 52 Soit (ε ue suite décroissate de ombres positifs, tedat vers zéro Quel que soit le ombre réel α tel que α/2π / Z, la série ε exp(iα est covergete Exercice 0 Séries semi-covergetes et produit de Cauchy Soit, pour 0, u = ( + 5/7

6 Vérifier que u est semi-covergete 2 Motrer que le produit de Cauchy de u par u e coverge pas 3 Soit σ : N N défiie par σ(3p = 2p, σ(3p + = 4p +, σ(3p + 2 = 4p + 3 Vérifier que σ est ue permutatio de N Que peut-o dire de la série u σ(? 6 Calculs approchés de la somme d ue série Défiitio 6 Das u ev quelcoque E, soiet (u ue suite telle que la série u soit covergete et S = u, S = u 0 + u + + u =0 Pour chaque N, le reste d ordre de cette série est : R = S S = p=+ Propriété 6 Soit f ue foctio umérique défiie sur la demi-droite réelle x a, positive, décroissate et telle que lim f(x = 0 Alors la série x + divergetes f( et l itégrale u p + a f(xdx sot simultaémet covergetes ou Propriété 62 Soit f ue foctio umérique défiie sur la demi-droite réelle x a, positive, décroissate et telle que lim x + f(x = 0 Supposos de plus que la série vérifie la double iégalité Exercice + f(xdx R Justifier la covergece de la série umérique ( k k k O pose 2 Motrer que R = R + R + = + k=+ Détermier u équivalet de R au voisiage de + 3 Doer la ature de R f( soit covergete Alors le reste R = + k=+ f(xdx ( k k ( k k(k + + k=+ f(k Exercice 2 Exercice 3 Calculer + O cherche = à 0 3 près =0 2 + à 0 3 près 6/7

7 Référeces [] Jacquelie LELONG-FERRAND, Jea-Marie ARNAUDIÈS Cours de mathématiques Tome 2, Aalyse, 4ème éditio [2] Jea-Etiee ROMBALDI Séries réelles ou complexes http ://www-fourierujf-greoblefr/ rombaldi/capes/aalysechap6pdf [3] Exercices collectio BIBMATH Exercices - Suites - Études pratiques http ://wwwbibmathet/exercices/bde/aalyse/suitesseries/serieeopdf 7/7

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

Feuille d Exercices : Suites, suite!

Feuille d Exercices : Suites, suite! ECS 1 Dupuy de Lôme Semaie du 6 décembre 004 Feuille d Exercices : Suites, suite! Exercice 1 : Pour tout etier, o défiit u = 1. Motrez que u est mootoe.. Motrez que v est géométrique. k= 3. E déduire l

Plus en détail

S n = u u n. S = u k. k=0

S n = u u n. S = u k. k=0 Chapitre 3 Séries umériques 3. Défiitios et exemples 3.. Défiitios Défiitio 3.. Soit (u ) ue suite réelle. O lui associe (S ) ue ouvelle suite défiie par S = u 0 + + u. O appelle série de terme gééral

Plus en détail

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples.

230. Séries numériques. Comportement des restes ou sommes partielles. Exemples. 23. Séries umériques. Comportemet des restes ou sommes partielles. Exemples. Pierre Lissy December 8, 29 Das tout ce qui suit, K désige R ou C Covergece d'ue série. Déitio et modes de covergece[3] Déitio.

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1 [http://mp.cpgedupuydelome.fr] édité le 8 décembre 6 Eocés Séries umériques Nature de séries umériques Exercice [ ] [Correctio] Détermier la ature des séries dot les termes gééraux sot les suivats : a

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Séries Numériques. Chapitre Suites Numériques Définitions

Séries Numériques. Chapitre Suites Numériques Définitions Chapitre Séries Numériques Suites Numériques Défiitios Ue suite umérique est ue applicatio de N (ou d ue partie de N) à valeurs das R ou das C O la ote u(), ou u, et o désige la suite (c est-à-dire l applicatio)

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Cours I : SUITES NUMERIQUES. I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels Agrocampus Ouest ENIHP ère aée p. Cours I : SUITES NUMERIQUES / Défiitio I Quelques rappels Défiitio : Ue suite u est ue applicatio de l esemble N ou ue partie de N das R qui à chaque élémet de N associe

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

Séries à termes positifs

Séries à termes positifs UFR SFA, Licece 2 e aée, MATH326 Séries à termes positifs Das ce chapitre, u Ø 0, pour tout, et o étudie q u. O a S S = u Ø 0 : (S ) est croissate!. Gééralités. Propositio. Soit (u ) Ø0 ue suite de réels

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

Feuille 2 : Séries numériques.

Feuille 2 : Séries numériques. Feuille 2 : Séries umériques. Master Eseigemet Spécialité Maths Coseils O accordera ue importace toute particulière aux démostratios des théorèmes du cours. Certais exercices de cette feuille sot ispirés

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Synthèse de cours PanaMaths (TS) Suites numériques

Synthèse de cours PanaMaths (TS) Suites numériques Sythèse de cours PaaMaths (TS) Suites umériques Das ce chapitre, le terme «suite» désige ue suite umérique (c'est-à-dire, das le cadre du programme de Termiale S, ue suite de réels). Ue telle suite sera

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Analyse mathématique II

Analyse mathématique II UNIVERSITÉ IBN ZOHR Faculté des Scieces Juridiques Écoomiques et Sociales Corrigés des QCM Aalyse mathématique II FILIÈRE SCIENCES ÉCONOMIQUES ET GESTION PREMIERE ANNÉE Sessio ormale 03/04 40 questios

Plus en détail

Comportement asymptotique des suites

Comportement asymptotique des suites Comportemet asymptotique des suites Table des matières 1 Itroductio 2 2 Limite d ue suite 2 2.1 Limite fiie d ue suite........................................... 2 2.2 Limite ifiie d ue suite..........................................

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mp.cpgedupuydelome.fr] édité le 9 mai 07 Eocés Calcul de ites Exercice [ 054 ] [Correctio] Détermier la ite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = + + d u =

Plus en détail

Limites de suites, cours, terminale S

Limites de suites, cours, terminale S Limites de suites, cours, termiale S Covergece de suites Déitio : Soit (u ) ue suite. O dit que (u ) coverge vers u réel l ou a pour limite l lorsque tout itervalle ouvert A coteat l, cotiet tous les termes

Plus en détail

Convergence et limite de suites numériques

Convergence et limite de suites numériques Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition.

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition. CHAPITRE II Séries umériques I II - Défiitios et propriétés géérales - Séries à termes réels positifs ou uls III-Séries - à termes quelcoques I-Défiitios et propriétés géérales Défiitio. Soit (u N ue suite

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1 SOLUTIONS AUX EXERCICES DE LA FEUILLE. Exercice. Ue suite de réels positifs qui coverge vers 0 est décroissate à partir d u certai rag. C est faux. Pour costruire u cotre-exemple, o pourrait cosidérer

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

1. Convergence des Séries Numériques

1. Convergence des Séries Numériques Séries umériques 8 - Sommaire. Covergece des Séries Numériques.. Nature d ue série umérique.......2. Séries géométriques............ 2.3. Coditio élémetaire de covergece. 2.4. Suite et série des différeces.......

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Cours de Mathématiques Séries numériques ou vectorielles Sommaire

Cours de Mathématiques Séries numériques ou vectorielles Sommaire Sommaire Sommaire I Gééralités sur les séries......................... 2 I. Espace vectoriel des séries, Sous-espace des Séries covergetes.... 2 I.2 Critère de Cauchy. Espace des séries ormalemet covergetes....

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 25 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la lus grade imortace à la clarté, à la récisio et à la cocisio de

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

Feuille d exercices 11

Feuille d exercices 11 Mathématiques Aalyse I M. Samy Modeliar Feuille d eercices Itégratio Correctio Eercice Détermier, si elle eiste, la ite e + de la suite de terme gééral si ( π + ) d + Correctio. Pour tout etier, la foctio

Plus en détail

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1

Séries numériques. 1 q n+1 1 q. si q 1 ; n + 1 si q = 1. q k = k=0. , posons U n = k. α. k=1 Séries umériques Défiitios et premières propriétés. Défiitios Défiitio (Série umérique) Soit () N ue suite complexe. Pour tout N o pose : U = ( ème somme partielle). La suite (U ) N est alors appelée la

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances Frace métropolitaie Jui 200 Série S Exercice Restitutio orgaisée de coaissaces Démotrer, à l aide de la défiitio et des deux propriétés cidessous que si ( u ) et ( v ) sot deux suites adjacetes, alors

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Corrigé du problème: autour de la fonction zeta alternée de Riemann

Corrigé du problème: autour de la fonction zeta alternée de Riemann Corrigé du problème: autour de la foctio zeta alterée de Riema I Gééralités Pour x >, la suite décroît vers, doc la série coverge par le critère spécial des séries alterées Pour x, e ted pas vers, ce qui

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ).

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ). Chapitre Suites et ites Exercices Calcul des ites I (a) Calculer (b) Calculer (c) Calculer (d) Calculer (e) Calculer (f) Calculer (g) Calculer (h) Calculer (i) Calculer (j) Calculer (k) Calculer + + 4

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Suites et séries réelles

Suites et séries réelles Suites et séries réelles Ue suite umérique est ue famille de ombres réels ou complexes idicées par les etiers aturels. O ote ue suite u idifféremmet (u ) N, ou (u ) 0, ou simplemet (u ). L esemble des

Plus en détail

1 Présentation du jeu.

1 Présentation du jeu. Présetatio du jeu.. Les règles du jeu. Le touroi est u jeu comportat ue suite de maches (appelées duels ) opposat deux joueurs, jamais plus. Les joueurs vot etrer e jeu successivemet, tat qu aucu d etre

Plus en détail

EXERCICES SUR LES SERIES

EXERCICES SUR LES SERIES EXERCICES SUR LES SERIES SERIES NUMERIQUES Calculer la somme des séries dot le terme gééral u est doé ci-dessous a) u = l +2) +) 2 ) b) u = d) u = l+x 2 ) < x < ) e) u = +)+2)+3) ) c) u = 3 2) 7 2 3 3+)3+4)

Plus en détail

Etude d une limite de suite

Etude d une limite de suite Etude d ue ite de suite I) Limites de suite usuelle ) Suites de référece de ites fiies + + + = 0 = 0 2 = 0 et plus gééralemet o a : + p = 0 avec p N 2) Suites de référece de ites ifiies = + + = + + + 2

Plus en détail

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et.

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et. Séries umériques Exercice. Étude de covergece Étudier la covergece des séries de terme gééral : + e. ch α sh α. 3 l 3 + 3 l +. 4 +. 5 arccos 3 + 3. 6 a + + a. 7 +. 8 l. 9 +. 0 3.4.6.... l + siπ/3. 4 6

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1 SESSION 2005 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES PREMIER EXERCICE a. T (x + y dxdy = = ( y= (x + y dy y= x dx = ((x + 2 ( x2 + x2 2 dx = T (x + y dxdy = 4 3. [xy +

Plus en détail

Exercices corrigés. Joseph DI VALENTIN

Exercices corrigés. Joseph DI VALENTIN Exercices corrigés Joseph DI VALENTIN Javier 3 ii iii Avat propos Cet ouvrage a pour objectif d aider les élèves de classes préparatoires Ce livre est aussi utile aux élèves des Écoles d igéieur, aux cadidats

Plus en détail

Suites numériques. 1 Questions de cours. 3 Exercices. 2 Applications. 1. Montrer que toute suite a au plus une limite.

Suites numériques. 1 Questions de cours. 3 Exercices. 2 Applications. 1. Montrer que toute suite a au plus une limite. Suites umériques 1 Questios de cours 1. Motrer que toute suite a au plus ue limite.. Motrer que toute suite covergete est borée. 3. Motrer que toute suite extraire d ue suite tedat vers l R ted aussi vers

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ).

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ). Colle PC Semaie 3 0-03 Séries Etières Voir : http://www.mimaths.et/img/pdf/s5.pdf http://www.mimaths.et/img/pdf/sem5.pdf EXERCICE :. Doer u exemple de série etière de rayo de covergece π.. Détermier le

Plus en détail

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée...

II Exemples 2 II.A Série géométrique... 2 II.B Série exponentielle... 3 II.C Série harmonique... 4 II.D Série harmonique alternée... Séries umériques I Défiitios et otatios II Exemples 2 II.A Série géométrique....................................... 2 II.B Série expoetielle...................................... 3 II.C Série harmoique.......................................

Plus en détail

Suites réelles ou complexes

Suites réelles ou complexes 3 Suites réelles ou complexes 3. Prérequis L esemble R des ombres réels est supposé costruit avec les propriétés suivates : c est u corps commutatif totalemet ordoé ; il cotiet l esemble Q des ombres ratioels

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires Problème 1 : costructio de triagles Das u pla affie euclidie orieté, o cosidère deux poits disticts B et C et u poit M apparteat pas à la droite BC). Pour chacue des assertios suivates, détermier s il

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Corrigé feuille d exercices 4

Corrigé feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 008/009 MIME LM5-Suites et Itégrales Groupes Corrigé feuille d exercices Suites Covergece de suites Exercice Ue suite u N est pas croissate, si o N, u + u est vérifiée

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

Cours de mathématiques P.S.I.*

Cours de mathématiques P.S.I.* Cours de mathématiques PSI* D'après les cours de M Guillaumie Heriet Queti Séries umériques Das tout le chapitre, K désige le corps R ou C, et o désige par u ue suite de K Gééralités Vocabulaire Défiitio

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

a n. On découvre de suite que quelque soit sa définition, la valeur devra être très dépendante des quelques premiers termes, car l on devra respecter

a n. On découvre de suite que quelque soit sa définition, la valeur devra être très dépendante des quelques premiers termes, car l on devra respecter Chapitre 2 Séries umériques 2. Défiitio et covergece de séries umériques 2.. Défiitios de base Soit (a ) ue suite de ombres réels ou complexes. Das le premier chapitre ous ous sommes itéressés à l opératio

Plus en détail

Suites réelles. 1. Quelques rappels sur le corps des réels

Suites réelles. 1. Quelques rappels sur le corps des réels Agrégatio itere UFR MATHÉMATIQUES Suites réelles O ote N l esemble des etiers aturels et Z l esemble des etiers relatifs. Avat de parler de l esemble R des ombres réels, rappelos la défiitio de deux autres

Plus en détail

Devoir à rendre le 4 janvier 2017

Devoir à rendre le 4 janvier 2017 Uiversité Paris-Dauphie, L MIDO, groupe Aalyse (206-207) Devoir à redre le javier 207 Eercice Soit D u domaie o vide de R et f : D!R.. O souhaite démotrer la caractérisatio séquetielle de l uiforme cotiuité

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

Exercice 8 [ ] [Correction] Soit α R. Quel est le rayon de convergence de n 1 cos(nα)

Exercice 8 [ ] [Correction] Soit α R. Quel est le rayon de convergence de n 1 cos(nα) [http://mp.cpgedupuydelome.fr] édité le 28 décembre 26 Eocés Séries etières Calcul de rayo de covergece cocret Exercice [ 97 ] [Correctio] Détermier le rayo de covergece des séries etières : Exercice 6

Plus en détail

Partie I - Préliminaires

Partie I - Préliminaires SESSION 25 Cocours commu Cetrale MATHÉMATIQUES. FILIERE PC Partie I - Prélimiaires I.A - I.A. Soit N. Pour N, Puisque la série de terme gééral +... + + 2. coverge, il e est de même de la série de terme

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 006 EPREUVE SPECIIQUE ILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot autorisées * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

SÉRIES. Cette question spécifique appelle des résultats spécifiques qui sont l objet du chapitre. u k (n ème reste de la série), alors : lim.

SÉRIES. Cette question spécifique appelle des résultats spécifiques qui sont l objet du chapitre. u k (n ème reste de la série), alors : lim. Christophe Bertault Mathématiques e MPSI SÉRIES INTRODUCTION AUX SÉRIES. SÉRIE, SOMME, PREMIERS EXEMPLES Défiitio (Série, sommes partielles) Soit(u ). Pour tout, o pose : U partielle). La suite(u ) est

Plus en détail

CONCOURS D ADMISSION Filière MP (Durée de l épreuve : 3 heures) (L usage d ordinateur ou de calculette est interdit).

CONCOURS D ADMISSION Filière MP (Durée de l épreuve : 3 heures) (L usage d ordinateur ou de calculette est interdit). A 2003 Math MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES. ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail