Cours de recherche opérationnelle I

Dimension: px
Commencer à balayer dès la page:

Download "Cours de recherche opérationnelle I"

Transcription

1 1 Cours de recherche opérationnelle I Nadia Brauner Grenoble,

2 Auteurs Ont participé à la rédaction de ce cours (par ordre d arrivée) Nadia Brauner Christophe Rapine Julien Moncel Laurent Beaudou Ont aidé, corrigé, relu et donné des idées Gerd Finke Yann Kieffer Van Dat Cung Ont donné les TD et proposé des exercices Ayse Akbalik Aline Parreau Sergei Lenglet Guillaume Massonnet 2

3 Formations à Grenoble Formation initiale RO à l UJF (M1 Info, L3 Miage, Polytech RICM4) Gestion de la production à l UJF (M1 Miage) Optimisation pour l énergie (M2 Miage) Outils Formels et Graphes (Polytech RICM2) RO à l ENSIMAG (1A, 2A) RO à l ENSGI (1A, 2A) Master 2 Mathématiques et Informatique, Option Recherche Opérationnelle, Combinatoire et Optimisation Formation continue Recherche opérationnelle (tous les ans, 4 jours) Graphes et optimisation (tous les ans, 3 jours) 3

4 Recherche Opérationnelle : faisons connaissance Nadia Brauner Nadia Professeur Grenoble I Responsable Master 2 R ROCO Recherche Opérationnelle, Combinatoire et Optimisation Laboratoire équipe Recherche Opérationnelle équipe Opti-Com Présidente de la Société Française de RO-AD 4

5 Recherche Opérationnelle : faisons connaissance Problèmes théoriques Ordonnancement high-multiplicity ( NP?) Ordonnancement dans ateliers robotisées OC appliquée à la micro-électronique Contrats industriels ILOG : Problèmes complexes de transport IFP : Planification d expériences chimiques de Facto : Optimisation du test des circuits Participation à la création d une startup OASIC : optimisation de la conception de cellules logiques 5

6 La recherche opérationnelle

7 La Recherche Opérationnelle Applications Outils La RO en France Références Plan 1 La Recherche Opérationnelle 2 Applications 3 Outils 4 La RO en France 5 Références N. Brauner 7

8 La Recherche Opérationnelle Applications Outils La RO en France Références Plan 1 La Recherche Opérationnelle 2 Applications 3 Outils 4 La RO en France 5 Références N. Brauner 8

9 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle ou Science de la Décision Définitions Cambridge Dictionary Operational research UK (US operations research) The systematic study of how best to solve problems in business and industry Wikipedia Operations research, operational research, or simply OR, is the use of mathematical models, statistics and algorithms to aid in decision-making Roadef Recherche Opérationnelle : approche scientifique pour la résolution de problèmes de gestion de systèmes complexes N. Brauner 9

10 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Science du comment mieux faire avec moins Des outils pour rationaliser simuler optimiser planifier l architecture et le fonctionnement des systèmes industriels et économiques. Des modèles pour analyser des situations complexes Permet aux décideurs de faire des choix efficaces et robustes N. Brauner 10

11 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Approche quantitative pour produire les meilleures décisions Une discipline à la croisée des mathématiques et de l informatique prolongement de l algorithmique manipulant des structures plus élaborées : graphes, polyèdres... domaine d application de la théorie de la complexité algorithmique Une boite à outils de méthodes, tant positives que négatives, pour aborder sainement et sereinement les problèmes d optimisation N. Brauner 11

12 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Les outils de RO-AD aident à trouver une solution où l homme n en trouvait pas une solution sur des problèmes nouveaux où l homme n a aucune expérience plusieurs solutions là où l homme n en envisageait qu une aident à juger de la qualité d une solution aident à confirmer / justifier des décisions N. Brauner 12

13 La Recherche Opérationnelle Applications Outils La RO en France Références Plan 1 La Recherche Opérationnelle 2 Applications 3 Outils 4 La RO en France 5 Références N. Brauner 13

14 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Voyageur de commerce (TSP) Un voyageur de commerce, basé à Toulon, doit visiter ses clients à travers la France. Il souhaite effectuer la tournée la plus courte possible. N. Brauner 14

15 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Voyageur de commerce Instance : n villes avec une matrice de distances Solution : tournée visitant chaque ville et revenant à Toulon N. Brauner 15

16 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Algorithme Glouton pour le TSP N. Brauner 16

17 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Transport de marchandises des entrepôts vers les clients coûts de transport, distance sur les arcs trouver le meilleur plan de distribution a i i c ij j b j A B min c ij x ij x ij a i j B x ij b j i A x ij 0 N. Brauner 17

18 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Applications Plus court chemin Quel est le trajet le plus court entre Grenoble et Nice en voiture? N. Brauner 18

19 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle 24h de RO 8h : optimisation de la récolte et du dépôt des déchets recyclables... 15h : placement automatique des véhicules pour une association de partage de voitures 16h : gestion des retards dans les transports publics pour minimiser l impact sur les passagers... N. Brauner 19

20 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle le 15 octobre 2012 : N. Brauner 20

21 La Recherche Opérationnelle Applications Outils La RO en France Références The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012 Alvin E. Roth, Lloyd S. Shapley English English (pdf) Swedish Swedish (pdf) Press Release 15 October 2012 The Royal Swedish Academy of Sciences has decided to award The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel for 2012 to Alvin E. Roth Harvard University, Cambridge, MA, USA, and Harvard Business School, Boston, MA, USA and Lloyd S. Shapley University of California, Los Angeles, CA, USA "for the theory of stable allocations and the practice of market design". N. Brauner 21

22 La Recherche Opérationnelle Applications Outils La RO en France Références Mariages stables Mariages stables Des femmes : Alice, Bénédicte, Camille Des hommes : Elie, François, Gondran Préférences des femmes A : G E F B : F E G C : G E F Préférences des hommes E : A B C F : B C A G : A C B Comment faire les couples? N. Brauner 22

23 La Recherche Opérationnelle Applications Outils La RO en France Références Mariages stables Un couplage est instable s il contient deux personnes A et B non mariées ensemble qui se préfèrent mutuellement à leurs conjoints : F est mariée avec g G est marié avec f F préfère G à g G préfère F à f Questions Comment vérifier qu un couplage est stable? Est-ce qu il existe toujours un couplage stable? Est-ce qu on sait trouver un couplage stable quand il existe? N. Brauner 23

24 La Recherche Opérationnelle Applications Outils La RO en France Références Mariages stables Applications Situations où les mécanismes de marchés traditionnels ne fonctionnent pas Répartition de biens rares, hétérogènes, indivisibles Affectations de candidats sur des places élèves - écoles d ingénieur travailleurs - postes internes - hôpitaux étudiants - universités Dons d organes (reins) N. Brauner 24

25 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Les challenges ROADEF Gestion d énergie (EDF) 2009 Gestion des perturbations dans le transport aérien (Amadeus) 2007 Planification des techniciens et des interventions pour les télécommunications (France Telecom) 2005 Ordonnancement de véhicules pour une chaîne de montage automobile (Renault) 2003 Gestion des prises de vue réalisées par un satellite d observation de la Terre (ONERA et CNES) 2001 Allocation de fréquences avec polarisation (CELAR, armée) 1999 Gestion de stock de matériels (Bouygues) N. Brauner 25

26 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Le challenges ROADEF/EURO 2012 Réaffectation de machines Proposé par Google 82 équipes enregistrées dans 33 pays 30 équipes qualifiées Vainqueur Junior : équipe polonaise Vainqueur Open Source et Senior : équipe bosniaques N. Brauner 26

27 La Recherche Ope rationnelle Applications Outils La RO en France Re fe rences Recherche Ope rationnelle Le challenges ROADEF/EURO 2014 Trains don t vanish! Propose par SNCF 35 e quipes enregistre es Vainqueur Sprint : e tudiants du Master N. Brauner 27

28 La Recherche Opérationnelle Applications Outils La RO en France Références Introduction et historique de la RO Mesure de performance de la RO Ingrédients d une bonne approche RO L enseignement de la RO Le serious game, un outil pour convaincre Faut-il un modèle simple ou haute fidélité? Solutions robustes RO, SI et capacités de calcul N. Brauner 28

29 La Recherche Ope rationnelle Applications Outils La RO en France Re fe rences Emmanuel Guyot, Directeur Marketing et Revenue Management TF1 PUBLICITE Yves Caseau, Executive Vice-Pre sident BOUYGUES TELECOM Animation : Denis Montaut, Pre sident d Eurode cision Nadia Brauner, Pre sidente de la Roadef, G-SCOP Yvon Que rou, Directeur Informatique AIR FRANCE Jean-Charles Billaut, Professeur a l Universite de Tours Jean-Paul Hamon, ex Executive Vice-Pre sident De veloppement AMADEUS N. Brauner 29

30 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Domaines d application Conception, configuration et exploitation de systèmes techniques complexes (réseaux de communication, systèmes d information) Gestion de la chaîne logistique (transports, production, stocks... ) Gestion stratégique d investissements et aussi santé, instruction publique, voirie, ramassage et distribution de courrier, production et transport d énergie, télécommunications, banques, assurances... N. Brauner 30

31 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Domaines d application Production : maximiser le profit selon disponibilité de la main d œuvre, demande du marché, capacité de production, prix de revient du matériau brut... Transport : minimiser distance totale parcourue selon quantités de matériaux à transporter, capacité des transporteurs, points de ravitaillement en carburant... grande importance dans le milieu industriel : production, transport, emploi du temps, finance... N. Brauner 31

32 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Face à un problème pratique de décision Aspects mathématiques contraintes, objectifs, simplifications Modélisation graphes, programmation linéaire, PPC... Analyse des modèles et résolution étude de complexité : que peut-on espérer pour le temps de résolution imparti? mise au point d algorithmes Implémentation et analyse des résultats valider par rapport à la demande itérer avec le demandeur si nécessaire Déploiement des solutions Intégration logicielle N. Brauner 32

33 La Recherche Opérationnelle Applications Outils La RO en France Références Plan 1 La Recherche Opérationnelle 2 Applications 3 Outils 4 La RO en France 5 Références N. Brauner 33

34 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Programmation linéaire min le coût / max le profit min / max c 1 x 1 + c 2 x 2... c n x n satisfaire la demande a 1 x 1 + a 2 x 2... a n x n b 1 avec des ressources limitées a 1 x 1 + a 2 x 2... a nx n b 1 quantités produites x 1, x 2... x n 0 N. Brauner 34

35 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Optimisation Combinatoire Trouver la meilleure solution parmi un nombre fini mais très grand de choix Un problème d OC se caractérise par : La présence de choix, à faire parmi un ensemble fini d alternatives Une notion de coût, ou de gain, ou de perte La nécessité de faire globalement les bons choix, de manière à optimiser la valeur objectif exemples : emplois du temps... Combinatoire échiquier tronqué N. Brauner 35

36 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Graphes a 5 sommet b arête Valuation des arêtes = coûts, temps, distance, capacités... meilleur chemin de i à j meilleurs parcours passant par chaque ville passant par chaque arête... Représentation de réseaux, de précédences en ordonnancement, de compatibilité de produits... N. Brauner 36

37 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle Autre outils Files d attente Stochastique Simulation À l interface de Informatique : algorithmique Mathématiques : modélisation Économie : gestion, stratégie dessin de Lionel Lagarde N. Brauner 37

38 La Recherche Opérationnelle Applications Outils La RO en France Références Plan 1 La Recherche Opérationnelle 2 Applications 3 Outils 4 La RO en France 5 Références N. Brauner 38

39 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle : entreprises en France Grands groupes avec un pôle R&D en RO Airfrance La SNCF EDF France Telecom Bouygues GDF Suez La poste Renault Air Liquide SFR Google N. Brauner 39

40 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle : entreprises en France Pour les autres entreprises Sociétés de conseil spécialisées Logiciels sur étagère Laboratoires académiques N. Brauner 40

41 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle : entreprises en France Sociétés de conseil accompagnent les industriels pour mettre en place des systèmes d aide à la décision EURODECISION Conseil en optimisation des ressources et planification de la production, outils d aide à la décision ARTELYS Solutions en optimisation... N. Brauner 41

42 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle : entreprises en France Éditeurs de logiciels librairies dédiées à des problèmes mathématiques ILOG (IBM) Optimization tools and engines, Visualization software components, Supply chain applications COSYTEC offrir des solutions logicielles, à base de technologie de programmation par contraintes, pour résoudre des problèmes d optimisation des ressources FICO et ARTELYS Fico XPress : logiciels de modélisation de problèmes linéaires ou quadratiques avec variables réelles ou entières Knitro : optimiseur non linéaire Artelys Kalis : Programmation par contraintes... N. Brauner 42

43 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle : entreprises en France Éditeurs de logiciels librairies dédiées à des problèmes métiers ALMA : Placement et découpe ex : petit bateau (habits), chantiers navals AMADEUS : Voyage plateforme de réservation centralisée pour l industrie du voyage et outils de gestion des compagnies aériennes Optilogistics : transport et logistique progiciels d optimisation de tournées et de planification du transport Ordecsys, Oracle... N. Brauner 43

44 La Recherche Ope rationnelle Applications Outils La RO en France Re fe rences Recherche Ope rationnelle : entreprises en France Alma : De coupe N. Brauner 44

45 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle : en France Et dans le monde académique enquête 2010 de la Roadef 75 équipes ou laboratoires 1400 membres 700 chercheurs, enseignants chercheurs, ingénieurs de recherche permanents 500 doctorants N. Brauner 45

46 La Recherche Ope rationnelle Applications Outils La RO en France Re fe rences Recherche Ope rationnelle : pour en savoir plus Le Livre Blanc de la Recherche Ope rationnelle en France Comment les industriels s organisent D incontestables re ussites Socie te s de conseil et e diteurs de logiciels N. Brauner 46

47 La Recherche Opérationnelle Applications Outils La RO en France Références Plan 1 La Recherche Opérationnelle 2 Applications 3 Outils 4 La RO en France 5 Références N. Brauner 47

48 La Recherche Opérationnelle Applications Outils La RO en France Références Bibliographie de Werra, D., Liebling, T.-M., and Hêche, J.-F. Recherche Opérationnelle pour Ingénieurs, Tome 1. Presses Polytechniques et Universitaires Romandes, Sakarovitch, M. Optimisation Combinatoire, Graphes et Programmation Linéaire. Hermann, Enseignement des sciences, Paris, Sakarovitch, M. Optimisation Combinatoire, Programmation Discrète. Hermann, Enseignement des sciences, Paris, Wolsey, L. A. Integer Programming. Wiley-Interscience, N. Brauner 48

49 La Recherche Opérationnelle Applications Outils La RO en France Références Webographie Cours Poly de cours Compléments au cours M2R de Recherche Opérationnelle, Combinatoire et Optim. Vie de la RO en France Société française de RO Groupe de Recherche en RO du CNRS Séminaire de recherche en optim. combinatoire à Grenoble N. Brauner 49

50 La Recherche Opérationnelle Applications Outils La RO en France Références Webographie Collection de ressources pour la RO Logiciels pour la RO Blogs sur la RO Des challenges industriels internationaux en RO N. Brauner 50

51 La Recherche Opérationnelle Applications Outils La RO en France Références Recherche Opérationnelle En conclusion faire le mieux coût min, meilleur profit, plus courte distance, le plus rapide... avec les ressources disponibles temps machine, postes de travail, mémoire, ressource homme, matière première, camions... Dessins de L. Lagarde N. Brauner 51

52 Programmation linéaire

53 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Plan 6 Introduction à la programmation linéaire 7 Interprétation géométrique 8 Bases et points extrêmes 9 L algorithme du simplexe N. Brauner 53

54 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Plan 6 Introduction à la programmation linéaire 7 Interprétation géométrique 8 Bases et points extrêmes 9 L algorithme du simplexe N. Brauner 54

55 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Cadre de la PL Programmation linéaire nombre fini de variables réelles, contraintes linéaires, objectif linéaire Variables x 1, x 2... x n réelles Contrainte générique (contrainte i) : n a ij x j b i j=1 Fonction-objectif générique (à maximiser / minimiser) : n f (x 1, x 2... x n ) = c j x j j=1 N. Brauner 55

56 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Exemple : culture de courgettes et navets Contraintes concernant les quantités d engrais et d anti-parasites 8l engrais A disponible 2l/m 2 nécessaires pour courgettes, 1l/m 2 pour navets 7l engrais B disponible 1l/m 2 nécessaires pour courgettes, 2l/m 2 pour navets 3l anti-parasites disponible 1l/m 2 nécessaires pour navets Objectif : produire le maximum (en poids) de légumes, sachant que rendements = 4kg/m 2 courgettes, 5kg/m 2 navets N. Brauner 56

57 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Exemple : culture de courgettes et navets Variables de décision x c : surface de courgettes x n : surface de navets Fonction objectif max 4x c + 5x n Contraintes 2x c + x n 8 (engrais A) x c + 2x n 7 (engrais B) x n 3 (anti-parasites) x c 0 et x n 0 N. Brauner 57

58 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Intérêt de la PL Problème général d optimisation sous contraintes AUCUNE méthode GÉNÉRALE de résolution!! Problème linéaire quelconque existence de méthodes de résolution générales et efficaces Ces méthodes sont efficaces en théorie et en pratique existence de nombreux logiciels de résolution : Excel, CPLEX, Mathematica, LP-Solve... Cadre restrictif variables réelles contraintes linéaires objectif linéaire N. Brauner 58

59 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Représentation in extenso max 4x c + 5x n 2x c + x n 8 (engrais A) x c + 2x n 7 (engrais B) x n 3 (anti-parasites) x c 0 et x n 0 Représentation matricielle ( ) xc max (4 5) ( xc x n x n ) x c 0 x n 0 N. Brauner 59

60 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Représentation in extenso max z = s.c. j c jx j j a ijx j = b i i = 1, 2... m x j 0 j = 1, 2... n N. Brauner 60

61 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire second membre b = b 1 b 2. b m matrice de format m n a 11 a a 1n a 21 a a 2n A =... a m1 a m2... a mn coût (ou profit) c = (c 1, c 2... c n ) n var. de décision X = Représentation matricielle max z = cx s.c. Ax = x 1 x 2. x n b x 0 N. Brauner 61

62 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Vocabulaire x i variable de décision du problème x = (x 1,..., x n ) solution réalisable (admissible) ssi elle satisfait toutes les contraintes ensemble des solutions réalisables = domaine ou région admissible x = (x 1,..., x n ) solution optimale ssi elle est réalisable et optimise la fonction-objectif contraintes inégalité ou égalité linéaire a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a 31 x 1 + a 32 x a 3n x n = b 3 fonction objectif (ou fonction économique) linéaire max / min c 1 x 1 + c 2 x c n x n N. Brauner 62

63 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Applications Feuille de TD : Programmation linéaire Exercice Production de vins Exercice Publicité Exercice Compagnie aérienne Exercice Fabrication d huile d olives Exercice Laiterie Exercice Bergamote N. Brauner 63

64 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Forme canonique d un PL maximisation toutes les variables sont non négatives toutes les contraintes sont des inéquations du type max z = j c jx j s.c. j a ijx j b i i = 1, 2... m forme matricielle x j 0 j = 1, 2... n max z = cx s.c. Ax b x 0 N. Brauner 64

65 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Forme standard d un PL maximisation toutes les variables sont non négatives toutes les contraintes sont des équations max z = j c jx j s.c. j a ijx j = b i i = 1, 2... m forme matricielle x j 0 j = 1, 2... n max z = cx s.c. Ax = b x 0 N. Brauner 65

66 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Passage entre les formes équation inéquation ax = b { ax b ax b max min max f (x) = min f (x) inéquation équation : ajouter une variable d écart ax b ax + s = b, s 0 ax b ax s = b, s 0 variable non contrainte variables positives x 0 { x = x + x x +, x 0 N. Brauner 66

67 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Passage entre les formes Feuille de TD : Programmation linéaire Exercice Formes linéaires et canoniques N. Brauner 67

68 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Linéariser un problème non linéaire e i : expression linéaire des variables de décision obj : min max{e 1, e 2... e n } { min y y e i i = 1, 2... n obj : max min{e 1, e 2... e n } { max y y e i i = 1, 2... n obj : min e 1 e = max(e, e) min y y e 1 y e 1 min e + + e e 1 = e + e e +, e 0 N. Brauner 68

69 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Linéariser un problème non linéaire Feuille de TD : Programmation linéaire Exercice Linéarisation N. Brauner 69

70 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Un peu d histoire années : Kantorovitch, économiste soviétique modèles linéaires pour la planification et l optimisation de la production années : Dantzig, mathématicien américain algorithme du simplexe application historique Opérations Vittles et Plainfare pour ravitaillement de la trizone pendant le blocus de Berlin par pont aérien (23 juin mai 1949) simplexe exécuté à la main (des milliers de variables), jusqu à tonnes de matériel par jour! 1975 : prix Nobel économie Kantorovitch XXIème siècle : logiciels de PL disponibles partout, utilisation de la PL dans tous les domaines industriels... N. Brauner 70

71 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Plan 6 Introduction à la programmation linéaire 7 Interprétation géométrique 8 Bases et points extrêmes 9 L algorithme du simplexe N. Brauner 71

72 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Interprétation géométrique Exemple : culture de courgettes et navets Variables de décision x c : surface de courgettes x n : surface de navets Fonction objectif max 4x c + 5x n Contraintes 2x c + x n 8 (engrais A) x c + 2x n 7 (engrais B) x n 3 (anti-parasites) x c 0 et x n 0 N. Brauner 72

73 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Interprétation géométrique Interpréter les contraintes courgettes et navets 2x + y 8 demi-plan de R 2 x + 2y 7 demi-plan y 3 demi-plan x 0 et y 0 demi-plans Ensemble des solutions réalisables = intersection de ces demi-plans : polyèdre y x N. Brauner 73

74 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Interprétation géométrique Optimiser l objectif Les lignes de niveau {4x + 5y = constante} sont des droites parallèles y 4x 5y=10 4x 5y=18 4x 5y=22 4x 5y=25 x N. Brauner 74

75 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Interprétation géométrique Géométrie d un PL L ensemble des solutions réalisables est toujours un polyèdre (intersection de demi-espaces) Les lignes de niveau {f = constante} de la fonction-objectif f sont des hyperplans affines (n = 2 droite, n = 3 plan...) N. Brauner 75

76 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Interprétation géométrique Géométrie d un PL Optimum atteint au bord L optimum de la fonction-objectif, s il existe, est atteint en (au moins) un sommet du polyèdre. Justification mathématique : les dérivées partielles de f (x) = c.x ne s annulent jamais, et le domaine {x n j=1 a ijx j b i, i = 1,..., m} est compact l optimum est atteint au bord... N. Brauner 76

77 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Programmation linéaire Solutions d un PL La région admissible peut être vide nb solutions optimales : 0 non vide, bornée nb solutions optimales : 1 ou non vide, non bornée nb solutions optimales : 0 ou 1 ou Proposer des exemples de PL pour chacun des cas Feuille de TD : Programmation linéaire Exercice Résolution graphique Exercice Toujours plus de bénéfices! N. Brauner 77

78 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Plan 6 Introduction à la programmation linéaire 7 Interprétation géométrique 8 Bases et points extrêmes 9 L algorithme du simplexe N. Brauner 85

79 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Rappels max z = cx s.c. Ax b x 0 Les contraintes définissent un polyèdre A matrice m n x = (x 1 x 2... x n ) b = (b 1 b 2... b m ) c = (c 1 c 2... c n ) La solution optimale est un sommet du polyèdre Comment énumérer les sommets d un polyèdre? N. Brauner 86

80 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Passage à la forme standard Forme standard On peut rajouter des variables d écart : n a ij x j b i j=1 n a ij x j + e i = b i, e i 0 j=1 PL standard : max z(x) = c.x s.c Ax = b x 0 On travaille dans un espace de dimension plus grande, mais toutes les contraintes sont des égalités. Manipulations algébriques plus aisées N. Brauner 87

81 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Passage à la forme standard max z = 4x + 5y s.c. 2x + y 8 x + 2y 7 y 3 x, y 0 y max z = 4x + 5y s.c. 2x + y + e 1 = 8 x + 2y + e 2 = 7 y + e 3 = 3 x, y, e 1, e 2, e points intéressants (intersection de contraintes) 5 points admissibles x énumération de ces 9 points comme solution de la forme standard (solutions de base) N. Brauner 88

82 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes s.c. 2x + y + e 1 = 8 x + 2y + e 2 = 7 y + e 3 = 3 x, y, e 1, e 2, e 3 0 x y e 1 e 2 e 3 sol de base admiss. pt extrême (0,0) (0,3) (4,0) (3,2) (1,3) {points extrêmes} {solutions de base admissibles} N. Brauner 89

83 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Système linéaire Ax=b A format m n, rang A = m n Base de A : sous-matrice B(m m) inversible de A A = (B, N) ( ) xb (B, N) = b ou Bx B + Nx N = b x N x B = B 1 b B 1 Nx N Solution de base associée à B : x N = 0 variables hors base x B = B 1 b variables de base N. Brauner 90

84 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Applications Feuille de TD : Programmation linéaire Exercice Bases *2 Exercice Solutions de bases et points extrêmes N. Brauner 91

85 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Base et solution de base 2x + y + e 1 = 8 x + 2y + e 2 = 7 y + e 3 = 3 x, y, e 1, e 2, e 3 0 Base initiale? {e 1, e 2, e 3 } par exemple : 2x + y + e 1 = 8 x + 2y + e 2 = 7 y + e 3 = 3 e 1 = 8 2x y e 2 = 7 x 2y e 3 = 3 y e 1, e 2, e 3 = variables de base, x, y = variables hors base N. Brauner 92

86 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Base et solution de base e 1 = 8 2x y e 2 = 7 x 2y e 3 = 3 y on met les variables hors base à 0 on en déduit les valeur des variables de base e 1 = 8 2x y = 8 x = y = 0 e 2 = 7 x 2y = 7 e 3 = 3 y = 3 N. Brauner 93

87 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Ax = b, x 0 (x B, 0) associée à B est une solution de base admissible si x B 0 {points extrêmes du polyèdre} {solutions de base admissibles du système linéaire correspondant} nombre de points extrêmes C m n = n! m!(n m)! solution de base dégénérée : certaines variables de base sont nulles si A est inversible : solution de base unique N. Brauner 94

88 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Base voisine et pivotage Bases voisines Deux sommets voisins correspondent à deux bases B et B telles qu on remplace une variable de B pour obtenir B passer à un sommet voisin = changer de base (base voisine) principe du pivotage N. Brauner 95

89 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Bases et points extrêmes Qui faire entrer dans la base? Essayons avec y : quelle est la valeur max que pourra avoir y? e 1 = 8 2x y 0 y 8 e 2 = 7 x 2y 0 y 3.5 e 3 = 3 y 0 y 3 Bilan : y max = 3, pour y = y max on a e 1 = 5 2x, e 2 = 1 x, et e 3 = 0 candidat pour une nouvelle base : {e 1, e 2, e 3 } {y} \ {e 3 } = {e 1, e 2, y} (x, y, e 1, e 2, e 3 ) = (0, 3, 5, 1, 0) N. Brauner 96

90 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe Plan 6 Introduction à la programmation linéaire 7 Interprétation géométrique 8 Bases et points extrêmes 9 L algorithme du simplexe N. Brauner 97

91 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Vers un algorithme de résolution Méthode de résolution naïve : énumérer tous les sommets, calculer f sur ces points, prendre le sommet pour lequel f est optimisé : fonctionne : nombre fini de sommets limitation : ce nombre peut être très grand en général... L algorithme du simplexe (G. B. Dantzig 1947) Algorithme itératif permettant de résoudre un problème de programmation linéaire. N. Brauner 98

92 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Principe d amélioration locale À partir d un sommet, chercher un sommet voisin qui améliore l objectif. Principe d amélioration locale (maximisation) : Soit x 0 sommet non optimum. Alors il existe x, un sommet voisin de x 0, tel que f (x) > f (x 0 ). Méthode de résolution : on part d un sommet x 0 quelconque, on passe à un sommet voisin pour lequel f augmente, et ainsi de suite. Remarque : on passe d un problème continu (variables réelles) à un problème discret (nombre fini de sommets)... N. Brauner 99

93 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Illustration 2D : courgettes et navets x 0 = (0, 0), z = 0 x = (0, 3), z = 15 x 0 = (0, 3), z = 15 x = (1, 3), z = 19 x 0 = (1, 3), z = 19 x = (3, 2), z = 22 y z = 4x + 5y x = 3,2, z =22 x plus d amélioration locale possible optimum N. Brauner 100

94 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Illustration concrète Standardisation : Maximiser z = 4x + 5y 2x + y 8 x + 2y 7 s.c. y 3 x, y 0 Maximiser z = 4x + 5y 2x + y + e 1 = 8 x + 2y + e s.c. 2 = 7 y + e 3 = 3 x, y, e 1, e 2, e 3 0 Base initiale? {e 1, e 2, e 3 } par exemple : 2x + y + e 1 = 8 x + 2y + e 2 = 7 y + e 3 = 3 e 1 = 8 2x y e 2 = 7 x 2y e 3 = 3 y e 1, e 2, e 3 = variables de base, x, y = variables hors base N. Brauner 101

95 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Solution de base associée on met les variables hors base à 0 on en déduit : valeur des variables de base valeur de z e 1 = 8 2x y = 8 ici : x = y = 0 e 2 = 7 x 2y = 7 e 3 = 3 y = 3 et z = 4x + 5y = 0 N. Brauner 102

96 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Changement de base Observation essentielle : z = 4x + 5y = 0 on peut augmenter z si x ou y rentre dans la base. Essayons avec y : quelle est la valeur max que pourra avoir y? e 1 = 8 2x y 0 y 8 e 2 = 7 x 2y 0 y 3.5 e 3 = 3 y 0 y 3 Bilan : y max = 3, pour y = y max on a e 1 = 5 x, e 2 = 1 x, et e 3 = 0 candidat pour une nouvelle base : {e 1, e 2, e 3 } {y} \ {e 3 } = {e 1, e 2, y} N. Brauner 103

97 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Nouvelle base {e 1, e 2, y} e 1 = 8 2x y e 2 = 7 x 2y e 3 = 3 y e 1 = 8 2x y = 5 2x + e 3 e 2 = 7 x 2y = 1 x + 2e 3 y = 3 e 3 Exprimons z en fonction des variables hors base z = 4x + 5y = x 5e 3 Solution de base associée e 1 = 5 2x + e 3 = 5 x = e 3 = 0 e 2 = 1 x + 2e 3 = 1 y = 3 e 3 = 3 et z = 15 N. Brauner 104

98 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Itération z = x 5e 3 peut encore augmenter si x entre dans la base Si x entre, qui sort? Valeur max de x : e 1 = 5 2x + e 3 0 x 2.5 e 2 = 1 x + 2e 3 0 x 1 y = 3 e 3 0 aucune contrainte sur x Bilan : x max = 1 et e 2 sort. Nouvelle base {e 1, y, x} e 1 = 3 + 2e 2 3e 3 x = 1 e 2 + 2e 3 y = 3 e 3 z = 19 4e 2 + 3e 3 N. Brauner 105

99 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Itération (suite) z = 19 4e 2 + 3e 3 peut encore augmenter si e 3 entre dans la base Si e 3 entre, qui sort? Valeur max de e 3 : e 1 = 3 + 2e 2 3e 3 0 e 3 1 x = 1 e 2 + 2e 3 0 aucune contrainte sur e 3 y = 3 e 3 0 e 3 3 Bilan : e 3max = 1, e 1 sort. Nouvelle base {e 3, y, x} : e 3 = 1 + 2/3e 2 1/3e 1 x = 3 + 1/3e 2 2/3e 1 y = 2 2/3e 2 + 1/3e 1 z = 22 2e 2 e 1 N. Brauner 106

100 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Terminaison On a z = 22 2e 2 e 1, donc z 22 Or la solution de base x = 3, y = 2, e 3 = 1 donne z = 22 optimum La condition de terminaison concerne les coefficients de z exprimée avec les variables hors base. N. Brauner 107

101 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe max z = 20x x 2 s.c. x 1 + 2x x 1 + x x 1 70 x 2 50 x 1, x 2 0 forme standard max z s.c. z 20x 1 10x 2 = 0 x 1 + 2x 2 + s 1 = 120 x 1 + x 2 + s 2 = 100 x 1 + s 3 = 70 x 2 + s 4 = 50 N. Brauner 108

102 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Forme standard max z s.c. z 20x 1 10x 2 = 0 x 1 + 2x 2 + s 1 = 120 x 1 + x 2 + s 2 = 100 x 1 + s 3 = 70 x 2 + s 4 = 50 Forme tableau z x 1 x 2 s 1 s 2 s 3 s 4 z s s s s N. Brauner 109

103 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Coûts réduits B, une base de Ax = b la fonction objectif : z = cx = c B x B + c N x N = c B B 1 b (c B B 1 N c N )x N n = z 0 (c B B 1 a j c j )x j = z 0 j=1 n (z j c j )x j j=1 z j c j = c B B 1 a j c j est le coût réduit de la variable hors base x j N. Brauner 110

104 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe à chaque itération z x N x B z 1 coûts réduits 0 z 0 0 x B.... Id + 0 à l optimum z x N x B z z0 0 x B.... Id + 0 N. Brauner 111

105 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Principe heuristique : faire rentrer en base la variable avec le coefficient le plus négatif x 1 z x 1 x 2 s 1 s 2 s 3 s 4 z s s s s Qui faire sortir? N. Brauner 112

106 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Principe du quotient minimal colonne pivot x 1 second membre 0 quotient a 1 0 b 1 - b a 2 > 0 b 2 2 a 2 b a 3 > 0 b 3 3 a 3 a 4 = 0 b 4 - { } ligne r = min bi a i a i > 0 faire sortir s 3 b r a r z x 1 x 2 s 1 s 2 s 3 s 4 z s s s s N. Brauner 113

107 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe exprimer la contrainte z avec les variables hors base x 2 et s 3 z 10x s 3 = 1400 diviser la ligne pivot par le coefficient de la variable entrante x 1 + s 3 = 70 supprimer x 1 des autres contraintes 2x 2 + s 1 s 3 = 50 c a.. ligne pivot p b colonne pivot x 2 + s 2 s 3 = 30 = a a b p c N. Brauner 114

108 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe z x 1 x 2 s 1 s 2 s 3 s 4 z s s x s x 1, s 1, s 2, s 4 en base et x 2, s 3 hors base sol de base (70, 0, 50, 30, 0, 50) de valeur 1400 Faire rentrer x 2 quotient min faire sortir s 1 N. Brauner 115

109 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe z x 1 x 2 s 1 s 2 s 3 s 4 z s s x s z x 1 x 2 s 1 s 2 s 3 s 4 z x s x s x 1, x 2, s 2, s 4 en base et s 1, s 3 hors base sol de base (70, 25, 0, 5, 0, 25) de valeur 1650 optimale car z = s 1 15s 3 et s 1 = s 3 = 0 N. Brauner 116

110 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Phase II Données : un programme linéaire et une solution de base admissible Résultat : une solution de base admissible optimale ou déclarer PL non borné 1 Choix d une colonne (variable) entrante choisir une variable hors base x j (colonne) ayant un coût réduit négatif s il n existe pas de colonne entrante : STOP, la solution de base est optimale 2 Choix d une ligne (variable) sortante Choisir une ligne r minimisant le quotient s il n existe pas de ligne sortante : STOP le tableau courant est non borné 3 Mise à jour de la base et du tableau pivoter autour de a rj et retourner en (1) N. Brauner 117

111 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Solution de base dégénérée si une ou plusieurs variables de base sont zéros (plus de bijection entre les solutions de base admissibles et les points extrêmes) Si toutes les solutions de base admissibles sont non dégénérées, l algorithme du simplexe termine après un nombre fini d itérations N. Brauner 118

112 Programmation linéaire Interprétation géométrique Bases et points extrêmes L algorithme du simplexe L algorithme du simplexe Phase I Feuille de TD : Programmation linéaire Exercice Phase 1 du simplexe N. Brauner 119

113 Dualité

114 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Plan 10 Illustration économique 11 Comment prouver l optimalité? 12 Écrire le dual 13 Propriétés N. Brauner 121

115 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Dualité Nouveau concept en Programmation Linéaire Primal données A, b, c minimiser Dual mêmes données A, b, c maximiser N. Brauner 122

116 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Plan 10 Illustration économique 11 Comment prouver l optimalité? 12 Écrire le dual 13 Propriétés N. Brauner 123

117 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Plan 10 Illustration économique 11 Comment prouver l optimalité? 12 Écrire le dual 13 Propriétés N. Brauner 124

118 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Problème primal (P) Une famille utilise 6 produits alimentaires comme source de vitamine A et C produits (unités/kg) demande (unités) vitamine A vitamine C Prix par kg But : minimiser le coût total Modélisation N. Brauner 125

119 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Problème dual (D) associé à (P) Un producteur de cachets de vitamine synthétique veut convaincre la famille d acheter ses vitamines. Quel prix de vente w A et w C? pour être compétitif et maximiser le profit Modélisation N. Brauner 127

120 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Modélisation matricielle Problème primal famille : acheter des produits alimentaires à coût minimum et satisfaire la demande en vitamine A et C Modélisation sous forme matricielle Problème dual producteur de vitamines synthétiques : être compétitif vis-à-vis des produits alimentaires comme source de vitamine et maximiser le profit de vente Modélisation sous forme matricielle N. Brauner 129

121 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Généralisation de l illustration économique ressource i demande j produit j a ij c j coût i b i Problème primal (demandeur de produit) : quelle quantité x i de ressource i acheter pour satisfaire la demande à coût minimum? min b i x i s.c. a ij x i c j j i i Problème dual (vendeur de produit) : à quel prix proposer les produits pour maximiser le profit tout en restant compétitif? max j c j w j s.c. a ij w j b i j i N. Brauner 131

122 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Plan 10 Illustration économique 11 Comment prouver l optimalité? 12 Écrire le dual 13 Propriétés N. Brauner 132

123 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Comment prouver l optimalité? Objectif : démontrer l optimalité d une solution max z = x 1 + x 2 4x 1 + 5x x 1 + x 2 6 x 2 2 x 1, x 2 0 Idée : trouver une combinaison valide des contraintes permettant de borner terme à terme la fonction objectif N. Brauner 133

124 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Comment prouver l optimalité? max z = x 1 + x 2 4x 1 + 5x 2 20 y 1 2x 1 + x 2 6 y 2 x 2 2 y 3 (4y 1 + 2y 2 )x 1 + (5y 1 + y 2 + y 3 )x 2 20y 1 + 6y 2 + 2y 3 y 1, y 2, y 3 0 Finalement, min 20y 1 + 6y 2 + 2y 3 (borne sup minimale) s.c. (borner terme à terme l objectif) 4y 1 + 2y 2 1 5y 1 + y 2 + y 3 1 y i 0 N. Brauner 136

125 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Plan 10 Illustration économique 11 Comment prouver l optimalité? 12 Écrire le dual 13 Propriétés N. Brauner 137

126 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Forme canonique de dualité Donnée A, b, c (P) min s.c. z = cx Ax b x 0 (D) max s.c. v = wb wa c w 0 N. Brauner 138

127 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Tableau des signes min primal dual max dual primal variable 0 contrainte variable 0 contrainte = variable 0 contrainte contrainte variable 0 contrainte = variable 0 contrainte variable 0 L écriture du Dual est automatique : les variables la fonction objectif les contraintes N. Brauner 141

128 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Écrire le dual Écrire le programme dual max z = 4x 1 + 5x 2 + 2x 3 2x 1 + 4x 2 = 3 2x 3 2 3x 1 + x 2 + x 3 2 x 2 + x 3 1 x 1 0 x 2 0 x 3 0 N. Brauner 142

129 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Plan 10 Illustration économique 11 Comment prouver l optimalité? 12 Écrire le dual 13 Propriétés N. Brauner 143

130 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Propriétés Propriété Le dual du dual est équivalent au primal vérifier sur un exemple max z = 2x 1 + 3x 2 + 4x 3 2x 1 + x 2 3 x 3 2 3x 1 + x 2 + x 3 2 x 2 1 x 1, x 2, x 3 0 N. Brauner 144

131 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Propriétés (P) min s.c. z = cx Ax b x 0 (D) max s.c. v = wb wa c w 0 Théorème de dualité faible Pour chaque paire de solutions admissibles x de (P) et w de (D) z = cx wb = v Conséquence : que se passe-t-il si l un est non borné? N. Brauner 146

132 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Et l optimalité? Certificat d optimalité Si z = cx = wb = v pour des solutions admissibles x de (P) et w et (D), alors x et w sont optimales Théorème de dualité forte Si (P) a des solutions et (D) a des solutions, alors cx = w b N. Brauner 147

133 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Propriété des écarts complémentaires Pour l exemple des vitamines écrire le primal avec les variables d écart (s i ) écrire le dual avec les variables d écart (t i ) trouver une solution du primal optimale trouver une solution du dual optimale écrire les paires de variables (s i, w i ) et (x j, t j ) que remarquez-vous? N. Brauner 148

134 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Propriété Propriété des écarts complémentaires Pour x optimale de (P) et w optimale de (D) alors une contrainte de (P) est serrée à égalité OU la variable associée à cette contrainte est nulle dans w idem dans l autre sens preuve x j t j = 0 et s i w i = 0 N. Brauner 150

135 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Propriété des écarts complémentaires Intérêt Si on connaît x optimal de (P), alors on peut trouver y en appliquant le théorème des écarts complémentaires (et ainsi prouver l optimalité de x ) essayer sur un exemple max z = x 1 + x 2 4x 1 + 5x x 1 + x 2 6 x 2 2 x 1, x 2 0 avec x 1 = 2 et x 2 = 2 N. Brauner 152

136 Illustration économique Comment prouver l optimalité? Écrire le dual Propriétés Petite philosophie de la dualité À quoi servent les trois théorèmes de dualité Dualité faible : pour faire la preuve d optimalité Écarts complémentaires : pour trouver une solution optimale du dual connaissant une solution optimale du primal Dualité forte : garantit qu une preuve d optimalité (utilisant la dualité) est possible N. Brauner 154

137 Excel et analyse post-optimale

138 Solveur d Excel Analyse post-optimale Découpe de rouleaux Plan 14 Solveur d Excel 15 Analyse post-optimale 16 Application : la découpe de rouleaux N. Brauner 156

139 Solveur d Excel Analyse post-optimale Découpe de rouleaux Plan 14 Solveur d Excel 15 Analyse post-optimale 16 Application : la découpe de rouleaux N. Brauner 157

140 Solveur d Excel Analyse post-optimale Découpe de rouleaux Utilisation du solveur d Excel Résoudre l exercice Vitamines avec le solveur d Excel Description des données N. Brauner 158

141 Solveur d Excel Analyse post-optimale Découpe de rouleaux Utilisation du solveur d Excel Formules N. Brauner 159

142 Solveur d Excel Analyse post-optimale Découpe de rouleaux Utilisation du solveur d Excel Paramétrage du solveur N. Brauner 160

143 Solveur d Excel Analyse post-optimale Découpe de rouleaux Utilisation du solveur d Excel Options du solveur N. Brauner 161

144 Solveur d Excel Analyse post-optimale Découpe de rouleaux Utilisation du solveur d Excel Résultat N. Brauner 162

145 Solveur d Excel Analyse post-optimale Découpe de rouleaux Utilisation du solveur d Excel Rapport de réponse N. Brauner 163

146 Solveur d Excel Analyse post-optimale Découpe de rouleaux Utilisation du solveur d Excel Rapport de sensibilité N. Brauner 164

147 Solveur d Excel Analyse post-optimale Découpe de rouleaux Plan 14 Solveur d Excel 15 Analyse post-optimale 16 Application : la découpe de rouleaux N. Brauner 165

148 Solveur d Excel Analyse post-optimale Découpe de rouleaux Analyse post-optimale On modifie légèrement les coefficients de l objectif ou des contraintes : doit-on refaire un simplexe? Variation des seconds membres Variation des coefficients de la fonction objectif Coûts réduits N. Brauner 166

149 Solveur d Excel Analyse post-optimale Découpe de rouleaux Analyse post-optimale Exemple : produire des confitures de rhubarbe et de fraise Un pot de rhubarbe nécessite 1kg de rhubarbe et 3kg de sucre et rapporte (marge) 3 euros Un pot de fraise nécessite 2kg de fraise et 2kg de sucre et rapporte (marge) 5 euros Les quantités disponibles sont 4kg de rhubarbe, 12kg de fraise et 18kg de sucre Modéliser le problème avec un programme linéaire Trouver la solution optimale graphiquement N. Brauner 167

150 Solveur d Excel Analyse post-optimale Découpe de rouleaux Analyse post-optimale Résoudre à l aide du solveur d Excel N. Brauner 168

151 Solveur d Excel Analyse post-optimale Découpe de rouleaux Variation des seconds membres Si on augmente la capacité disponible d une ressource, quel est l impact sur la valeur optimale de la fonction objectif? Le prix caché y i mesure l augmentation de la fonction objectif si l on accroît d une unité la capacité disponible b i. Augmenter la quantité de rhubarbe à 5 kg disponibles calculer le point optimal calculer l objectif calculer le prix caché N. Brauner 169

152 Solveur d Excel Analyse post-optimale Découpe de rouleaux Variation des seconds membres Augmenter la quantité de fraise à 13 kg disponibles calculer le point optimal calculer l objectif calculer le prix caché Augmenter la quantité de sucre à 19 kg disponibles calculer le point optimal calculer l objectif calculer le prix caché N. Brauner 170

153 Solveur d Excel Analyse post-optimale Découpe de rouleaux Variation des seconds membres : analyse de sensibilité Calcul des limites de validité des prix cachés Jusqu où peut-on monter (ou descendre) ces valeurs avec les mêmes coûts réduits? De combien peut-on diminuer la quantité de rhubarbe avec le même prix caché? Donner le domaine de validité du prix caché de la rhubarbe. Calculez les intervalles pour les fraises et le sucre. Pour les contraintes non serrées, quel est le prix caché? Ça vous rappelle quelque chose? N. Brauner 171

154 Solveur d Excel Analyse post-optimale Découpe de rouleaux Variation des coefficients objectifs Si on augmente le prix de vente unitaire ou si l on diminue le coût de production unitaire, quel est l impact sur la valeur de l objectif? La valeur de la j-ème variable à l optimum (x j ) mesure l augmentation de la fonction objectif si l on accroît d une unité la marge unitaire c j. Augmenter la marge du pot de rhubarbe à 4 euros calculer le point optimal calculer l objectif calculer l augmentation de l objectif N. Brauner 172

155 Solveur d Excel Analyse post-optimale Découpe de rouleaux Variation des coefficients objectifs : analyse de sensibilité Variation maximum de c 1 autour de 3 tel que le sommet optimal ne change pas. De combien peut-on diminuer c 1? De combien peut-on augmenter c 1? Idem pour c 2 N. Brauner 173

156 Solveur d Excel Analyse post-optimale Découpe de rouleaux L analyse de sensibilité dans Excel N. Brauner 174

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Rappels sur les tableaux et l algorithme du simplexe

Rappels sur les tableaux et l algorithme du simplexe Rappels sur les tableaux et l algorithme du simplexe À tout tableau est associée non seulement une base du problème initial (primal) mais également une base du problème dual. Les valeurs des variables

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07 Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1 Rapport de recherche LIMOS/RR-13-07 19 avril 2013 1. helene.toussaint@isima.fr Résumé Ce

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE INAUGURATION DE L INSTITUT HENRI FAYOL 17/05/2013 DE L OPTIMISATION MATHEMATIQUE

Plus en détail

OUTILS EN INFORMATIQUE

OUTILS EN INFORMATIQUE OUTILS EN INFORMATIQUE Brice Mayag brice.mayag@dauphine.fr LAMSADE, Université Paris-Dauphine R.O. Excel brice.mayag@dauphine.fr (LAMSADE) OUTILS EN INFORMATIQUE R.O. Excel 1 / 35 Plan Présentation générale

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE

LES ÉTAPES DE L ALGORITHME DU SIMPLEXE LES ÉTAPES DE L ALGORITHME DU SIMPLEXE Sommaire 1. Introduction... 1 2. Variables d écart et d excédent... 2 3. Variables de base et variables hors base... 2 4. Solutions admissibles... 3 5. Résolution

Plus en détail

INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle. Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz)

INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle. Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz) INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz) Terminologie Recherche Opérationnelle Méthodes quantitatives de gestion Mathématiques

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1

Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1 Master 2 LT, MPM, MIR Pôle Lamartine - ULCO Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1 Durée de l épreuve : 2h00 Documents interdits. Calculatrice autorisée Exercice

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

www.almohandiss.com Recherche opérationnelle EXERCICES DE Serveur d'exercices 1/16

www.almohandiss.com Recherche opérationnelle EXERCICES DE Serveur d'exercices 1/16 EXERCICES DE RECHERCHE OPERATIONNELLE Serveur d'exercices 1/16 EXERCICE 1. Niveau : Gymnase (Lycée) Auteur : Vincent Isoz (isozv@hotmail.com Mots-clés : recherche opérationnelle Enoncé : Supposons qu'une

Plus en détail

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction

Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Recherche Opérationnelle 1A Programmation Linéaire Résolution d un Programme Linéaire Introduction Zoltán Szigeti Ensimag April 4, 2015 Z. Szigeti (Ensimag) RO 1A April 4, 2015 1 / 16 Forme Générale Définition

Plus en détail

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME OÙ EN EST-ON? Que faire face à un problème dur? AAC S.Tison Université Lille1 Master1 Informatique Quelques schémas d algorithmes Un peu de complexité de problèmes Un peu d algorithmique avancée ou Que

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Applications #2 Problème du voyageur de commerce (TSP)

Applications #2 Problème du voyageur de commerce (TSP) Applications #2 Problème du voyageur de commerce (TSP) MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Heuristiques pour le TSP 1/34 Plan 1. Introduction 2. Formulations MIP

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

Recherche Opérationnelle

Recherche Opérationnelle Chapitre 2 : Programmation linéaire (Introduction) Vendredi 06 Novembre 2015 Sommaire 1 Historique 2 3 4 5 Plan 1 Historique 2 3 4 5 La programmation linéaire est un cadre mathématique général permettant

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd

Cours de mathématiques fondamentales 1 année, DUT GEA. Mourad Abouzaïd Cours de mathématiques fondamentales 1 année, DUT GEA Mourad Abouzaïd 9 décembre 2008 2 Table des matières Introduction 7 0 Rappels d algèbre élémentaire 9 0.1 Calcul algébrique................................

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Fondements de l informatique: Examen Durée: 3h

Fondements de l informatique: Examen Durée: 3h École polytechnique X2013 INF412 Fondements de l informatique Fondements de l informatique: Examen Durée: 3h Sujet proposé par Olivier Bournez Version 3 (corrigé) L énoncé comporte 4 parties (sections),

Plus en détail

Ingénierie d aide à la décision

Ingénierie d aide à la décision Ingénierie d aide à la décision Maria Malek 1 er septembre 2009 1 Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2.

Plus en détail

TD 2 Exercice 1. Un bûcheron a 100 hectares de bois de feuillus. Couper un hectare de bois et laisser la zone se régénérer naturellement coûte 10 kf par hectares, et rapporte 50 kf. Alternativement, couper

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

Placement de centres logistiques

Placement de centres logistiques Master 1 - Spécialité Androide Année 2014/2015 Module RP Résolution de Problèmes Projet Placement de centres logistiques On considère dans ce projet la résolution du problème de placement de centres logistiques

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Programme «Responsable en logistique de Distribution» Titre de l ISLT inscrit au RNCP de niveau 2

Programme «Responsable en logistique de Distribution» Titre de l ISLT inscrit au RNCP de niveau 2 Programme «Responsable en logistique de Distribution» Titre de l ISLT inscrit au RNCP de niveau 2 INSTITUT NEMO 36-38 AVENUE PIERRE BROSSOLETTE 92240 MALAKOFF 1 Public visé Tout public, titulaire d un

Plus en détail

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines ROADEF 09, 10-12 février 2009, Nancy (France) O. Guyon 1.2, P. Lemaire 2, É. Pinson 1 et D. Rivreau 1 1 LISA - Institut

Plus en détail

LA R.O. à MONTRÉAL. Succès en planification Nouveaux défis en temps réel. François Soumis GERAD

LA R.O. à MONTRÉAL. Succès en planification Nouveaux défis en temps réel. François Soumis GERAD LA R.O. à MONTRÉAL Succès en planification Nouveaux défis en temps réel François Soumis GERAD 1 SUCCÈS EN PLANIFICATION Trois entreprises issues de l université INRO AD OPT GIRO Les problèmes, la science,

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Recherche opérationnelle

Recherche opérationnelle Recherche opérationnelle Master 2 LT, MPM, MIR Université du Littoral - Côte d Opale, Pôle Lamartine Laurent SMOCH (smoch@lmpa.univ-littoral.fr) Septembre 20 Laboratoire de Mathématiques Pures et Appliquées

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

DÉCOUVREZ LES NOBELS : LE PRIX NOBEL D ÉCONOMIE 2012

DÉCOUVREZ LES NOBELS : LE PRIX NOBEL D ÉCONOMIE 2012 DÉCOUVREZ LES NOBELS : LE PRIX NOBEL D ÉCONOMIE 2012 Demandred 09 novembre 2015 Table des matières 1 Introduction 5 2 Un marché de la rencontre efficace 7 2.1 L algorithme de Gale-Shapley :...........................

Plus en détail

Optimisation dans les réseaux multimodaux

Optimisation dans les réseaux multimodaux Optimisation dans les réseaux multimodaux Mots-clés : optimisation combinatoire, théorie des graphes, programmation mathématique, programmation par contraintes. Dans le cadre de son développement, la société

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Calcul Scientifique L2 Maths Notes de Cours

Calcul Scientifique L2 Maths Notes de Cours Calcul Scientifique L2 Maths Notes de Cours Le but de ce cours est d aborder le Calcul Scientifique, discipline arrivant en bout d une d une chaîne regroupant divers concepts tels que la modélisation et

Plus en détail

Cahier de textes Mathématiques

Cahier de textes Mathématiques Cahier de textes Mathématiques Mercredi 6 janvier : cours 2h Début du chapitre 12 - Convergence de suites réelles : 12.1 Convergence de suites : suites convergentes, limites de suites convergentes, unicité

Plus en détail

Optimisation. Mathias Kleiner mathias.kleiner@ensam.eu http://www.lsis.org/kleinerm. Septembre 2013. Méthodes et outils d'optimisation.

Optimisation. Mathias Kleiner mathias.kleiner@ensam.eu http://www.lsis.org/kleinerm. Septembre 2013. Méthodes et outils d'optimisation. Mathias Kleiner mathias.kleiner@ensam.eu http://www.lsis.org/kleinerm Biblio Septembre 2013 http://creativecommons.org/licenses/by-sa/3.0/ Plan du cours Biblio 1 2 3 4 5 Meta-heuristiques 6 7 Biblio Plan

Plus en détail

Quelques problèmes NP-complets

Quelques problèmes NP-complets Chapitre 12 Quelques problèmes NP-complets Maintenant que nous connaissons la NP-complétude d au moins un problème (SAT), nous allons montrer qu un très grand nombre de problèmes sont NP-complets. Le livre

Plus en détail

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE Annexe MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE L enseignement des mathématiques au collège et au lycée a pour but de donner à chaque

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Recherche opérationnelle dans le secteur de la construction (4/5)

Recherche opérationnelle dans le secteur de la construction (4/5) Recherche opérationnelle dans le secteur de la construction (4/5) Antoine Jeanjean Ingénieur de recherche Ecole des Mines de Nantes Amphi Georges Besse 14h30-16h30 Plan de la présentation Le Groupe Bouygues

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Excel Outils avancés [sv]

Excel Outils avancés [sv] Excel Outils avancés [sv] K. Zampieri, Version 14 octobre 2013 Table des matières 1 Le Solveur / sv00mcours1 3 1.1 Installation du Solveur............................ 3 1.2 Exemple : Utilisation du Solveur.......................

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments A- 0/0 Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

: 3 si x 2 [0; ] 0 sinon

: 3 si x 2 [0; ] 0 sinon Oral HEC 2007 Question de cours : Dé nition d un estimateur ; dé nitions du biais et du risque quadratique d un estimateur. On considère n (n > 2) variables aléatoires réelles indépendantes X 1,..., X

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations Optimisation numérique Introduction et exemples Daniele Di Pietro A.A. 2012-2013 Outline 1 Dénitions et notations 2 Applications Exemples en recherche opérationnelle Exemples en algèbre linéaire Exemples

Plus en détail

Collecte des nœuds de raccordement abonnés chez Bouygues Telecom

Collecte des nœuds de raccordement abonnés chez Bouygues Telecom Collecte des nœuds de raccordement abonnés chez Bouygues Telecom Julien Darlay jdarlay@innovation24.fr Innovation 24 Groupe Bouygues 1 20 Innovation 24 Filiale Optimisation & Aide à la Décision du Groupe

Plus en détail

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B :

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B : SEMESTRE S Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Discipline B : 0 0 Biologie Biologie Chimie Chimie Géologie Géologie Informatique Informatique Physique

Plus en détail

2B La résolution de modèles linéaires par Excel 2010

2B La résolution de modèles linéaires par Excel 2010 2B La résolution de modèles linéaires par Excel 2010 Nous reprenons ici, de façon plus détaillée, la section où est indiqué comment utiliser le solveur d'excel 2010 pour résoudre un modèle linéaire (voir

Plus en détail

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES 1ES DS commun du jeudi 5 mai 011. MATHEMATIQUES NOM. Exercice 1 (8 points/40) Cet exercice est un QCM. Pour chaque question une seule réponse est exacte. On demande d entourer la bonne réponse et aucune

Plus en détail

Solutions optimales multiples. 3D.1 Unicité de la solution optimale du modèle (FRB)

Solutions optimales multiples. 3D.1 Unicité de la solution optimale du modèle (FRB) 3D Solutions optimales multiples 3D.1 Unicité de la solution optimale du modèle (FRB) Le modèle (FRB) admet une solution optimale unique. En effet (voir page 182), l'algorithme du simplexe se termine par

Plus en détail

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.

Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery. Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: Nicolas.Thiery@u-psud.fr URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Quelques perspectives pour la programmation mathématique en commande robuste

Quelques perspectives pour la programmation mathématique en commande robuste Quelques perspectives pour la programmation mathématique en commande robuste P. Apkarian, D. Arzelier, D. Henrion, D. Peaucelle UPS - CERT - LAAS-CNRS Contexte de la commande robuste 2 Théorie de la complexité

Plus en détail

Premier Exemple. Premier Exemple - Slack variables. Optimiser? Un peu de maths préliminaires La géométrie des PL

Premier Exemple. Premier Exemple - Slack variables. Optimiser? Un peu de maths préliminaires La géométrie des PL 1 Intro, Optimisation, Problème Linéaire 2 1 Intro, Optimisation, Problème Linéaire Optimiser? Problème Linéaire Un peu de maths préliminaires La géométrie des PL 2 Laure Gonnord (Lyon1 / ENS Lyon) Optimisation

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs

I) Le temps des matrices. A- A propos des matrices. Quang-Thai NGO Ch 01. Difficulté ** Importance **** Objectifs Ch01 : Matrice Les matrices ont été introduites récemment au programme des lycées. Il s agit d outils puissants au service de la résolution de problèmes spécifiques à nos classes, en particulier les problèmes

Plus en détail

Deuxième partie II ALGORITHMES DANS LES GRAPHES

Deuxième partie II ALGORITHMES DANS LES GRAPHES Deuxième partie II ALGORITHMES DANS LES GRAPHES Représentation des graphes Représentation en mémoire : matrice d incidence / Matrice d incidence Soit G = (, E) graphe simple non orienté avec n = et m =

Plus en détail

Planifica(on du stockage intermédiaire dans l industrie du shampoing

Planifica(on du stockage intermédiaire dans l industrie du shampoing dans l industrie du shampoing R. Belaid, V. T kindt, C. Esswein, rabah.belaid@etu.univ-tours.fr Université François Rabelais Tours Laboratoire d Informatique 64 avenue Jean Portalis, 37200, Tours Journées

Plus en détail

Sujet 6: Dualité interpretations intuitives

Sujet 6: Dualité interpretations intuitives Sujet 6: Dualité interpretations intuitives MHT 423: Modélisation et optimisation Andrew J. Miller Dernière mise à jour: March 31, 2010 Dans ce sujet... 1 L analyse de sensibilité 2 1 L analyse de sensibilité

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Méthodes d optimisation séquentielles et parallèles

Méthodes d optimisation séquentielles et parallèles Méthodes d optimisation séquentielles et parallèles Bertrand Le Cun Laboratoire PRiSM, Université de Versailles-Saint-Quentin 4 avril 2008 Opale (Laboratoire PRiSM, Université de Versailles-Saint-Quentin)

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Le calcul numérique : pourquoi et comment?

Le calcul numérique : pourquoi et comment? Le calcul numérique : pourquoi et comment? 16 juin 2009 Claude Gomez Directeur du consortium Scilab Plan Le calcul symbolique Le calcul numérique Le logiciel Scilab Scilab au lycée Le calcul symbolique

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

Fonctions affines. Table des matières

Fonctions affines. Table des matières Fonctions affines Table des matières 1 fonction linéaire, fonction constante, fonction affine 3 1.1 activités.............................................. 3 1.1.1 activité 1 : fonction linéaire et variation

Plus en détail

optimisation robuste de réseaux de télécommunications

optimisation robuste de réseaux de télécommunications optimisation robuste de réseaux de télécommunications Orange Labs Laboratoire Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne Olivier Klopfenstein thèse effectuée sous la direction de

Plus en détail