Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles."

Transcription

1 Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre. Si 2 droites sont perpendiculaires, toute perpendiculaire à l une est parallèle à l autre. Sécantes et angles. Soient (D) et (D ) 2 droites coupées par une droite ( ) respectivement en A et en B. 2 angles sont ALTERNES-INTERNES si : L un a pour sommet A et l autre a pour sommet B. Ils sont réparties de part et d autre de ( ) entre (D) et (D ). 2 angles sont CORRESPONDANTS si : L un a pour sommet A et l autre a pour sommet B. Ils sont situés du même côté de ( ), l un entre (D) et (D ) et l autre à l extérieur.

2 Propriété directe Si 2 droites parallèles sont coupées par une droite sécante, alors les ANGLES ALTERNES-INTERNES sont égaux et les angles CORRESPONDANTS sont égaux. Propriétés réciproques Soient (D) et (D ) 2 droites coupées par une droite ( ) respectivement en A et en B. Si les angles ALTERNES-INTERNES ainsi formées sont égaux, alors (D) et (D ) sont parallèles. Si les angles CORRESPONDANTS sont égaux, alors (D) et (D ) sont parallèles.

3 Triangles Angle : La somme des angles d un triangle est toujours de 180. Un Cercle est inscrit dans un cercle si le cercle est tangent à chaque côté du triangle. On dit qu une droite (D) est tangente à un cercle (C) de centre O en M si la droite (D) est perpendiculaire au rayon [OM] en M. Droites remarquables : Médiatrice : droite perpendiculaire à un côté et passant par le milieu de ce côté. Médiane : droite passant par un sommet et par le milieu du côté opposé. Hauteur : segment passant par un sommet et perpendiculaire au côté opposé. Bissectrice : droite qui coupe un angle en 2 angles de même mesure. Les médiatrices d un triangle se coupent en un point O qui est le centre du cercle circonscrit à ce triangle. Les médianes d un triangle se coupent en un point G, appelé centre de gravité du triangle. Les hauteurs d un triangle se coupent en un point H, appelé Orthocentre.

4 Les bissectrices d un triangle se coupent en un point I qui est le centre du cercle inscrit à ce triangle. Triangle ABC rectangle en A: il a un angle droit en A. Un triangle rectangle a ses 2 angles aigus complémentaires. Il est inscrit dans un cercle dont le centre est le milieu de son hypoténuse. La médiane passant par le milieu de l hypoténuse a pour longueur la moitié de l hypoténuse. Selon Pythagore, le carré de l hypoténuse est égal à la somme des carrés des 2 autres côtés. BC²=BA²+AC² (égalité de Pythagore) Montrer qu un triangle est rectangle Si un triangle est inscrit est dans un cercle et que l un des côtés est diamètre du cercle, ce triangle est rectangle. Si un triangle a une médiane dont la longueur la moitié de la longueur du côté relatif, alors le triangle est rectangle. Si les côtés d un triangle vérifient l égalité de Pythagore, alors, ce triangle est rectangle.

5 Un triangle est isocèle s il a 2 côtés de même mesure. Un triangle isocèle a ; Un axe de symétrie : la médiatrice de sa base. Les 2 angles à la base de même mesure. Un triangle est équilatéral s il a ses côtés de même mesure. Un triangle équilatéral a ; 3 axes de symétrie : ses médiatrices. Les 3 angles de même mesure : 60.

6 Trigonométrie Soit ABC un triangle rectangle en A. I- Vocabulaire Dans un triangle rectangle, on appelle côté adjacent d un angle aigu, l un des 2 côtés qui le forme mais qui n est pas l hypoténuse. Dans un triangle rectangle, on appelle côté opposé d un angle aigu, le côté du triangle qui ne forme pas l angle. Côté adjacent Côté opposé Angle ABC BA CA Angle ACB CA BA II- Définition cosinus d un angle aigu, le rapport : côté adjacent Hypoténuse sinus d un angle aigu, le rapport côté opposé Hypoténuse tangente d un angle aigu, le rapport côté opposé côté adjacent Exemples d utilisation Soit ABC rectangle en A Exemple 1 : avec ABC = 32 et BC=8 cm. Calculez AC et BA. cos(abc ) = BA et sin(abc ) = CA BC BC BA = 8 cos(32) 6,78cm cos(32) = BA 8 et sin(32) = CA 8 CA = 8 sin(32) 4,24cm Exemple 2 : avec CA = 4cm et BA = 6 cm. Calculez l angle ACB. tan(acb ) = BA = 6 CA 4 ACB = arctan ( 6 ) 56,31 4

7 III- Relations trigonométriques Quelque soit l angle β 0, Propriété 1 : cos(β) 2 + sin(β) 2 = 1 Propriété 2 : tan(β) = sin (β) cos (β)

8 Théorème de Thalés Soient (D) et (D ), 2 droites sécantes au point A. M et B sont 2 points distincts de la droite (D). N et C sont 2 points distincts de la droite (D ). Si les droites (MN) et (BC) sont parallèles alors, il y a l égalité des rapports : AM AB = AN AC = MN BC Configuration de Thalés : Configuration TRIANGLE Configuration PAPILLON Exemple de Calcul : OP= 5 cm, OR = 12 cm, OM= 7 cm et RS=14,4 cm. Calculez PM et OS. (PM) est parallèle à (RS). Comme (PM) est parallèle à (RS), selon Thalés, OP OR = OM OS = PM RS 5 12 = 7 OS = PM 14,4 A l aide du produit en croix, je peux calculer OS et PM : OS = 7 12 = 16,8 PM = 5 14,4 =

9 Contraposée de Thalés Soient (D) et (D ), 2 droites sécantes au point A. M et B sont 2 points distincts de la droite (D). N et C sont 2 points distincts de la droite (D ). Si AM AN AN ou MN AB AC AC BC AM ou MN, alors (MN) n est pas parallèle à (BC) AB BC Exemple : OP = 4 cm, OR=10 cm, OM=3 cm et OS=7,2 cm OP OR = 4 10 = 0,4 OM OS = 3 7,2 = 0,416 Donc OP OM OR OS, alors (MP) n est pas paralléle à (RS) Réciproque de Thalés. Soient (D) et (D ), 2 droites sécantes au point A. M et B sont 2 points distincts de la droite (D). N et C sont 2 points distincts de la droite (D ). Si AM = AN AN ou = MN AB AC AC BC AM ou = MN, alors (MN) EST parallèle à (BC) AB BC Exemple : OP = 4 cm, OR=10 cm, OM=3 cm et OS=7,5 cm OP OR = 4 10 = 0,4 OM = 3 = 0,4 OS 7,5 Donc OP = OM OR OS, alors (MP) est parallèle à (RS)

10 Agrandissement Réduction. On parle d agrandissement/ Réduction quand 2 «objets» géométriques ont la même forme et des dimensions proportionnelles. Le rapport de proportionnalité sera noté k. Si k > 1, ce sera un agrandissement. Si 0 < k < 1, ce sera une réduction. Propriété : les mesures d angles ainsi que le parallélisme sont conservés par un agrandissement ou une réduction. Calcul Pour calculer les dimensions, l aire ou le volume, on suit les règles suivantes : k Longueur : Objet d origine Objet «modifié» k k² Aire : Objet d origine Objet «modifié» k² k 3 Volume : Objet d origine Objet «modifié» k 3

11 Exemple : On réalise la maquette à l échelle 1 d une statue de 2,4 m de haut dont 10 la surface au sol occupe 1,3 m² et dont le volume est de 7,2 m 3. Quelle sera la hauteur, la surface au sol et le volume? Hauteur maquette : 2,4 1 = 0,24 m = 24 cm 10 Surface au sol de la maquette : 1,3 ( 1 10 )2 = 1,3 100 = 0,013 m² = 130 cm² Volume de la maquette : 7,2 ( 1 10 )3 = 7, = 0,007 2 m3 = 7200 cm 3

12 Les parallélogrammes Définition : On appelle parallélogramme tout quadrilatère dont les côtés opposés sont parallèles. Propriété : Un parallélogramme admet un centre de symétrie, l intersection de ses diagonales. Propriétés Propriété 1 : Les côtés opposés d un parallélogramme sont de même longueur. Propriété 2 : les angles opposés d un parallélogramme sont de même mesure. Propriété 3 : 2 angles consécutifs d un parallélogramme sont supplémentaires. Propriétés réciproques : Identifier un parallélogramme. Propriété 4 : Si les côtés opposés d un quadrilatère sont égaux, alors, c est un parallélogramme. Propriété 5 : Si DEUX côtés opposés d un quadrilatère sont parallèles et égaux, alors, c est un parallélogramme. Propriété 6 : Si les diagonales d un quadrilatère se coupent en leur milieu, alors c est un parallélogramme.

13 Propriété 7 : Si les angles opposés d un quadrilatère sont égaux, alors c est un parallélogramme. I- Parallélogrammes particuliers : a) Le rectangle (quadrilatère à 4 angles droits) Propriété 8 : Si un parallélogramme a un de ses angles droit, alors c est un rectangle. Propriété 9 : Si un parallélogramme a ses diagonales de même longueur, alors c est un rectangle. b) Le losange (quadrilatère à 4 côtés de même mesure) Propriété 10 : Si un parallélogramme a 2 côtés consécutifs de même longueur, alors c est un losange. Propriété 11 : Si un parallélogramme a ses diagonales perpendiculaires, alors c est un losange. c) Le carré Rappel : le carré est un losange rectangle ou un rectangle-losange.

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

LA GEOMETRIE DU COLLEGE

LA GEOMETRIE DU COLLEGE L GEETRIE DU LLEGE I. Le triangle : 1 ) Triangles particuliers Un triangle isocèle a deux côtés égaux Un triangle équilatéral a tous ses côtés égaux Un triangle rectangle a un angle droit ) Droites remarquables

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Triangle isocèle et équilatéral

Triangle isocèle et équilatéral Collège Ferdinand Sarrien Bourbon-Lancy Classe de 6 ème Classe de 5 ème Classe de 4 ème Classe de ème Droites Si deux droites sont parallèles à une même droite alors ces deux droites sont parallèles entre

Plus en détail

CONFIGURATIONS DU PLAN (quelques rappels)

CONFIGURATIONS DU PLAN (quelques rappels) CONFIGURATIONS DU PLAN (quelques rappels).1polygones.1.1.parallélogramme Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles deux à deux. S Un parallélogramme admet un centre

Plus en détail

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55)

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55) ANNEXE PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT - 4111-2 (N os 1 à 55) ANGLES 1. Des angles adjacents qui ont leurs côtés extérieurs en ligne droite sont supplémentaires. 2. Les angles opposés par

Plus en détail

VOCABULAIRE DE GEOMETRIE PLANE

VOCABULAIRE DE GEOMETRIE PLANE Fiche de vocabulaire VOCABULAIRE DE GEOMETRIE PLANE Généralités... 2 1) Nom des polygones courants... 2 2) Qu est-ce qu un polygone?... 2 La médiatrice d un segment... 3 Cercle et disque... 3 1) Le disque?

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

Classeur de géométrie 4 ème

Classeur de géométrie 4 ème - 1 - lasseur de géométrie 4 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

Classeur de géométrie 3 ème

Classeur de géométrie 3 ème - 1 - lasseur de géométrie 3 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Configurations du plan et trigonométrie

Configurations du plan et trigonométrie Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

LES BASES DE LA GEOMETRIE.

LES BASES DE LA GEOMETRIE. Chapitre 2 LES BASES DE LA GEOMETRIE. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle

Plus en détail

Chapitre 1 - Repérage et configurations du plan

Chapitre 1 - Repérage et configurations du plan nde hapitre 1 - Repérage et configurations du plan 01-013 hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur

Plus en détail

Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Justifier. 2) Comment déceler des transformations dans une figure? 7-8 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un

Plus en détail

CHAPITRE 9 GÉOMÉTRIE

CHAPITRE 9 GÉOMÉTRIE CHAPITRE 9 GÉOMÉTRIE A) Le triangle (Rappels) 1) Droites et points remarquables a) Médianes et centre de gravité Les médianes sont les droites issues des sommets et passant par le milieu du côté opposé

Plus en détail

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités Angles : Définitions utiles Angles : Propriétés utiles D1: Deux angles qui ont un sommet commun et un côté commun sont dits adjacents. Sur la figure ci contre, l angle en rouge et l angle en vert ont en

Plus en détail

LA DEMONSTRATION EN GEOMETRIE PLANE

LA DEMONSTRATION EN GEOMETRIE PLANE LA DEMONSTRATION EN GEOMETRIE PLANE I. Le débat Pour discuter de la validité d'énoncés mathématiques, les mathématiciens ont mis en place des règles de débat. En mathématiques, ces principales règles sont

Plus en détail

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle.

Propriété Les 3 hauteurs d un triangle sont concourantes. Le point de concours s appelle l orthocentre du triangle. Géométrie Espace 2 nde 1 Géométrie dans l espace I. Rappels de collège A. Formumaire 1. Hauteurs Une hauteur est une droite passant par un sommet et perpendiculaire au côté opposé. Il y a donc 3 hauteurs

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail

12 Outils. pour la géométrie. 1 Commentaires généraux

12 Outils. pour la géométrie. 1 Commentaires généraux 1 Outils pour la géométrie 1 ommentaires généraux e chapitre rassemble les résultats géométriques vus par les élèves dans les classes précédentes et utiles pour la classe de troisième. Selon l organisation

Plus en détail

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale Géométrie plane Ce chapitre sur la géométrie plane va récapituler toutes les notions de géométrie que vous avez apprises au collège jusqu en classe de seconde. Nous passerons entre autre par les symétries,

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail

Aide mémoire Géométrie 3 è m e

Aide mémoire Géométrie 3 è m e Sinus d'un angle aigu: ide mémoire Géométrie è m e Sinus: est un triangle rectangle en. le sinus de l'angle, noté sin, est le rapport sin = longueur du côté opposé de l'angle longueur de 'hypoténuse côté

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Quatrième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

Aide mémoire Géométrie 4 ème

Aide mémoire Géométrie 4 ème ide mémoire Géométrie 4 ème Si un triangle est rectangle, alors la longueur de la médiane relative à l'hypoténuse est égale à la moitié de la longueur de l'hypoténuse. Triangle rectangle et cercle circonscrit:

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

Droites remarquables dans les triangles

Droites remarquables dans les triangles Droites remarquables dans les triangles F.Gaudon 16 février 2005 Table des matières 1 Différentes droites 2 1.1 Médiatrices............................ 2 1.2 Hauteurs.............................. 4 1.3

Plus en détail

DROITES REMARQUABLES CAS PARTICULIERS

DROITES REMARQUABLES CAS PARTICULIERS THEME : DROITES REMARQUABLES CAS PARTICULIERS Cas particulier 1 : Le triangle isocele Isocèle : ( de isos, " égal " et skelos, " jambe ' ) qui a deux jambes. La véritable orthographe adoptée par le Dictionnaire

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES PARALLELES ET PERPENDICULAIRES Je sais définir et construire deux droites perpendiculaires Je sais définir et construire deux droites parallèles Je comprends les propriétés permettant de démontrer que

Plus en détail

EXERCICES DE GEOMETRIE BASES

EXERCICES DE GEOMETRIE BASES EXERES E GEETRE SES Exercice n 1 p. 222 Puisque et sont de même mesure, il en est de même pour les angles L et N. Notons x cet angle. Par suite, NL = N = 180 (90 + x) = 90 x. e même, NL = L = 180 (90 +

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

Chapitre 10 - Notions de géométrie

Chapitre 10 - Notions de géométrie Chapitre 10 - Notions de géométrie Activité 1 Exercice 1 Exercice 2 x y a b c x // // S y // // S a // // S b // // S c S S S S // Exercice 3 MATHE 1 re année - Solutionnaire, http://maths.deboeck.com

Plus en détail

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent.

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent. 1 Symétrie par rapport à une droite JETIF 1 ÉFINITIN ire que deux figures sont symétriques par rapport à une droite signifie que, en effectuant un pliage le long de la droite, les figures se superposent.

Plus en détail

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base

S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base CRPE Mise en route S11 Autour de la GEOMETRIE PLANE Vocabulaire et constructions de base 1. A et B sont deux points du plan. que représentent (AB), [AB], [AB), AB? 2. A, B et C sont trois points distincts

Plus en détail

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

Chapitre 4 : Triangles.

Chapitre 4 : Triangles. Chapitre 4 : Triangles. I Somme des angles d un triangle. 1 Propriété. La somme des mesures des angles d un triangle est égale à 180. Dans le triangle JKL, on a + + = 180. 2 Triangles particuliers. Triangle

Plus en détail

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base

S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base CRPE S11C. Autour de la GEOMETRIE PLANE Corrigé Vocabulaire et constructions de base Mise en route at hs.c om 1. (AB) représente la droite (en noir) qui passe par A et B, [AB] représente le segment (en

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Index. M médiatrice...24

Index. M médiatrice...24 Index A alternes-externes... 23 alternes-internes... 23 angle au centre... 35 angle inscrit... 35 angle tangentiel... 35 axe de symétrie... 4 B bissectrice... 25 C centre de symétrie... 6 centre de symétrie...

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

Triangles rectangles et trigonométrie

Triangles rectangles et trigonométrie Chapitre 6 Triangles rectangles et trigonométrie I] Rappels a) Définition Un triangle qui a un angle droit est un triangle rectangle. Le côté opposé à l angle droit est l hypoténuse, c est le plus grand

Plus en détail

Géométrie et Problèmes

Géométrie et Problèmes 1. Figures planes 1.1. Triangles Géométrie et Problèmes Une figure du plan qui possède trois côtés est un triangle ; il a 3 sommets et la somme de ses trois angles internes vaut 180. Si un de ses angles

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

1. Droites particulières a) Médiatrices. Déf :Une médiatrice coupe un segment perpendiculairement et en son milieu.

1. Droites particulières a) Médiatrices. Déf :Une médiatrice coupe un segment perpendiculairement et en son milieu. I. Les quadrilatères.. II. Les triangles. 1. Droites particulières a) Médiatrices Déf :Une médiatrice coupe un segment perpendiculairement et en son milieu. Th : Un point est sur la médiatrice de [] si

Plus en détail

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane

Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Analyse de la figure Notes Géométrie 2016 Construire et de crire une figure ge ome trique De monstrations en ge ome trie plane Construire et décrire une figure géométrique Un programme de tracé est une

Plus en détail

Géométrie transformation du plan.

Géométrie transformation du plan. Géométrie transformation du plan. I. Cercle 2 A. Définitions 2 B. Positions relatives d une droite et d un cercle 2 C. Positions relatives de deux cercles 2 II. 2 A. Construction à la règle et au compas

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Troisième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

Utiliser les propriétés des symétries axiale ou centrale.

Utiliser les propriétés des symétries axiale ou centrale. Chapitre 4 Éléments de Géométrie Ce que dit le programme CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Coordonnées d un point du plan Abscisse et ordonnée d un point dans le plan rapporté à un repère orthonormé.

Plus en détail

PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT :

PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT : THÈMES ABORDÉS : L INÉGALITÉ TRIANGULAIRE LA SOMME DES ANGLES DANS UN TRIANGLE LES DROITES REMARQUABLES DU TRIANGLE PROPRIÉTÉS À CONNAÎTRE ABSOLUMENT : 1. La somme des angles d un triangle est égale à

Plus en détail

Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) // (d 2 )

Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) // (d 2 ) CONSTRUCTIONS DE FIGURES PLNES I. DROITES PRLLELES ET PERPENDICULIRES Deux droites sont parallèles quand elles n ont aucun point commun. Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) //

Plus en détail

I. Relations métriques

I. Relations métriques 1 sur 8 http://www.ilemaths.n/maths-capes-lecon-37-relation-triangle-rectang... LEÇON 37 : RELATIONS MÉTRIQUES DANS UN TRIANGLE RECTANGLE. TRIGONOMÉTRIE. APPLICATIONS Niveau : Collège (4 ème - 3 ème )

Plus en détail

MATHÉMATIQUE MAT Prétest C. Questionnaire

MATHÉMATIQUE MAT Prétest C. Questionnaire MATHÉMATIQUE MAT-5111 COMPLÉMENT ET SYNTHÈSE II Prétest C Questionnaire Préparé par : France Joyal et Yves Robitaille Vérifié par : Paul Huard et Gilles Viau Novembre 2008 Question 1 Voici les règles

Plus en détail

Conséquence. Si deux triangles sont isométriques, alors ils ont leurs trois côtés égaux deux à deux. AB = MN BC = NP CA = PM A = M AB = MN AC = MP

Conséquence. Si deux triangles sont isométriques, alors ils ont leurs trois côtés égaux deux à deux. AB = MN BC = NP CA = PM A = M AB = MN AC = MP Seconde Triangles isométriques, triangles semblables I. Triangles isométriques. Définition. Deux triangles sont isométriques ou superposables, si l un est l image de l autre par une isométrie ou la composée

Plus en détail

Triangle rectangle. 1 Rappels sur le triangle rectangle. 1.1 Vocabulaire. Définition 1 Un triangle rectangle c est un triangle qui a un angle droit.

Triangle rectangle. 1 Rappels sur le triangle rectangle. 1.1 Vocabulaire. Définition 1 Un triangle rectangle c est un triangle qui a un angle droit. Triangle rectangle 1 Rappels sur le triangle rectangle 1.1 Vocabulaire Définition 1 Un triangle rectangle c est un triangle qui a un angle droit. Définition 2 Le coté qui est situé en face de l angle droit

Plus en détail

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2)

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2) Vocabulaire géométrique (Cm1) La droite : c est un trait qui passe par un nombre infini de points alignés. On ne peut donc pas mesurer une droite. Le point : on le représente par une croix et on le nomme

Plus en détail

CERTIFICAT, GEOMETRIE. Liste des sujets

CERTIFICAT, GEOMETRIE. Liste des sujets 9VSB CERTIFICAT, GEOMETRIE Liste des sujets 1. Notions préliminaires 2. Cercle, Cylindre et Cône 3. Angles 4. Polygones et Polyèdres 5. Transformations géométriques 6. Triangles isométriques 7. Théorème

Plus en détail

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net :

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : http://titaile.free.fr (sans le www) I. Calcul. Revoir impérativement «développer, factoriser, résoudre

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

CHAPITRE 3 : PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES. Demi-droite d origine A passant par B. NOTATION (AB) ou (d) [AB) [AB]

CHAPITRE 3 : PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES. Demi-droite d origine A passant par B. NOTATION (AB) ou (d) [AB) [AB] CHPITRE 3 : PRLLELISME, PERPENDICULRITE, FIGURES PLNES ELEMENTIRES I Droite, demi-droite, segment: droite Demi-droite d origine passant par Segment d extrémités et NOTTION () ou [) [] REPRESENTTION GRPHIQUE

Plus en détail

S14C. Autour de la TRIGONOMETRIE Corrigé

S14C. Autour de la TRIGONOMETRIE Corrigé CRPE S4C. Autour de la TRIGONOMETRIE Corrigé Mise en route A. Le triangle MNP étant rectangle en P, on peut utiliser la trigonométrie. [MN] est l hypoténuse du triangle, [MP] est le côté adjacent à et

Plus en détail

Progression 4e - MATHEMATIQUES

Progression 4e - MATHEMATIQUES PREMIER TRIMESTRE ADDITION ET SOUSTRACTION DES NOMBRES RELATIFS (Chap1) I) Addition de deux nombres relatifs II) Soustraction de deux nombres relatifs III) Notation simplifiée Activités : CALCUL MENTAL,

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5 BREVET BLANC de MATHEMATIQUES Classe de troisième Correction des exercices 1. Racines carrées Connaître les règles de calcul avec des racines carrées Savoir effectuer un produit ou un quotient avec des

Plus en détail

Droites sécantes: Droites parallèles // :

Droites sécantes: Droites parallèles // : ide mé mo i r e Géomé t r i e 6 è m e à 3 è m e Points alignés: roite, demi-droite et segment de droite: droite: () es points sont alignés lorsqu'ils appartiennent à la même droite. ( ) ( ) ( ) demi-droite:

Plus en détail

De la symétrie centrale au parallélogramme

De la symétrie centrale au parallélogramme La géométrie en 5 doit nous permettre de passer de l identification perceptive (la reconnaissance par la vue) de figures et de configurations à leur caractérisation par des propriétés (passage du dessin

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

Exercices de géométrie plane Corrigés des exercices Propriétés des figures planes

Exercices de géométrie plane Corrigés des exercices Propriétés des figures planes Préparation accélérée RPE Mathématiques Exercices de géométrie plane orrigés des exercices Propriétés des figures planes Exercice 1 VRI / FUX a. Il est possible de construire le premier triangle. Il est

Plus en détail

LES DROITES DU TRIANGLE

LES DROITES DU TRIANGLE LES DROITES DU TRIANGLE DÉMONSTRATION DE LA PROPRIÉTÉ DES HAUTEURS D UN TRIANGLE... 2 DÉMONSTRATION DE LA PROPRIÉTÉ DES MÉDIANES D UN TRIANGLE... 3 DÉMONSTRATION DE LA PROPRIÉTÉ DES BISSECTRICES D UN TRIANGLE...

Plus en détail

Les parallélogrammes. Cinquième, chapitre n o 5

Les parallélogrammes. Cinquième, chapitre n o 5 Cinquième, chapitre n o 5 Les parallélogrammes Le parallélogramme est le quadrilatère fondammental : outre les propriétés de ses côtés et de ses diagonales, il est à l'origine de nombreuses démonstrations

Plus en détail

Chapitre 10 - La géométrie Définitions et Propriétés des Angles, Triangles, Droites, Cercles

Chapitre 10 - La géométrie Définitions et Propriétés des Angles, Triangles, Droites, Cercles Chapitre 10 - La géométrie Définitions et Propriétés des Angles, Triangles, Droites, Cercles En géométrie déductive, on n accepte pas une phrase comme vrai sans preuve d un fait, une règle, ou propriété

Plus en détail

Repérage dans le plan (début)

Repérage dans le plan (début) Repérage dans le plan (début) I/ Repère Def: un repère du plan est la donnée de trois points non alignés O, I et J. Def: si les axes ( OI ) et ( OJ ) sont perpendiculaires et si les distances OI et OJ

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

ANGLES ORIENTES ET TRIGONOMETRIE

ANGLES ORIENTES ET TRIGONOMETRIE Douala Mathematical Society : www.doualamaths.net: Workbook : Classes de c : Tome 0 ANGLES ORIENTES ET TRIGONOMETRIE EXERCICE Compléter le tableau de conversion suivant : Radian Degré 0 0 7 EXERCICE Placements

Plus en détail

Mémento de géométrie. Cycle 3. J appartiens à : Ecole de Saint Jean le Vieux

Mémento de géométrie. Cycle 3. J appartiens à : Ecole de Saint Jean le Vieux Mémento de géométrie ycle 3 J appartiens à : Ecole de Saint Jean le Vieu Mars 2015 Sommaire 1. Point, droite et segment 2 2. roites perpendiculaires 3 3. roites parallèles 4 4. Les polygones 5 5. Le parallélogramme

Plus en détail

Configurations fondamentales - Seconde

Configurations fondamentales - Seconde Configurations fondamentales - Seconde Exercices de géométrie plane avec GéoPlan : puzzle, triangle, point fixe. Sommaire 1. Puzzle et triangle isocèle 2. Puzzle et carrés 3. Propriété de Thalès 4. Utiliser

Plus en détail

Mathématiques Complément et synthèse II

Mathématiques Complément et synthèse II Définition du domaine d'examen MAT-5111-2 Mathématiques Complément et synthèse II Mise à jour novembre 2004 Définition du domaine d'examen MAT-5111-2 Mathématiques Complément et synthèse II Mise à jour

Plus en détail

Copyright 2012 PLANETE WORK

Copyright 2012 PLANETE WORK Page 1 sur 36 T A B L E D E S M A T I È R E S ÉQUATIONS ET INÉQUATIONS PREMIER DEGRÉ... 3 ÉQUATIONS ET INÉQUATIONS SECOND DEGRÉ... 7 FACTORISATION ET DÉVELOPPEMENT... 10 LES VECTEURS... 10 PARALLÉLISME...

Plus en détail

Les programmes de géométrie en

Les programmes de géométrie en Les programmes de géométrie en 2010-2011 Ecole primaire CYCLE 1 Dessiner un rond, un carré, un triangle CYCLE 2 Les élèves enrichissent leurs connaissances en matière d orientation et de repérage. Ils

Plus en détail

Mathématiques Complément et synthèse II

Mathématiques Complément et synthèse II Définition du domaine d'examen MAT-5111-2 Mathématiques Complément et synthèse II Définition du domaine d'examen MAT-5111-2 Mathématiques Complément et synthèse II Formation professionnelle et technique

Plus en détail

Droites et triangles

Droites et triangles Droites et triangles I - Médiatrice d un segment : A. Définition : On appelle médiatrice d un segment la droite perpendiculaire à ce segment en son milieu. La droite (d) est perpendiculaire au segment

Plus en détail

Théorèmes et réciproques de Pythagore et Thales

Théorèmes et réciproques de Pythagore et Thales Théorèmes et réciproques de Pythagore et Thales I) Théorème de Pythagore : Soit ABC un triangle rectangle en B : Théorème de Pythagore : Si ABC est un triangle rectangle en B alors AC² = AB² + BC² Exemple

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail