I Exercices I I I I I I I I I I I I I-4

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "I Exercices I I I I I I I I I I I I I-4"

Transcription

1 Chapitre 6 Logarithme TABLE DES MATIÈRES page -1 Chapitre 6 Logarithme Table des matières I Exercices I I I I I I I I I I I I I-4 II Cours II-1 1 Définition de la fonction ln et conséquences immédiates II-1 2 Variations de la fonction ln II-2 Représentation graphique de la fonction ln II-2 4 fondamentale et conséquences II-2 4a fondamentale II-2 4b Conséquences de la propriété fondamentale II-2 5 Résolution d équations et d inéquations II- 6 Dérivée de ln et de ln(u) II-4 Logarithme décimal II-4

2 Chapitre 6 Logarithme I EXERCICES page I-1 I Exercices 1 Le logarithme népérien d un nombre réel x est le nombre y tel que e y = x, autrement dit : ln(x) = y e y = x 2 1. Faisons un premier essai à la calculatrice. On stocke ln(5) dans A : ln(5) A. L affichage indique que ln(5) 1, 609 Calculer maintenant e A. On doit obtenir 5. On a donc bien : ln(5) = A e A = 5 2. Compléter ce tableau de valeur à l aide de la calculatrice s il y a un message d erreur, tracer une croix ; arrondir au dixième si nécessaire. x , 0,6 1 2 e ln(x). Expliquer les trois message d erreurs obtenus. 4. Quel est l ensemble de définition de la fonction ln? 5. Justifier la valeur de ln(e). 6. Quel est apparemment le sens de variation de la fonction ln? La fonction f est définie sur ]0 ; + [ par f(x) = ln x. 1. Faire afficher à la calculatrice la représentation graphique de la fonction ln. 2. Dresser le tableau de variation de la fonction ln sur ]0 ; + [. L objectif de cet exercice est de constater la propriété fondamentale des logarithmes. 1. À l aide de la calculatrice, compléter le tableau ci-dessous. Arrondir à 10 près. 2. Quelle propriété constate-t-on? a , 0,1 0,2 b ,5 ab ln a + ln b ln(ab) 4 Le but de cet exercice est de démontrer la propriété fondamentale des logarithmes pour ln(2) + ln() On pose : ln(2) = y 1 et ln() = y 2 1. Démontrer que 6 = e y 1+y 2 2. En déduire que ln(6) = ln(2) + ln()

3 Chapitre 6 Logarithme I EXERCICES page I Écrire les expressions suivantes sous la forme d un seul logarithme. 6 (a) ln 5 + ln (b) ln 60 + ln 800 (c) ln 0, 02 + ln 10 (d) ln + ln 1 2. D après le résultat du (d), que contate-t-on pour ln et ln 1?. Sachant que = 1 ( ), en déduire ln en fonction de ln et ln 1. Écrire ln 2, ln, ln 4 en fonction de ln 2. Écrire ln ( 2 ) de deux manières différentes, et en déduire ln en fonction de ln L objectif de cet exercice est de déterminer la dérivée de la fonction logarithme népérien. La fonction f et la fonction u sont définies sur ]0 ; + [ par f(x) = e ln(x), et u(x) = ln(x) Simplifier l écriture de f(x). 2. Calculer la dérivée de f de deux manières différentes.. En déduire u (x). Calculer chaque fois la dérivée de f (1) f : x ln x + 2 (2) f : x 6 ln x x + 2 x () f : x (4 x) ln x + 6 (4) f : x 0, 5x 2 2x + ln(x + ) + 1, 5 9 Épreuve du bac, juin 2009, Polynésie Soit f la fonction définie sur l intervalle ]0 ; + [ par f(x) = 2x(1 ln x) Le plan est rapporté à un repère orthogonal. On appelle C la courbe représentative de la fonction f Déterminer f (x) pour x ]0 ; + [ (où f est la fonction dérivée de f). 2. Étudier le signe de f (x) pour x ]0 ; + [ puis dresser le tableau de variations de la fonction fsur l intervalle ]0 ; + [.. Résoudre sur ]0 ; + [ l équation f(x) = 0. En déduire que la courbe C admet un unique point d intersection A avec l axe des abscisses et donner les coordonnées du point A. 4. Sans détailler, calculer f(5), arrondir au dixième près. 5. Tracer la courbe C sur l intervalle ]0 ; 5]. Soit f la fonction, définie sur l intervalle [0 ; + [ par f(x) = x 2, 5 + ln(x + 1) On admet que la fonction f est continue et dérivable sur ]0 ; + [, et on appelle f sa dérivée. 1. Pour tout nombre x de [0 ; + [, calculer f (x). 2. Étudier le signe de f et justifier que f est strictement positive sur [0 ; + [.. Calculer f(0) et f(4) (pour f(4), valeur exacte et arrondi au dixième près). 4. Dresser le tableau de variation de f sur [0 ; 4]. 5. Justifier que l équation f(x) = 0 admet une unique solution α sur [1 ; 2]. 6. À l aide de la calculatrice déterminer un encadrement de α d amplitude 10 2.

4 Chapitre 6 Logarithme I EXERCICES page I- 11 Épreuve du bac, juin 2009, Amérique du Nord Les parties A et B sont indépendantes. Le candidat pourra utiliser les résultats de la partie A dans la partie B, même s il ne les a pas établis. Partie A Soit g la fonction définie sur ]0 ; + [ par g(x) = 6 ln x 2x On désigne par g la fonction dérivée de g. 1. Calculer g (x). 2. On admet que le signe de g (x) est donné par le tableau ci-dessous. Dresser le tableau de variations de la fonction g sur l intervalle ]0 ; + [. x Signe de g (x) + 0. En déduire que g(x) < 0 pour tout x ]0 ; + [. Partie B Soit f la fonction définie sur l intervalle ]0 ; + [ par f(x) = x + ln x 2x 2 On désigne par C f la représentation graphique de la fonction f. 1. On désigne par f la fonction dérivée de la fonction f. (a) Montrer que, pour tout x ]0 ; + [, f (x) = g(x) 2x. (b) En déduire le tableau de variations de la fonction f sur l intervalle ]0 ; + [. 2. Calculer sans détailler f(1) et f(2)

5 Chapitre 6 Logarithme I EXERCICES page I-4 12 Manuel Hyperbole 2006, exercice 1 page (1 + ln x) La fonction f est définie sur ]0 ; + [ par f(x) =. x On rappelle que le nombre e vérifie ln e = 1 et que e 2, 18. ( ) 1 1. (a) Calculer f. e (b) Pour tout x > 0, calculer f (x). (c) Étudier le signe de f (x) selon les valeurs de x et dresser le tableau de variations de f sur ]0 ; + [. 2. On considère maintenant que x est le nombre d objets fabriqués par une entreprise en milliers, et que f(x) est le bénéfice mensuel en milliers d euros. Répondre aux questions suivantes en utilisant certains résultats du 1. (a) Quel nombre minimal d objets l entreprise doit-elle vendre mensuellement pour que le bénéfice soit positif? (b) Combien faut-il vendre d objets pour réaliser le bénéfice maximal? (c) Quel est le montant de ce bénéfice maximal?

6 Chapitre 6 Logarithme I EXERCICES page I-5 Exercice dicté n o 1 Déterminer chaque fois le plus petit entier n tel que : (1) 1, 0 n > 5 (2) 0, 94 n < 0, 2 Exercice dicté n o 2 Un capital de eest placé à 4,5 % l an à intérêts composés. À partir de combien d années ce capital dépasse-t-il e? Exercice dicté n o Résoudre les équations : (1) ln(x) = 5 (2) e x = () ln(x) = 6 (4) e x = 2 (5) e x = 0 (6) ln(4 2x) = 0 () e 5x+2 = 4 (8) ln(x + 2) = (9) e x2 = 1

7 Chapitre 6 Logarithme II COURS page II-1 II Cours 1 Définition de la fonction ln et conséquences immédiates Définition Le logarithme népérien d un nombre réel x, que l on écrit ln(x), est le nombre y tel que e y = x, autrement dit : ln(x) = y e y = x Conséquences immédiates de la définition On sait que pour un réel x, ln(x) = y e y = x, or on sait aussi que e y > 0, par conséquent x > 0, d où la propriété ci-dessous. L ensemble de définition de la fonction ln est ]0 ; + [. Étudions maintenant les expressions ln(e x ) et e ln(x) Pour tout réel x, ln(e x ) = y e x = e y x = y donc, pour tout réel x, ln(e x ) = x Pour tout réel x > 0, e ln(x) = y ln(x) = ln(y) x = y donc, pour tout réel x > 0, e ln(x) = x On retiendra la propriété ci-dessous. : Pour tout réel x, ln(e x ) = x et pour tout réel x > 0, e ln(x) = x. Déterminons à présent les valeurs de ln(1) et de ln(e) : ln(1) = y e y = 1, or 1 = e 0, donc : ln(1) = y e y = e 0 y = 0, par conséquent ln(1) = 0. ln(e) = y e y = e, or e = e 1, donc : ln(1) = y e y = e 1 y = 1, par conséquent ln(e) = 1. On retiendra la propriété ci-dessous. : ln(1) = 0 et ln(e) = 1 Une autre conséquence de la définition est la résolution des équations ln(x) = a et e x = a. Pour tout réel a : ln(x) = a x = e a. En revanche l équation e x = a n a pas de solution si a < 0, et pour tout réel a > 0 : e x = a x = ln(a) s Pour tout réel a, l équation ln(x) = a admet une unique solution qui est x = e a. Pour tout réel a < 0, l équation e x = a n admet pas de solution. Pour tout réel a > 0, l équation e x = a admet une unique solution qui est x = ln(a).

8 Chapitre 6 Logarithme II COURS page II-2 2 Variations de la fonction ln s La fonction ln est strictement croissante sur ]0 ; + [. Pour tous nombres a et b strictement positifs, a < b équivaut à ln a < ln b et ln a = ln b équivaut à a = b Tableau de variations x ln x 0 Puisque la fonction ln est strictement croissante, on en déduit que si x < 1, alors ln x < ln 0, et que si x > 1 alors ln x > ln 0, or ln 0 = 1, donc : Si x est strictement compris entre 0 et 1 alors ln x est strictement négatif. Si x est strictement supérieur à 1 alors ln x est strictement positif. Représentation graphique de la fonction ln fondamentale et conséquences 4a fondamentale Pour tous réels a et b strictement positifs, ln ab = ln a + ln b Exemple 1 : ln 6 = ln(2 ) = ln 2 + ln 4b Conséquences de la propriété fondamentale ( Exemple 2 : calculons de deux façons ln 1 ) ( D une part : ln 1 ) ( ( 1 = ln + ln D autre part : ln ) 1 ) = ln 1 = 0 ( ( 1 1 Donc : ln + ln = 0 Donc : ln = ln ) ) ( Exemple : calculons ln ) ( ( ln = ln ) 1 ) = ln + ln 1 = ln ln

9 Chapitre 6 Logarithme II COURS page II- Les calculs des exemples 2 et effectués avec les nombres et auraient pu être effectués pour des nombres a et b strictements positifs quelconques. On admet donc la propriété ci-dessous. Pour tous réels a et b strictement positifs, ln 1 b = ln b et ln a b = ln a ln b Exemple 4 : calculons ln 5 ln 5 = ln(5 5 5) = ln 5 + ln 5 + ln 5 = ln 5 Exemple 5 : calculons ln ( 2 ) de deux façons D une part : ln ( 2 ) = ln D autre part : ln ( 2 ) = ln ( ) = ln +ln = 2 ln Donc ln = 2 ln Donc ln = 1 2 ln Les calculs des exemples 2 et effectués avec les nombres, 5 et auraient pu être effectués pour un nombre a strictement positif et un entier naturel n quelconques. On admet la propriété ci-dessous. Pour tout réel a strictement positif et pour tout réel x, ln(a x ) = x ln a et ln a = 1 2 ln a 5 Résolution d équations et d inéquations Exemple Déterminer le plus petit entier naturel n tel que : a) (1, 05) n 2 b) (0, 95) n 0, 2 (1, 05) n 2 ln(1, 05 n ) ln 2 n ln 1, 05 ln 2 n ln 2 ln 1, 05 n 14, 2 n 15 Remarques : (1) (0, 95) n 0, 2 ln(0, 95 n ) ln 0, 2 n ln 0, 95 ln 0, 2 ln 0, 2 n ln 0, 95 n 1, n 2 (1) On a divisé par ln 1, 05 qui est positif parce que 1, 05 > 1, donc l inégalité ne change pas de sens. (2) On a divisé par ln 0, 95 qui est négatif parce que 0, 95 < 1, donc l inégalité change de sens. (2)

10 Chapitre 6 Logarithme II COURS page II-4 6 Dérivée de ln et de ln(u) On admet que la fonction ln est dérivable, déterminons sa dérivée. On définit la fonction f et la fonction u sur ]0 ; + [ par f(x) = e ln(x), et u(x) = ln(x). Simplifions l écriture de f(x) : on sait que pour tout réel x > 0, e ln(x) = x, soit f(x) = x Calculons la dérivée de f de deux manières différentes. 1 re manière : f(x) = x donc f (x) = 1 2 e manière : f(x) = e ln(x) et u(x) = ln(x) or (e u ) = u e u donc f (x) = u (x) e ln(x) = u (x) x De ces deux calculs, on déduit que pour tout réel x > 0, u (x) x = 1, et par conséquent u (x) = 1 x. On obtient ainsi la propriété suivante. La fonction ln est dérivable sur ]0 ; + [ et sa dérivée est la fonction inverse. Autrement dit, pour tout réel x > 0, ln (x) = 1 x. On admettra la propriété suivante. Soit u une fonction dérivable sur un intervalle I telle que pour tout nombre x de l intervalle I u(x) > 0, alors la fonction ln u est dérivable et : (ln u) = u u Logarithme décimal Définition : pour tout nombre x strictement positif, log x = ln x ln 10 Conséquence : log 1 = 0 log 10 = 1

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

FONCTION LOGARITHME. ln = a.

FONCTION LOGARITHME. ln = a. FONCTION LOGARITHME I. DEFINITION DU LOGARITHME a) Définition Problème : Soit a un réel strictement positif. Démontrer que l équation e x = a admet une solution unique α dans IR. (théorème des valeurs

Plus en détail

Terminale ES. La fonction logarithme népérien

Terminale ES. La fonction logarithme népérien Terminale ES La fonction logarithme népérien 1 I Liens avec la fonction exponentielle Définition On sait que la fonction exponentielle est strictement croissante sur et à valeurs dans ]0;+ [. Ainsi, pour

Plus en détail

Chapitre XI : Fonction Logarithme Népérien

Chapitre XI : Fonction Logarithme Népérien Chapitre XI : Fonction Logarithme Népérien I : Définition I- : Fonction réciproque Définition : On appelle fonction logarithme népérien la fonction qui à tout réel strictement positif x associe l unique

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Table des matières La fonction réciproque de la fonction eponentielle 2. Définition......................................................... 2.2 Propriété.........................................................

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien I) La fonction logarithme népérien d un réel strictement positif 1) Définition Pour tout réel x strictement positif le réel ln(x) est l unique nombre solution de l équation

Plus en détail

Chapitre 3 Exponentielles. Table des matières. Chapitre 3 Exponentielles TABLE DES MATIÈRES page -1

Chapitre 3 Exponentielles. Table des matières. Chapitre 3 Exponentielles TABLE DES MATIÈRES page -1 Chapitre 3 Exponentielles TABLE DES MATIÈRES page - Chapitre 3 Exponentielles Table des matières I Exercices I-................................................ I- 2................................................

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

4 Déterminer les limites suivantes. 1) lim x e1 2x. e x x+ 1 e 2x + 1 3) lim x 5 Montrer que l équation e 3x 6 = 0 admet une.

4 Déterminer les limites suivantes. 1) lim x e1 2x. e x x+ 1 e 2x + 1 3) lim x 5 Montrer que l équation e 3x 6 = 0 admet une. ANALYSE Logarithme népérien 5 Connaissances nécessaires à ce chapitre Connaître l allure de la courbe de la fonction exponentielle Connaître les propriétés algébriques de la fonction exponentielle Résoudre

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien I) La fonction logarithme népérien : Définition 1) Définition de la fonction logarithme népérien Soit a un nomre réel strictement positif. On appelle logarithme népérien de

Plus en détail

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x Exponentielle Exercice n 1 Simplifier les expressions suivantes : A = e ln 8 B = e 3 ln 5 C = ln ( e 3) + e 1 2 ln 4 D = e 2+ln 3 E = (e x ) 2 (e x ) 3 F = (e x e x ) 2 e x ( e 3x + e x) Exercice n 2 Résoudre

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 12 octobre 2005 1 Logarithme Définition 1.1 Le logarithme népérien est la fonction notée ln et définie sur ]0; + [ comme étant la primitive de f(x) =

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien I Introduction du logarithme népérien Définitions Définition Pour tout réel a strictement positif, l équation e y = a, d inconnue y, admet une unique solution. Cette solution

Plus en détail

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2 Liban Juin 010 Série S Exercice Partie A Soit u la fonction définie sur 0; + par : ux ( ) = x + lnx 1 Etudier les variations de u sur 0; + et préciser ses limites en 0 et en + a Montrer que l équation

Plus en détail

Fonctions logarithmes

Fonctions logarithmes La fonction logarithme népérien. Définition et propriétés Fonctions logarithmes La fonction eponentielle est continue et strictement croissante sur R. Le corollaire du théorème des valeurs intermédiaires

Plus en détail

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés Classe : TES1 Le 06/05/2003 MATHEMATIQUES Devoir N 7 Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Une statistique publiée en l an 1998 donne le nombre d abonnés à Internet dans

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

Effectifs. (Aires proportionnelles aux effectifs) Duree en min.

Effectifs. (Aires proportionnelles aux effectifs) Duree en min. Durée en minutes x i [0; 20[ [20; 0[ [0; 40[ [40; 60[ [60; 90[ Nombre n i 4 10 14 6 6 TAB. 1 Traitement des dossiers. Effectifs. (Aires proportionnelles aux effectifs). 0 10 20 0 40 50 60 70 80 90 Duree

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

Fonction exponentielle

Fonction exponentielle Propriétés algébriques Exercice 1 Ecrire sous la forme d une puissance de les expressions suivantes : a) e7 e 2 b) (e-1 ) 4 c) (exp(e e 2 )) -3 d) e 2 exp(-3) e) e -3 exp(2) f) exp(1) exp(-2) Exercice

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

Devoir de mathématiques n 2

Devoir de mathématiques n 2 Page Prénom :. Jeudi 3 décembre 05 Devoir de mathématiques n Calculatrice autorisée. Le sujet contient 3 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour l attribution des

Plus en détail

Exercices type bac. Exercice 1: Partie A. On considère la fonction f définie sur [0 ; 8] par :

Exercices type bac. Exercice 1: Partie A. On considère la fonction f définie sur [0 ; 8] par : Exercice 1: Partie A Exercices type bac On considère la fonction f définie sur [0 ; 8] par : f(x) = ( 4x +5 ) e x +3 On note (C) la courbe représentative de la fonction f dans un repère orthogonal. On

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques Classe de terminale ES Mathématiques Sujet abordé : exponentielle (lecture graphique) Exercice (BAC ES national ). Un nouveau modèle de mini-ordinateur portable est mis sur le marché. Soit x la quantité

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

Leçon N 8 : La fonction ln (Logarithme népérien)

Leçon N 8 : La fonction ln (Logarithme népérien) Leçon N 8 : La fonction ln (Logarithme népérien) Dans les dernières leçons, nous allons voir des fonctions nouvelles qui seront utilisées dans les problèmes de BAC. La première est le logarithme népérien

Plus en détail

TD 10 : Exponentielle-Logarithme

TD 10 : Exponentielle-Logarithme Université Paris Est Créteil DAEU TD 10 : Exponentielle-Logarithme Dans cette fiche on découvre deux nouvelles fonctions : la fonction exponentielle et la fonction logarithme népérien 1 Les fonctions exponentielles

Plus en détail

(C f )

(C f ) BAC BLANC -.3.9 - Terminales ES, Lycée Newton Exercice 1 - Amérique du Sud 8 6 points On admettra que les fonctions considérées dans cet exercice sont dérivables sur l intervalle ] ; + [. Soit la fonction

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Puissances Croissances comparées

Puissances Croissances comparées Puissances Croissances comparées I Puissances d'un nombre a > 0 Exercice 0 ) Donnez les valeurs de : 4 5 - (0,) ) En utilisant la calculatrice, donnez des valeurs approchées de : e 4 ln e ln e - ln 5 e

Plus en détail

Fiche d exercices 6 : Fonction logarithme

Fiche d exercices 6 : Fonction logarithme Fiche d exercices 6 : Fonction logarithme Exercice 1 Propriétés des fonctions logarithmes 1. Donner la définition, l ensemble de définition et la dérivée de ln ( x) 2. a. Quelle est la qualification de

Plus en détail

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail

Leçon N 9 : La fonction exponentielle.

Leçon N 9 : La fonction exponentielle. Leçon N 9 : La fonction exponentielle. Définition La fonction exponentielle à base e notée f(x) = e x est calculable pour tout réel x. Elle est définie par f(0) = 1 et par f (x) = f(x) pour tout x réel

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

Résumés de cours et Méthodes Maths Terminale S

Résumés de cours et Méthodes Maths Terminale S Stages intensifs Résumés de cours et Méthodes Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 2 Chapitre 1 Fonction exponentielle, logarithme népérien, logarithme décimal 1.1 Fonction

Plus en détail

Sachant que pour tout réel ( q>0 ) et. Pour tous entiers relatifs m et p, f(m) f(p)=q m q p = q m+p = f(m+ p)

Sachant que pour tout réel ( q>0 ) et. Pour tous entiers relatifs m et p, f(m) f(p)=q m q p = q m+p = f(m+ p) Lcée JANSON DE SAILLY 7 novembre 06 FONCTION EXPONENTIELLE T le ES CONSTRUCTION EXPÉRIMENTALE DE LA FONCTION f : x q x, AVEC q>0 Soit q>0 un réel strictement positif. (u n ) est la suite géométrique définie

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

Annales Fonction Exponentielle. Table des matières. 1 Amérique du Nord Juin Lycée Marcel Pagnol TES2. Annales - exponentielles

Annales Fonction Exponentielle. Table des matières. 1 Amérique du Nord Juin Lycée Marcel Pagnol TES2. Annales - exponentielles Lycée Marcel Pagnol 216-217 TES2 Annales - exponentielles Annales Fonction Exponentielle Table des matières 1 Liban Juin 21 1 2 Asie Juin 21 2 3 Polynésie Septembre 21 2 4 Métropole La réunion Septembre

Plus en détail

Chapitre 9 : fonctions du second degré descriptives. P : y = x 2. On dit que la courbe représentative de la fonction carré est une... de... O.

Chapitre 9 : fonctions du second degré descriptives. P : y = x 2. On dit que la courbe représentative de la fonction carré est une... de... O. Chapitre 9 : fonctions du second degré descriptives I. La fonction carré I. 1 Définition Définition La fonction carré est la fonction qui, à tout nombre réel x, associe son carré x. Si on note f la fonction

Plus en détail

FONCTIONS LOGARITHMES ET EXPONENTIELLES

FONCTIONS LOGARITHMES ET EXPONENTIELLES Maths FONCTIONS LOGARITHMES ET EXPONENTIELLES I. LA FONCTION LOGARITHME DECIMAL (log) a) Découverte de la fonction Nous allons utiliser la touche log de la calculatrice. Par exemple : log 3 = (Arrondir

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien I) Fonction logarithme népérien : a) le logarithme népérien : k est un nombre réel strictement positif donné. Nous avons établi dans un chapitre précédent que la fonction

Plus en détail

Fonction logarithme népérien, cours de Terminale STG

Fonction logarithme népérien, cours de Terminale STG Fonction logarithme népérien, cours de Terminale STG F.Gaudon 22 juillet 2008 Tale des matières 1 Construction de la fonction logarithme népérien 2 2 Propriétés algériques 2 3 Propriétés analytiques 4

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

Corrigé du baccalauréat ES de Nouvelle Calédonie de novembre 2010 obligatoire seulement

Corrigé du baccalauréat ES de Nouvelle Calédonie de novembre 2010 obligatoire seulement Corrigé du baccalauréat ES de Nouvelle Calédonie de novembre 2010 obligatoire seulement Exercice 1 (commun à tous les candidats) 6 points 1. (a) Tableau de variations de la fonction f x 0 4 6 f(x) 5 1

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n,

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n, Correction DC1 Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : 00. Pour tout entier naturel n, 10 100 15 100 90 100 15 100 00 3 4 330 3 4 330 3. L algorithme ci-dessous permet

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

EXPONENTIELLES. I Fonction exponentielle de base q. Exercice 01. Exercice 02

EXPONENTIELLES. I Fonction exponentielle de base q. Exercice 01. Exercice 02 EXPONENTIELLES I Fonction exponentielle de base q Exercice 0 Les lois de Moore sont des conjectures énoncées par Gordon Moore (un des trois fondateurs d Intel). En 965, Moore postulait que la complexité

Plus en détail

Chapitre I Les fonctions exponentielles et logarithmes

Chapitre I Les fonctions exponentielles et logarithmes Chapitre I Les fonctions exponentielles et logarithmes Table des matières 1 La fonction exponentielle 2 1.1 Existence et unicité........................................ 2 1.2 Relation fonctionnelle.......................................

Plus en détail

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin Athénée Royal d Uccle 1 Cours de Mathématique 6 ème année Révision de juin A.Droesbeke Version : 016 Chapitre 1 Algèbre 1.1 Exercices { (1 + i)x + y = 1 i 1. Résoudre dans C : x iy = i. Démontrer que

Plus en détail

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014 TES/TL spé maths Eléments de correction du Bac Blanc n Jeudi 8 décembre 4 Calculatrice autorisée - Aucun document n'est autorisé. Exercice. (5 points) Le barème est noté sur points. Partie : Fonctions

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

Etude de la fonction logarithme

Etude de la fonction logarithme Etude de la fonction logarithme Après un bref rappel des résultats vus dans le module de définition des fonctions logarithmes, nous menons l étude approfondie de la fonction logarithme népérien. 1/ Rappels

Plus en détail

Nouvelle Calédonie Corrigés Série ES Page 1 sur 9

Nouvelle Calédonie Corrigés Série ES Page 1 sur 9 Nouvelle Calédonie Corrigés Série ES Page sur 9 Exercice : (4 points) Commun à tous les candidats. Vrai. Sur ] ; + [, g admet un maximum en 4 qui vaut 5. Donc, pour tout réel x ] ; + [, g(x) 5. 2. Vrai.

Plus en détail

EXERCICE 1 (4 points)

EXERCICE 1 (4 points) EXERCICE 1 4 points) Pour chaque question de cet exercice, plusieurs réponses sont proposées. Parmi elles, une seule est exacte. Le candidat devra choisir l une des réponses et justifier son choix. 1.

Plus en détail

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1 TES BAC BLANC 2013 durée 3h Exercice 1 ( 4,5 points ) Cet exercice est un questionnaire à choix multiples. Pour chacune des trois questions, trois réponses sont proposées ; une seule de ces réponses convient.

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Correction Bac Blanc de juin : Liban 31 mai 2010 TES

Correction Bac Blanc de juin : Liban 31 mai 2010 TES Correction Bac Blanc de juin : Liban 31 mai 2010 Modalités : Durée de l épreuve : 3 heures ; Calculatrice autorisée ; Répondre sur votre copies) et non sur le présent sujet, sauf l annexe à remettre ;

Plus en détail

Chap 6 Fonction logarithme népérien

Chap 6 Fonction logarithme népérien Chap 6 Fonction logarithme népérien Terminale ES Chap 6 - Fonction logarithme népérien I. Généralités sur le logarithme népérien...4 ) Introduction...4 2) Définition...4 3) Conséquences directes...4 II.

Plus en détail

Fonction logarithme. I Introduction du logarithme 2 I.1 Définition... 2 I.2 Relation fondamentale... 2

Fonction logarithme. I Introduction du logarithme 2 I.1 Définition... 2 I.2 Relation fondamentale... 2 Fonction logarithme Table des matières I Introduction du logarithme I.1 Définition............................................... I. Relation fondamentale........................................ II Etude

Plus en détail

courbe n 1 courbe n 2 courbe n 3

courbe n 1 courbe n 2 courbe n 3 TES A-B Devoir n 7 mardi 0 mars 05 Eercice. sur.5 points Dans un terrain de camping il y a 3% de français et 68% d étrangers. 70% des français et 30% des étrangers savent jouer à la pétanque. On rencontre,

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN T ale S FONCTION LOGARITHME NÉPÉRIEN Analyse - Chapitre 8 Tale des matières I La fonction logarithme népérien 2 I Théorème et définition 2 I 2 Conséquences immédiates 2 I 3 La relation fonctionnelle 3

Plus en détail

Epreuve commune maths terminales S 8 décembre 2015

Epreuve commune maths terminales S 8 décembre 2015 Exercice 1 6 points ) On considère la fonction f définie et dérivable sur l ensemble R des nombres réels par fx) = x+1+ x e x On note C sa courbe représentative dans un repère orthonormé O; i ; ) j 1 Soit

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

La fonction exponentielle

La fonction exponentielle 1 et définition La fonction exponentielle Il existe une unique fonction f dérivable sur R telle que :.................. Définition Cette fonction est appelée............................ On note : Ainsi

Plus en détail

Fonction logarithme - Correction

Fonction logarithme - Correction Eercice 1 Fonction logarithme - Correction Déterminer l ensemble de définition des fonctions suivantes : 1. f() = ln + ln(2 ) On sait, d après le cours que la fonction ln est définie sur R +. Autrement

Plus en détail

BAC TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES - GÉNIE

BAC TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES - GÉNIE 1 sur 8 http://www.ilemaths.net/maths_t-sujet-bac-05-sti-electro-optique-co... BAC TECHNOLOGIQUE 2005 - SCIENCES ET TECHNOLOGIES INDUSTRIELLES - GÉNIE ÉLECTRONIQUE - GÉNIE ÉLECTROTECHNIQUE - GÉNIE OPTIQUE

Plus en détail

Exercice 1 (4 points)

Exercice 1 (4 points) Exercice (4 points) Pour chacune des questions, une seule des réponses A, B ou C est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification

Plus en détail

FONCTION EXPONENTIELLE de BASE e : f(x) = e x

FONCTION EXPONENTIELLE de BASE e : f(x) = e x FONCTION EXPONENTIELLE de BASE e : f() = e I) DEFINITION. a) Définition 1 et notations : ( de la fonction eponentielle ) Quel que soit le nombre réel, l équation ln y = où y est inconnu admet une solution

Plus en détail

Corrigé Baccalauréat STL biotechnologies Polynésie 11 juin 2015

Corrigé Baccalauréat STL biotechnologies Polynésie 11 juin 2015 Corrigé Baccalauréat STL biotechnologies Polynésie 11 juin 2015 La calculatrice (conforme à la circulaire n o 99-186 du 16 novembre 1999) est autorisée. Le candidat est invité à faire figurer sur la copie

Plus en détail

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n =

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n = La maison Ecole d ' Devoir de type bac n o 4 Classe de terminale ES Variations, limites, continuité, asymptotes, fonction logarithme, suites... Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence

Plus en détail

Exercice corrigé application de la dérivée. 1 er décembre 2010

Exercice corrigé application de la dérivée. 1 er décembre 2010 application de la dérivée 1 er décembre 2010 Enoncé On considère la fonction f définie sur R par : f : x 6x 3 3x 2 + 1 2 x + 24 1 Étudier les variations de f. 2 Justifier que l équation f(x) = 0 admet

Plus en détail

Chapitre 6. Logarithme népérien. 6.1 Activités. Sommaire

Chapitre 6. Logarithme népérien. 6.1 Activités. Sommaire Chapitre 6 Logarithme népérien Sommaire 6. Activités............................................ 77 6. Un peu d histoire....................................... 80 6.3 Logarithme népérien : définition et

Plus en détail

Baccalauréat S Polynésie, correction

Baccalauréat S Polynésie, correction Baccalauréat S Polynésie, correction 0 juin 00 Exercice 5 points Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct (O; u ; v). Partie A - Restitution organisée de

Plus en détail

Maths doc élève. FONCTIONS LOGARITHME et EXPONENTIELLE

Maths doc élève. FONCTIONS LOGARITHME et EXPONENTIELLE FONCTIONS LOGARITHME et EXPONENTIELLE 1- Fonction logarithme décimal 1-1 Sens de variation et tracé de la courbe y = log(x) Remplir à l aide de la touche "log" de la calculatrice le tableau de valeurs

Plus en détail

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses.

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses. Classe : TES1 Le 19/12/200 MATHEMATIQUES Devoir N Calculatrice autorisée Durée : h Eercice 1:,5 points) Le plan est rapporté à un repère orthonormal. Sur le graphique ci-contre, la courbe C) représente

Plus en détail

Chap 3 Fonctions exponentielles (1)

Chap 3 Fonctions exponentielles (1) Chap 3 Fonctions exponentielles () Terminale ES Chap 3 - Fonctions exponentielles I. Les fonctions exponentielles de base q...4 ) Introduction...4 2) Définition...5 3) Propriété de la fonction exponentielle

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

Fonction logarithme népérien, cours de Terminale STG

Fonction logarithme népérien, cours de Terminale STG Fonction logarithme népérien, cours de Terminale STG F.Gaudon mars 008 Tale des matières 1 Construction de la fonction logarithme népérien Propriétés algériques 3 Propriétés analytiques 3 3.1 Étude de

Plus en détail

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit Exercice 1 : On considère un demi-cercle de diamètre AB = 5. M est un point du segment [AB]. On construit les demi-cercles de diamètres [AM] et [MB] comme l indique la figure ci-dessous. 1) Existe-t-il

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x.

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x. T ES Mathématiques DS 5 le 18/01/01 Exercice 1 (5,5 POINTS ) On considère une fonction f définie et dérivable sur l intervalle [- ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f, tracée

Plus en détail

Baccalauréat ES Métropole 23 juin 2010

Baccalauréat ES Métropole 23 juin 2010 Baccalauréat ES Métropole 23 juin 2010 EXERCICE 1 Commun tous les candidats 4 points Cet exercice est un questionnaire à choix multiples (QCM). Les questions sont indépendantes les unes des autres. Pour

Plus en détail

Bac blanc - Mathématiques spécialité Terminales ES-L, , Lycée Newton

Bac blanc - Mathématiques spécialité Terminales ES-L, , Lycée Newton Bac blanc - Mathématiques spécialité -04-04-13- Terminales ES-L, 2012-2013, Lycée Newton Exercice 1. pour les élèves ayant suivi l enseignement de spécialité 6 points Dans une grande entreprise, tous les

Plus en détail

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité Chapitre 3 Dérivée I EXERCICES page I-1 I Exercices Comment déterminer le coefficient directeur d une droite ()? Exemple : (2, ; 2) ; (4 ; 3) (l unité du repère est un carreau) Graphiquement : on compte

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique

Plus en détail

Exercices supplémentaires : ln

Exercices supplémentaires : ln Exercices supplémentaires : ln Partie A : Propriétés algébriques Exprimer en fonction de ln2 : Exercice 2 Simplifier les expressions suivantes ln 1 2 ; ln8 ; ln64 ; ln2 ; ln64 ; ln 32 ; ln 2 ; ln 32 ln

Plus en détail

Corrigé du TD 2 : Fonctions simples

Corrigé du TD 2 : Fonctions simples Corrigé du TD : Fonctions simples Exercice : Fonctions élémentaires. Cas f(x) = Il est clair qu il n y a aucun problème de définition et que cette fonction est définie pour tout x réel. De plus, la fonction

Plus en détail