VI.1 Présentation de Machine Synchrone (MS)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "VI.1 Présentation de Machine Synchrone (MS)"

Transcription

1 Chapitre IV Modélisation et Simulation des Machines Synchrones 9 VI. Présentation de Machine Synchrone (MS) La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant alternatif. En fonctionnement MOTEUR sa fréquence de rotation est imposée par la fréquence du courant alternatif qui alimente l'induit. Au-delà de quelques kilowatts, les machines synchrones sont généralement des machines triphasées. Le rotor, souvent appelé «roue polaire», est alimenté par une source de courant continu ou équipé d'aimants permanents. IV.. Principe de fonctionnement de la MS Une génératrice synchrone transforme de l'énergie mécanique (C, Ω) en énergie électrique (V, I de fréquence f). Un aimant tourne à la fréquence N, la spire est traversée par un flux variable λ(t) d'où la création d'une f.é.m. induite e(t) = - (dλ/). La fréquence de cette f.é.m. est telle que : f = p N, soit Ω = p ω avec Ω vitesse de rotation du rotor (aimant), p le nombre de paire de pole et ω la pulsation de la f.é.m. sinusoïdale induite, en rad/s. IV.. Constitution de la MS La MS possède deux parties principales : - L'inducteur porté le plus souvent par le rotor - L'induit porté par le stator parcouru par des courants alternatifs IV... Inducteur de la MS Le champ magnétique est crée par un aimant permanent ou par un électroaimant alimenté par un courant continu (Ie), appelé courant d'excitation. Le rotor tourne à la vitesse Ω. Remarque : si Ie est constant, il crée un champ magnétique B, constant, tournant à la fréquence de synchronisme Ns = N. a) Rotor à pôles saillants C'est un électroaimant dont les pôles sont alternativement nord et sud. Les enroulements sont alimentés en courant continu, ils sont placés autour des noyaux polaires. Le nombre de pôles est toujours pair, il varie suivant la machine. Fig. IV. Rotor à pôles saillants

2 Chapitre IV Modélisation et Simulation des Machines Synchrones 30 b) Rotor à pôles lisses Le rotor est un cylindre plein dans lequel on a usiné des encoches. Il possède le plus souvent deux pôles. IV... Induit de la MS Fig. IV. Rotor à pôles lisses Il est au stator, bobines fixes, le plus souvent triphasé. Il est le siège de f.é.m. induites I Convention générateur T,n I e V P = V 3. U. I c o d é p h a s a g V e e tn P, Q Fig. IV.3 Induit de la MS IV..3 Bilan des puissances de la MS : IV..3. Puissance absorbée : En monophasé : Pa= U.I.cos(φ) En triphasé : Pa = 3.U.I.cos(φ) U : Tension entre deux bornes de phases. I : Intensité du courant de ligne. Cos(φ) : Facteur de puissance imposé par la machine. IV..3. Bilan des pertes : - La puissance utile : La MS fournie une puissance mécanique PM : PM=CM.Ω (IV.) - Les pertes collectives : Ce sont des pertes mécaniques (Pm), qui ne dépendent que de la fréquence de rotation et les pertes dans le fer (Pf), qui ne dépendent que de la fréquence et de la valeur maximale du flux. Ces pertes seront mesurées au cours d'un essai à vide dans lequel la machine tourne à la fréquence de rotation nominale, sous une tension égale à la tension qu'elle aurait en charge. En effet, l'égalité des tensions efficaces entraîne celle des flux.

3 Chapitre IV Modélisation et Simulation des Machines Synchrones 3 - Les pertes par effet Joule dans l'inducteur : Pje = Ue.Ie (IV.) Ue : Tension aux bornes de l'inducteur. Ie : Intensité du courant d'excitation. - Les pertes par effet Joule dans l'induit : - En monophasé Pj = R.I (IV.3) R : Résistance de l'enroulement induit. I : Intensité efficace du courant débité par l'induit. - En triphasé R : Résistance de l enroulement statorique. I : Intensité efficace du courant de l enroulement. Pj = 3 R.I (IV.4) - Rendement η P P u (IV.5) a UI UI 3cosφ P 3cosφ IV. Modélisation de la machine synchrone à aimant permanent (MSAP) m P je P j IV.. Structure générale de la MSAP La machine que nous allons étudier par la mise en équations correspond à la structure représentée par la figure (IV.4). C est une machine synchrone triphasée, équilibrée dans le rotor est muni d un système d aimants permanents, assurant une répartition d induction sinusoïdale dans l entrefer. Ce rotor ne comporte ni amortisseurs, ni pièces polaires. L absence de pièces polaires donne à la machine la structure d une machine à pôles lisses. Le stator comporte trois axes a, b, c identiques et décalées entres elles d un angle électrique de π/3. Fig. IV.4 Représentation d une machine synchrone bipolaire à aimants permanents

4 Chapitre IV Modélisation et Simulation des Machines Synchrones 3 IV.. Hypothèses simplificatrices Afin de simplifier l étude, la modélisation de la MSAP nécessite un certain nombre d hypothèses simplificatrices. Le circuit magnétique n est pas saturé, ce qui permet d avoir des relations linéaires entre les flux et les courants. Nous négligeons l hystérésis du circuit magnétique et les pertes par courants de Foucault. La variation des résistances en fonction de la température est négligeable. Nous admettons que les forces magnétomotrices sont à distribution spatiale sinusoïdale. IV..3 Mise en équations de la machine Le modèle mathématique du MSAP est similaire à celui de la machine synchrone classique en considérant les conditions simplificatrices citées précédemment. a) Équations électriques Les équations électriques du stator d une machine synchrone triphasée à aimants permanents en convention récepteur et en absence d enroulements amortisseurs s écrivent : Avec : R V a V b V c = R R R I a Ib Ic + d ) λ a λ b λ c (IV. 6) V abc = R I abc + d ) λ abc (IV. 7) : Résistance d un enroulement statorique. I abc : Les courants des phases statorique a, b, c. λ abc : Les flux produits par les phases statorique respectivement a, b, c. V abc : Les tentions des phases statoriques. En vertu de l hypothèse d une répartition spatiale sinusoïdale de l induction, les flux induits par les aimants dans les trois phases statoriques (a, b, c) sont donnés par : λ fa = λ max cos θ) λ fb = λ max cos θ π/3) λ fc = λ max cos θ + π/3) (IV. 8) Le flux produit dans chaque enroulement statorique est la somme de quatre termes. Comme exemple, pour la phase (a), le flux (λ a ) est la somme des termes : λ aa = L s i a : Flux propre de la phase (a) sur (a). λ ba = M s i b : Flux mutuel de la phase (b) sur (a). λ ca = M s i c : Flux mutuel de la phase (c) sur (a). λ fa : Flux mutuel de l aimant sur la phase (a). L expression du flux total dans la phase (a)est donnée par :

5 Chapitre IV Modélisation et Simulation des Machines Synchrones 33 λ a = λ aa + λ ba + λ ca + λ fa = L s i a + M s i b + i c ) + λ fa (IV. 9) Du fait que la machine est équilibrée a neutre isolé, on a (ia+ib+ic=0), d où l expression du flux dans la phase (a)se réduit alors à : Avec : λ a = L s M s ) i a + λ fa = L sc i a + λ fa (IV. 0) L sc = L s M s ) : L inductance cyclique d un enroulement statorique. L s : L inductance propre d une phase statorique. M s : Mutuelle inductance entres phases du stator. Par conséquent, les expressions des flux dans les autres phases se déduisent par : λ b = L sc i b + λ fb λ c = L sc i c + λ fc (IV. ) En remplaçant les expressions des flux dans le système des tensions. On obtient : V a = Ri a + L sc di a + dλ fa V b = Ri b + L sc di b + dλ fb V c = Ri c + L sc di c + dλ fc b) Modèle de la MSAP dans le repère de Park (IV. ) Pour supprimer la non linéarité des équations du modèle précédentes, nous utilisons la transformation de Park qui consiste à remplacer les enroulements des phases (a, b, c) par deux enroulements (d, q) dont les axes magnétiques sont solidaires au rotor et tournant avec lui avec une vitesse ω, comme le représente la figure IV.4). La transformation de Park est définie comme suit: X dqo = p θ) X abc (IV. 3) Où X représente la valeur courant, tension ou flux et θ représente la position du rotor. Les termes Xd, Xq représentent les composantes longitudinale et transversale des variables statoriques (tensions, courants, flux et inductances). La matrice de transformation p θ) est donnée par: p θ) = 3 dont la matrice inverse est la suivante: cos θ) cos θ + π/3) cos θ π/3) sin θ) sin θ + π/3) sin θ π/3) (IV. 4)

6 Chapitre IV Modélisation et Simulation des Machines Synchrones 34 p θ) = 3 cos θ) cos θ + π/3) cos θ π/3) sin θ) sin θ + π/3) sin θ π/3) (IV. 5) Le moteur est supposé avec une connexion étoile qui forme un système équilibré ia+ib+ic=0. Ainsi, la composante homopolaire désignée par la troisième ligne de la matrice (Xo) est nulle. c) Equations des tentions En appliquant la transformation (IV.4) au système (IV.7), on aura: p V dq = R p I dq + d p λ dq (IV. 6) En multipliant l Eq (III.) à gauche par p θ) : p p V dq = p R p I dq + p d p λ dq = p R p I dq + p p d λ dq + d p λ dq = p R p I dq + p p d λ dq + p d p λ dq (IV. 7) Finalement, On démontre que : V dq = R I dq + d λ dq + p d p λ dq IV. 8) p d p = dθ IV. 9) On obtient finalement le système des équations de Park qui constitue ainsi un modèle électrique dynamique pour l'enroulement diphasé équivalent : Au stator : v d = Ri d + dλ d λ dθ s q v q = Ri sq + dλ q + λ d dθ s IV. 0) d) Equations des flux D après les équations IV.8), (IV.3), (I.5), nous avons : λ dq = P θ s ) L P θ s ) I dq + λ f IV. ) D où, λ d = L d i d + λ f λ q = L q i q IV. )

7 Chapitre IV Modélisation et Simulation des Machines Synchrones 35 Ld, Lq : Inductances d`axes directe et en quadrature. La machine étant supposée à pôles lisses, ce qui signifie que : Ld = Lq. En tenant compte des équations du flux, on peut écrire : di v d = Ri d + λ d λ dθ s q v sq = R s i sq + dλ sq + λ d dθ s IV. 3) I Expression du couple électromagnétique La connaissance du couple électromagnétique de la machine est essentielle pour l étude de la machine et sa commande. Avec : L'équation du couple : C em = 3 p L d L q i d i q λ f i q (IV. 4) III..6 L équation de la mécanique L'équation du mouvement s écrit : J : moment d inertie du rotor ; f : coefficient de frottement visqueux ; Cr : couple résistant de la charge. p : Nombre de paires de pôles. J dω + fω = C e C r IV. 5) Travail pratique N 04. Modélisation et Simulation de la Machine Synchrone

Modélisation de la machine synchrone à aimants permanents (MSAP)

Modélisation de la machine synchrone à aimants permanents (MSAP) 1 Modélisation de la machine synchrone à aimants permanents (MSAP) 1. Introduction........ 4 2. Hypotheses simplificatrices...4 3. Modélisation de la machine synchrone à aimants permanents...4 4. Conclusion....9

Plus en détail

M-S Cours - 1 MACHINE SYNCHRONE

M-S Cours - 1 MACHINE SYNCHRONE M-S Cours - 1 MACHINE SYNCHRONE - 1 - PRESENTATION : La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant alternatif. En fonctionnement MOTEUR sa fréquence de

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

III.1 Généralité sur la Machine Asynchrone

III.1 Généralité sur la Machine Asynchrone Chapitre III Modélisation et Simulation des Machines Asynchrones 21 III.1 Généralité sur la Machine Asynchrone III.1.1 Définition On appelle machine asynchrone (MAS), une machine électrique de vitesse

Plus en détail

V.1 Présentation de la Machine à Courant Continu (MCC)

V.1 Présentation de la Machine à Courant Continu (MCC) Chapitre V Modélisation et Simulation de la Machine à Courant Continu 36 V.1 Présentation de la Machine à Courant Continu (MCC) V.1 Généralités Les MCC de conception usuelle sont réalisées pour différentes

Plus en détail

Chapitre 7 : Moteur asynchrone

Chapitre 7 : Moteur asynchrone Chapitre 7 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit a) rotor à cage d écureuil b) rotor bobiné 3. Symboles 4. plaque signalétique

Plus en détail

LA MACHINE SYNCHRONE

LA MACHINE SYNCHRONE LA MACHNE YNCHRONE. GÉNÉRALTÉ UR LA MACHNE YNCHRONE. Puissance mécanique Alternateur ou génératrice synchrone Puissance électrique Moteur synchrone La machine synchrone est une machine réversible. Elle

Plus en détail

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI .L.Technique FOCTO CORTR : MACH YCHRO.CHAR. Alternateur La machine synchrone est un convertisseur réversible. lle peut fonctionner soit en génératrice soit en moteur. Lorsqu'elle fonctionne en génératrice,

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1. Présentation générale 1.1. Conversion d énergie La machine à courant continu est réversible, c'est-à-dire que la constitution d'une génératrice (G) est identique à celle du

Plus en détail

APPLICATIONS DIRECTES

APPLICATIONS DIRECTES PSI FEUILLE D EXERCICES DE SCIENCES PHYSIQUES N 23 11/02/2017 2016/2017 Thème: Conversion électro-magnéto-mécanique (1) APPLICATIONS DIRECTES 1. Electroaimant de levage On considère l électroaimant représenté

Plus en détail

Travaux Dirigés d électronique de puissance et d électrotechnique

Travaux Dirigés d électronique de puissance et d électrotechnique Travaux Dirigés d électronique de puissance et d électrotechnique Exercice 1: redresseur triphasé non commandé On étudie les montages suivants, alimentés par un système de tensions triphasé équilibré.

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 2 : MACHINE SYNCHRONE Exercice 1 Un alternateur triphasé, 1000 kva, 4600 V, connection étoile, possède une résistance par phase égale à 2 et une résistance synchrone égale à 20. En pleine

Plus en détail

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V RAPPEL CORS ELECTRO TELEEC. Notion de base Quantité d électricité La quantité d électricité correspond au nombre d électrons transportés par un courant électrique ou emmagasinés dans une source. La quantité

Plus en détail

QCM 1 de Physique (STI)

QCM 1 de Physique (STI) QCM 1 de Physique (STI) Question 1 Une bobine est parcourue par un courant de 1 A. Sans noyau ferromagnétique, l intensité de l induction magnétique est de 4 mt, avec le noyau ferromagnétique elle est

Plus en détail

Principes de la conversion d énergie

Principes de la conversion d énergie CHAPITRE 4 Principes de la conversion d énergie Gérard-André CAPOLIO Conversion d'énergie 1 Machines tournantes Construction de base Les principales parties d une machine tournante sont: Corps de la machine:

Plus en détail

CH5 : Les machines alternatives

CH5 : Les machines alternatives BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH5 : Les machines alternatives Objectifs : A l issue de la leçon, l étudiant doit : 5.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

Machines à courant continu

Machines à courant continu Plan du cours Constitution Principe de fonctionnement en génératrice Principe de fonctionnement en moteur La réaction d induit Etude des transferts de puissance 1 Constitution bobine inducteur Une machine

Plus en détail

Rappels: Les machines asynchrones

Rappels: Les machines asynchrones C hapitre I Rappels: Les machines asynchrones triphasés Contenu I. INTRODUCTION... 2 II. CONSTITUTION... 2 II.1. STATOR... 2 II.2. ROTOR... 3 II.2.1. Rotor à cage d'écureuil:... 3 II.2.2. Rotor bobiné

Plus en détail

Machine Synchrone. Alternateur synchrone

Machine Synchrone. Alternateur synchrone Machine ynchrone Alternateur synchrone Champ tournant Alternateur : principe de fonctionnement tructure du rotor (induit) tructure du stator (inducteur) Alternateur en charge «Champ tournant» Théorème

Plus en détail

Moteur asynchrone triphasé

Moteur asynchrone triphasé triphasé 1. Constitution et principe de fonctionnement 1.1. Stator = inducteur Il est constitué de trois enroulements (bobines) parcourus par des courants alternatifs triphasés et possède p paires de pôles.

Plus en détail

Energie mécanique fournie

Energie mécanique fournie L étude de l électromagnétisme a mis en évidence, le principe de fonctionnement des machines à courant continu: - fonctionnement en moteur, par déplacement d un conducteur parcouru par un courant et placé

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 8-9 Devoir n 6 CONVERSION DE PUISSANCE UTILISATION DE L ENERGIE EOLIENNE Un aéromoteur entraîne une génératrice électrique destinée à alimenter une installation électrique. Pour les aéromoteurs de

Plus en détail

CH3 : La machine à courant continu à aimant permanent

CH3 : La machine à courant continu à aimant permanent Enjeu : motorisation des systèmes BTS électrotechnique 2 ème année - Sciences physiques appliquées CH3 : La machine à courant continu à aimant permanent Problématique : Le principal intérêt des moteurs

Plus en détail

LE TRANSFORMATEUR MONOPHASE

LE TRANSFORMATEUR MONOPHASE LE TRANSFORMATEUR MONOPHASE I. INTRODUCTION. Fonction Un transformateur est une machine statique permettant, en alternatif, le changement de grandeurs (tension et intensité) sans changer leur fréquence.

Plus en détail

Les moteurs asynchrones

Les moteurs asynchrones Les moteurs asynchrones I)- GENERALITES Le moteur asynchrone représente 80% des moteurs utilisés industriellement, étant donné leur simplicité de construction et leur facilité de démarrage. D'autre part

Plus en détail

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES Sciences Appliquées, chap 7.2 MAGNÉTISME DANS LES MACHINES ÉLECTRIQUES 1 -Inducteur et induit...2 2 -Les pertes dans une machine électrique...2 3 -Le transformateur...3 4 -MCC et MCS...3 4.1 -Couple dans

Plus en détail

CONVERSION D ENERGIE

CONVERSION D ENERGIE CONVERSION D ENERGIE 1- Mise en situation Les principales sources d énergie mises en oeuvre industriellement sont l énergie électrique et l énergie mécanique. Disposant, en général, de l une ou de l autre

Plus en détail

8 Exercices corrigés sur l alternateur

8 Exercices corrigés sur l alternateur 8 Exercices corrigés sur l alternateur Exercice 1: Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une vitesse de rotation de 100 tr/min.

Plus en détail

I. Transformateurs monophasés 1 Rôle Les transformateurs sont utilisés pour adapter (élever ou abaisser) une tension aux besoins de l utilisation.

I. Transformateurs monophasés 1 Rôle Les transformateurs sont utilisés pour adapter (élever ou abaisser) une tension aux besoins de l utilisation. I. Transformateurs monophasés 1 Rôle Les transformateurs sont utilisés pour adapter (élever ou abaisser) une tension aux besoins de l utilisation. Tension d alimentation Adapter la tension Pertes Tension

Plus en détail

Chapitre 9. Conversion d énergie électromécanique. 9.1 Introduction. 9.2 Système à simple excitation

Chapitre 9. Conversion d énergie électromécanique. 9.1 Introduction. 9.2 Système à simple excitation Chapitre 9 Conversion d énergie électromécanique 9.1 Introduction La conversion d énergie électromécanique est une partie intégrale de la vie de tous les jours. Que ce soit les grandes centrales hydoélectriques

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de... et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine I- Généralités Le point commun des méthodes de production d électricité par éolienne, centrale hydraulique ou centrale nucléaire est la transformation (ou conversion) mécanique/électrique. Elle est présente

Plus en détail

Machine synchrone - fonctionnement en génératrice. I - Généralités Structure de la machine synchrone Objectifs poursuivis

Machine synchrone - fonctionnement en génératrice. I - Généralités Structure de la machine synchrone Objectifs poursuivis Machine synchrone - fonctionnement en génératrice I - Généralités La machine synchrone est une machine à champ tournant, elle est réversible comme la machine à courant continu ou la machine asynchrone,

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

MOTEUR A COURANT CONTINU SHUNT

MOTEUR A COURANT CONTINU SHUNT MOTEUR A COURANT CONTINU SHUNT 1 / Rôle Les moteurs à courant continu, jadis très répandus, sont actuellement utilisés pour des applications nécessitant un fort couple ou une régulation vitesse très fine.

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Licence : TDEE TD de machines synchrones Dr. BENDAOUD Exercice N 1 : Alternateur Un alternateur

Plus en détail

II.1 Généralités sur le Transformateur Monophasé

II.1 Généralités sur le Transformateur Monophasé Chapitre II Modélisation et Simulation des Transformateurs Electriques 15 II.1 Généralités sur le Transformateur Monophasé II.1.1 Rôle L'utilisation des transformateurs électriques ont pour rôle de changer

Plus en détail

MACHINE A COURANT CONTINU

MACHINE A COURANT CONTINU 1) Stator ( ou inducteur ) ACHINE A COURANT CONTINU a) Fonction : il crée un champ magnétique fixe ; il est souvent bipolaire, quelquefois tétrapolaire. On l appelle aussi inducteur. A) STRUCTURE b) Types

Plus en détail

Étude de la MACHINE A COURANT CONTINU

Étude de la MACHINE A COURANT CONTINU Étude de la MACHINE A COURANT CONTINU Plan de la présentation Introduction Constitution d une MCC Le Stator Le Collecteur Le Rotor Modèles et caractéristiques d une MCC Caractéristique Couple / Vitesse

Plus en détail

CH4 : La machine à courant continu

CH4 : La machine à courant continu BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH4 : La machine à courant continu Objectifs : A l issue de la leçon, l étudiant doit : 3.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1 PHYSIQUE II On se propose d examiner quelques principes de fonctionnement de deux types de moteurs électriques, à la fois sous les aspects électromagnétique et dynamique Les trois parties de ce problème

Plus en détail

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie I. PRESENTATION MACHINE A COURANT CONTINU Une machine à courant continu est un... d'énergie. Lorsque l'énergie... est transformée en énergie..., la machine fonctionne en... Lorsque l'énergie mécanique

Plus en détail

REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE

REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE Examen Final : EL41 P07. Durée : 2 heures. Documents : non autorisés sauf une feuille manuscrite de format A4. REPENDRE DIRECTEMENT SUR LA COPIE DE L ENONCE Nom : Prénom : Signature : Problème (10 points)

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE 1. Introduction Un système automatisé domestique ou industriel pouvant être relié au réseau électrique sera donc alimenté par l énergie électrique alternative fournie par EDF. Dans ce cas, l actionneur

Plus en détail

Les transformateurs monophasés

Les transformateurs monophasés monophasés Un transformateur électrique est une machine électrique qui permet de de modifier les valeurs de tension et d'intensité du courant délivrées par une source d'énergie électrique alternative,

Plus en détail

REPONDRE DIRECTEMENT SUR LA COPIE D EXAMEN

REPONDRE DIRECTEMENT SUR LA COPIE D EXAMEN Examen partiel Durée Documents : heures. : non autorisés sauf une feuille A4-manuscrite REONDRE DIRECTEMENT SUR LA COIE D EXAMEN NOM RENOM SIGNATURE EXERCICE 1 (5 points) : On relève avec l oscilloscope

Plus en détail

Champ tournant, création de couple électromagnétique

Champ tournant, création de couple électromagnétique Champ tournant, création de couple électromagnétique SIMON SELLEM simon.sellem@ens-cachan.fr Motivation Toute machine tournante classique comporte un stator et un rotor. Il est nécessaire d étudier la

Plus en détail

Le Moteur Asynchrone

Le Moteur Asynchrone Le Moteur Asynchrone Table des matières 1. Introduction...2 2. Principe de fonctionnement...2 2.1. principe du moteur synchrone...2 2.2. Principe du moteur asynchrone...2 2.3. Énonce du principe...3 2.4.

Plus en détail

Chapitre 5 : magnétisme et champs tournants

Chapitre 5 : magnétisme et champs tournants Chapitre 5 : magnétisme et champs tournants A Rappels sur le magnétisme I mise en évidence expérimentale de l induction électromagnétique II Application : alternateur III loi de Lenz IV flux magnétique

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

Circuits triphasés 1

Circuits triphasés 1 Circuits triphasés 1 Création d'un système de tensions triphasées N2 e3 e2 N1 Soit 3 bobines fixes de N spires (N1=N2=N3=N) (stator) et un aimant (rotor) entraîné àla vitesse ω. En canalisant le flux par

Plus en détail

Chapitre 2 Moteur Asynchrone triphasé

Chapitre 2 Moteur Asynchrone triphasé Chapitre 2 Moteur Asynchrone triphasé 1) création d'un champ tournant Considérons un ensemble de trois bobines coplanaires et dont les axes concourent en un même point O. Ces axes forment entre eux des

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD TD de Machines Asynchrones Exercice N 1 : Un moteur asynchrone tourne à 965 tr/min

Plus en détail

Électronique de puissance - Mécatronique

Électronique de puissance - Mécatronique Modélisation vectorielle en triphasé 3. Actionneurs : ISEN Modélisation vectorielle en triphasé Plan du cours 1 Modélisation vectorielle en triphasé Triphasé équilibré et champs tournants 2 Modélisation

Plus en détail

Chapitre 3 : Le transformateur

Chapitre 3 : Le transformateur I Présentation 1. Constitution 2. Symbole et convention Chapitre 3 : Le transformateur II Transformateur parfait en sinusoïdal 1. relation entre les tensions 2. formule de Boucherot 3. les intensités 4.

Plus en détail

Chapitre 7 : Machine à courant continu à excitation indépendante

Chapitre 7 : Machine à courant continu à excitation indépendante Chapitre 7 : Machine à courant continu à excitation indépendante I / présentation, constitution 1. rappels 2. définition 3. constitution II / fonctionnement en moteur 1. symbole 2. principe du moteur 3.

Plus en détail

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

COURS : LES MACHINES A COURANT CONTINU

COURS : LES MACHINES A COURANT CONTINU BTS ATI1 CONSTRUCTION ELECTRIQUE COURS : LES MACHINES A COURANT CONTINU Durée du cours : 2 heures Objectifs du cours : Acquérir les connaissances de base sur les actionneurs électriques. Capacités : Analyser

Plus en détail

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7 BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION 2001 Série : Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée: 4 heures Coefficient : 7 L'emploi de toutes les calculatrices

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Electrotechnique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND

Plus en détail

3. Puissance alternative et systèmes triphasés

3. Puissance alternative et systèmes triphasés Master 1 Mécatronique J Diouri. Puissance alternative et systèmes triphasés Doc. Electrabel Puissance en alternatif Puissance instantanée [ I cos( ω t) ][ U cos( ω + )] p( t) = ui = t ϕ c c Valeur moyenne

Plus en détail

Le Moteur àcourant continu

Le Moteur àcourant continu Le Moteur àcourant continu Principe du générateur continu E I = = BLV.. E R Principe du moteur continu F = BIL.. U I = U R E Machine àcourant continu Constitution Enroulements Circulation du courant Création

Plus en détail

LA MACHINE À COURANT CONTINU

LA MACHINE À COURANT CONTINU LA MACHINE À COURANT CONTINU Table des matières 1. Présentation... 2 1.1. Généralités... 2 1.2. Description... 3 1.2.1. Vue d'ensemble... 3 1.2.2. L'inducteur... 3 1.2.3. L'induit... 3 1.2.4. Collecteur

Plus en détail

1 ) Transformateur monophasé. 1.1) Définition

1 ) Transformateur monophasé. 1.1) Définition Chapitre B...Transformateur monophasé ) Transformateur monophasé.) Définition Un transformateur est un quadripôle formé de deux enroulements enlaçant un circuit magnétique commun. C est une machine statique

Plus en détail

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction MACHINES à INDUCTION Gérard-André CAPOLINO 1 Généralités La machine à induction est utilisée en moteur ou en générateur Toutefois, l utilisation en moteur est plus fréquente. C est le moteur le plus utilisé

Plus en détail

Chapitre I. GENERALITES SUR LES MACHINES ELECTRIQUES

Chapitre I. GENERALITES SUR LES MACHINES ELECTRIQUES Chapitre I. GENERALITES SUR LES MACHINES ELECTRIQUES I-1. Classification des machines électriques Les machines électriques peuvent être classées en 3 catégories : 1) Générateurs : qui transforment l énergie

Plus en détail

MOTEUR ASYNCHRONE TRIPHASE

MOTEUR ASYNCHRONE TRIPHASE I - Principe de fonctionnement Le moteur asynchrone est une machine qui transforme de l énergie ELECTRIQUE en énergie MECANIQUE. Le fonctionnement est basé sur la production d un CHAMP TOURNANT. I.1 PRINCIPE

Plus en détail

Questionnaire à choix multiple : Fonctionnement en actionneur des machines synchrones et asynchrones

Questionnaire à choix multiple : Fonctionnement en actionneur des machines synchrones et asynchrones Chapitre 5 : Fonctionnement en actionneur des machines synchrones et asynchrones Questionnaire à choix multiple : Fonctionnement en actionneur des machines synchrones et asynchrones Corrigé 1 Dans le cas

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE LE MOTEUR ASYNCHRONE I Principe de conversion de l énergie électrique en énergie mécanique : Phénomène physique : Un conducteur libre, fermant un circuit électrique, placé dans un champ magnétique, est

Plus en détail

Une machine à courant continu est un convertisseur d énergie réversible. Energie mécanique fournie

Une machine à courant continu est un convertisseur d énergie réversible. Energie mécanique fournie L étude de l électromagnétisme a mis en évidence, le principe de fonctionnement des machines à courant continu: - fonctionnement en moteur, par déplacement d un conducteur parcouru par un courant et placé

Plus en détail

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS - ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS LIAISON REFERENTIEL B.11 Les actionneurs Machine à courant continu avec balais. Thèmes : E1 - C122 Conversion électromécanique d énergie E4 C12 Comportement

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles

BACCALAURÉAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles BACCALAURÉAT TECHNOLOGIQUE Session 1999 PHYSIQUE APPLIQUÉE Série : Sciences et Technologies Industrielles Spécialité : Génie Électrotechnique Durée de l'épreuve : 4 heures coefficient : 7 L'usage de la

Plus en détail

BEP ET Leçon 22 Moteur à courant continu Page 1/10

BEP ET Leçon 22 Moteur à courant continu Page 1/10 BEP ET Leçon 22 Moteur à courant continu Page 1/10 1. FONCTIONNEMENT Stator : il est aussi appelé inducteur ou excitateur et c est lui qui crée le champ magnétique. Rotor : il est aussi appelé induit.

Plus en détail

MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU

MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU 1/8 Le Moteur électrique à courant continu MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU Présentation : Le système étudié est un opérateur de positionnement angulaire MAXPID constitué (voir annexe

Plus en détail

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz.

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice MAS01 : moteur asynchrone Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice

Plus en détail

Chapitre 3 : MACHINES SYNCHRONE ET ASYNCHRONE

Chapitre 3 : MACHINES SYNCHRONE ET ASYNCHRONE Chapitre 3 : MACHINES SYNCHRONE ET ASYNCHRONE 1.Principe et description. Les machines synchones et asynchrones fonctionnent avec des champs magnétiques tournants créés par le stator. Le circuit rotorique

Plus en détail

Circuit mobile dans un champ magnétique stationnaire

Circuit mobile dans un champ magnétique stationnaire Circuit mobile dans un champ magnétique stationnaire II. Conversion de puissance mécanique en puissance électrique 1. Retour sur les rails de Laplace ( générateur ) Les rails de Laplace vus dan des chapitres

Plus en détail

Chap. II : La machine asynchrone triphasée

Chap. II : La machine asynchrone triphasée Chap. II : La machine asynchrone triphasée I. Domaines d'utilisation du moteur asynchrone Le moteur asynchrone est le moteur électrique le plus utilisé dans l industrie. Il est peu coûteux, robuste, et

Plus en détail

ABE2808 POST-PETROLEUM Moteur Synchrone

ABE2808 POST-PETROLEUM Moteur Synchrone ABE2808 POST-PETROLEUM Moteur Synchrone Poste 1 Etude 2D axisymétrique à une bobine 22 May, 2015 Sommaire Contexte du Projet Présentation de la machine synchrone à aimants permanents Présentation du Poste

Plus en détail

CH24 : L alternateur synchrone

CH24 : L alternateur synchrone BTS électrotechnique 1 ère année - Sciences physiques appliquées CH24 : L alternateur synchrone Production d énergie électrique Problématique : Des essais ont été réalisés sur un alternateur synchrone

Plus en détail

Chap.1 Conversion de puissance : Machine à courant continu

Chap.1 Conversion de puissance : Machine à courant continu Chap.1 Conversion de puissance : Machine à courant continu 1. Principe de la conversion électromécanique de puissance 1.1. Porteurs de charge d un circuit mobile dans un champ magnétique : bilan de puissance

Plus en détail

LA MACHINE A COURANT CONTINU

LA MACHINE A COURANT CONTINU LA MACHINE A COURANT CONTINU I) Définition : Une machine à courant continu est une machine électrique tournante mettant en jeu des tensions et des courants continus. II) Principe de fonctionnement : Dans

Plus en détail

Laboratoire génie électrique 4Stech Résumé du cours : moteur asynchrone triphasé Page 1/5. f p

Laboratoire génie électrique 4Stech Résumé du cours : moteur asynchrone triphasé Page 1/5. f p Laboratoire génie électrique 4tech ésumé du cours : moteur asynchrone triphasé age /5 Moteur asynchrone triphasé à rotor en court circuit ymbole h h h Le stator étant alimenté par un système de tension

Plus en détail

LE TRANSFORMATEUR MONOPHASE

LE TRANSFORMATEUR MONOPHASE LE TRANSFORMATEUR MONOPHASE I) Généralité sur le transformateur : 1) Définition : Le transformateur a pour but de modifier les amplitudes des grandeurs électriques alternatives : il transforme des signaux

Plus en détail

Machines à courant continu

Machines à courant continu Machines à courant continu Une autre famille de machines électriques utilisent pour le stator un champ magnétique indépendant du temps (et non tournant comme les machines synchrones). Ce champ magnétique

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE DUFOUR GRACZYK Page 1/5 I- Réseau triphasé Il s agit d un réseau de 3 tensions alternatives de même fréquence déphasées dans le temps d un angle de 120 (2. /3 rad) Trois sources

Plus en détail

ABE2808 POST-PETROLEUM Moteur Synchrone

ABE2808 POST-PETROLEUM Moteur Synchrone ABE2808 POST-PETROLEUM Moteur Synchrone Poste 1b Etude d une configuration à circuit magnétique 22 May, 2015 Sommaire Présentation du Poste 1b Présentation du modèle 2D axisymétrique Simulations - Tensions

Plus en détail

COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT ETC SYMBOLE ACTION

COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT ETC SYMBOLE ACTION 1 PRÉSENTATION Beaucoup d'applications nécessitent un couple de démarrage élevé. Le Moteur à Courant Continu (MCC) possède une caractéristique couple/vitesse de pente importante, ce qui permet de vaincre

Plus en détail

Machines alternatives

Machines alternatives Machines alternatives Si on déplace un aimant, on crée un champ magnétique donc la direction change au cours du temps. Le déplacement de cet aimant au voisinage d une aiguille aimantée (de boussole par

Plus en détail

LA MACHINE ASYNCHRONE

LA MACHINE ASYNCHRONE Objectif terminal : A la fin de la séquence, l élève sera capable de : _ justifier le choix du convertisseur d énergie FONCTION CONVERTIR L ENERGIE LA MACHINE ASYNCHRONE Objectif intermédiaire : _ identifier

Plus en détail

Electrotechnique. Il sert à créer un champ magnétique (champ "inducteur") dans le rotor.

Electrotechnique. Il sert à créer un champ magnétique (champ inducteur) dans le rotor. Electrotechnique Chapitre 1 Machine à courant continu 1- Constitution La machine à courant continu est constituée de trois parties principales : - l'inducteur - l'induit - le dispositif collecteur / balais

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1 Présentation générale Tous les résultats présentés dans cette première partie du cours sont valables que la machine fonctionne en moteur ou en génératrice 11 Conversion d énergie

Plus en détail

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients.

Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. Chapitre 40 1 Chapitre 40. Machines synchrones triphasées. Constitution. Stator. Rotor. Fonctionnement en alternateur (génératrice). Avantages et inconvénients. 2 Chapitre 40 Les machines synchrones 3

Plus en détail

Série d exercices N 9

Série d exercices N 9 GENIE ELECTRIQUE Série d exercices N 9 Prof : Mr Raouafi Abdallah Essentielle de cours : «résumé» Vitesse de synchronisme n S en (tr/s) : n S =... «Moteur Asynchrone Triphasé» Niveau : 4 ème Sc.Technique

Plus en détail

1 Commande par onduleur d un moteur asynchrone triphasé

1 Commande par onduleur d un moteur asynchrone triphasé UNIVERSITÉ DE CAEN BASSE-NORMANDIE ANNÉE 2009/2010 U.F.R. de Sciences 23 Mars 2010 Master Professionnel AEII Electronique de puissance Terminal, durée 2h00 Document autorisé : une feuille A4 recto-verso

Plus en détail

Modélisation d'une machine à courant continu

Modélisation d'une machine à courant continu Modélisation d'une machine à courant continu Cadre du document Dans ce document, on s'intéresse uniquement au modèle d'une machine à courant continu et à son interaction électro-mécanique. Il ne s'agit

Plus en détail

ELECTRICITE (durée conseillée : 1h30) 8 points ETUDE D UN VISCOSIMETRE

ELECTRICITE (durée conseillée : 1h30) 8 points ETUDE D UN VISCOSIMETRE Repère SESSION DUREE : 4H Page : / Coefficient 4 ELECTRICITE (durée conseillée : h3) 8 points Cet exercice est constitué de quatre parties indépendantes. Les documents-réponses doivent impérativement (même

Plus en détail

MACHINES à COURANT CONTINU

MACHINES à COURANT CONTINU CHAPITRE 5 MACHINES à COURANT Gérard-André CAPOLINO 1 Construction de la machine Description Le principal avantage de la machine à courant continu est le contrôle simple du couple et de la vitesse Le stator

Plus en détail

Machine à courant continu

Machine à courant continu Sciences de l ngénieur PAGE 172 Machine à courant continu 1 - Magnétisme 1-1 aimant permanent Un aimant permanent est un corps qui a la propriété d'attirer le fer. On distingue Les aimants naturels tels

Plus en détail