LES VARIÉTÉS R1EMANNIENNES DONT LA COURBURE SATISFAIT CERTAINES CONDITIONS

Dimension: px
Commencer à balayer dès la page:

Download "LES VARIÉTÉS R1EMANNIENNES DONT LA COURBURE SATISFAIT CERTAINES CONDITIONS"

Transcription

1 LES VARIÉTÉS R1EMANNIENNES DONT LA COURBURE SATISFAIT CERTAINES CONDITIONS Par M. BERGER 1. Variétés riemanniennes Dans toute la suite V désigne une variété indéfiniment differentiable, de dimension d supérieure ou égale à deux. L'espace fibre de ses vecteurs est noté T(V) = Um ev T(V) m etp:t(v)-*v est la projection canonique. F (V) désigne l'anneau des fonctions réelles indéfiniment différentiables de V et %(V) le module sur F (V) constitué par les champs de vecteurs indéfiniment différentiables de V. Une structure riemannienne (s.r.) sur V est la donnée d'une forme bilinéaire symétrique <, > sur le module 3 (F) qui, si l'on désigne encore par <, > et par abus de langage la forme bilinéaire induite sur chaque T(V) m par <, >, vérifie la condition <#,#>>0 quel que soit xgt(v) m, x4=0. On en déduit une norme \\x\\ =«#,#>)*. On dit aussi que V est une variété riemannienne (v.r.). Une isométrie f:v-^w entre deux v.r. V, W est, par définition, un difféomorphisme / tel que \\(df) (x)\\ = \\x\\ quel que soit x T(V). 2. Exemples (A) Soit R d l'espace vectoriel canonique formé avec les d-uples de nombres réels, muni de sa structure euclidienne canonique v.w définie par (a 1,...,a d )'(b 1,...,bd)=a 1 b a d bd et muni de sa structure canonique de variété differentiable. La translation r m :n->(n m) identifie canoniquement T(R d ) m et R d. Ceci permet de définir sur R d une s.r. canonique en posant : (x,y}=r m (x)'r m (y) quels que soient x,y T(R d ) m. (B) Soit TFune v.r. et /: V->W une application indéfiniment differentiable d'une variété indéfiniment differentiable V dans W telle que, quel que soit m G F, la différentielle df\ m de f en m soit infective. Alors V hérite canoniquement de W une s.r. en posant a; = \\(df) (x)\\ pour tout x T(V). Deux cas particuliers sont importants : (a) f est un revêtement; on dira alors que f:v^w est un revêtement riemannien; / est localement une isométrie. (b) (V,f) est une sous-variété de la v.r. R d de (A). Le théorème de Nash [22] assure que cette situation extrinsèque n'est pas, en fait, plus particulière que la situation générale de la définition d'une v.r. au 1. Lorsque dim V = 2 et d = 3, on obtient la source historique de la notion de v.r. Lorsque V = S d = {a G R d+1 1 a = r} (r > 0), pour l'application identique / : S d ->R d+1, on obtient sur cette sphère une s.r. canonique, la seule que l'on considérera dans la suite, à l'exception de la fin du 6. (C) Soit G un groupe de Lie. Une s.r. sur G est dite invariante à gauche (resp. à droite) si toutes les translations à gauche X g (resp. à droite q g ) sont Proceedings

2 448 M. BBEGEE des isométries; une s.r. est dite biinvariante si elle est invariante et à droite et à gauche. On obtient sur G des s.r. invariantes à gauche en prenant sur T(G) e n'importe quelle structure euclidienne a*b et en posant (x,y)> = (dkg 1 ) (x) - (dkg 1 ) (y) quels que soient x,yet(g) g. Si G est de plus compact on obtiendra sur G une s.r. biinvariante en prenant la moyenne, à droite et pour la mesure de Haar de G, d'une s.r. invariante à gauche. Soit maintenant H un sous-groupe fermé du groupe de Lie compact G; une s.r. biinvariante sur G définit canoniquement une s.r. invariante par G sur l'espace homogène G\H (dite alors naturelle). On procède comme suit:soit p:g->gih la projection canonique, meg/h et g tel que p(g)=m. Soit T(G) g =Vg+Wg la décomposition orthogonale où V g est le sous-espace de T(G) g constitué par l'espace tangent à la fibre gh. La restriction dp: W g ->T(GjH) m est bijective et définit donc sur T(G/H) m une structure euclidienne. Comme la s.r. sur G est biinvariante, la structure euclidienne ainsi obtenue ne dépend pas du g choisi tel que p(g)=m et l'on obtient ainsi sur GjH une s.r. canonique à partir de la s.r. biinvariante choisie sur G, et invariante par les opérations à gauche de G sur G/H. Cas particuliers. Les espaces symétriques simplement connexes de rang un : SO(d + l)/so(d), P n (C)=SU(n + l)iu(n), P n (H)=Sp(n + l)/sp(n)x Sp(l), P 2 (Ca) = FJSnin [9]. Les s.r. ainsi obtenues sur l'un d'eux sont toutes proportionnelles; pour S0(d + l)/s0(d) elles coïncident avec celles S d de l'exemple (B) (b). Pour P (C), on obtient les métriques de Fubini-Study. 3. Notions classiques Désormais V est une v.r. donnée. Si A:[0,ï]-»F est une courbe de V, de vecteur tangent k'(t) en X(t), on définit sa longueur L(X) = Jo A'(J) " dt. On pose C(m,n) = {X\X(Q)=m et X(l)=n}. On a sur V une structure canonique d'espace métrique en posant : d(m,n) = inf^ec(m,n) L(X)\ la topologie correspondante coïncide avec la topologie initiale de la variété differentiable V. Pour étudier l'ensemble SG(m,rì) = {X C(m,rì)\L(X) z =d(m,rì)} on est naturellement conduit à introduire une opération D:dt(V)->{dt(V)-+dt(V)} qui, sielle est notée X-+{Y->D X Y}, satisfait les deux axiomes : J «Y,Z}) = <D X Y,Z)+<Y,D X Z) et D X Y-D Y X = [X, Y] quels que soient X,Y,ZE 3 (F). Il se trouve que D existe, est unique et de plus une loi de dérivation, c'est à dire que DeHom F oo (V) (3c(V); Hom Ä (3E(F); %(V))) et D x (fy) = X(f)'Y+f-D x Y quels que soient X,Y %(V) et fef (V). On dit que D est la loi de dérivation canonique de la v.r. V Le commutateur R(X, Y) = D x D Y D Y D x D lxt Yi se trouve être un tenseur de type (1,3) de V, appelé le tenseur de courbure de V. Il vérifie les identités classiques : (R(x,y)z,t)=-(R(x,y)t,z}=(R(z,t)x,yy, (1) R(x,y)z + R(y,z)x + R(z,x)y=0 (2) et son tenseur dérivé DR vérifie : (DR) (x, y; z) + (DR) (y, z; x) + (DR) ((z, x; y) = 0. (3) On pourra aimer remarquer que, si l'on prend un système de coordonnées { J sur un ouvert U de V et si l'on pose dl(dçi)=x i dt(u), la quantité <i?(x i,x ; )X Ä,X Ä > n'est autre que celle R ijkh de la littérature classique.

3 VARIÉTÉS RIEMANNIENNES 449 Etant donnée À C(m,n), on définit le transport parallèle le long de X comme l'application T* : T( V) m ->T( V) n obtenue en exigeant que, {x(t)} étant un champ de vecteurs le long de A tel que D^t) x(t)=0 quel que soit t, alors Ti(x(0))=x(l). D'après le premier axiome de définition de D, il est clair que rx est une isométrie d'espaces euclidiens. Une élément y de SC(m,n) devant nécessairement vérifier D y. (t) y, (t)=0 quel que soit t, une courbe y telle que D Y > i t ) y'(t)=q quel que soit t sera appelée une géodésique de V; à part les géodésiques triviales, on parametrise dorénavant toutes les géodésiques en sorte que y'( ) =1 qnel que soit t. Etant donné xet(v)m (i.e. xet(v) m et x4=0) il existe une géodésique et une seule y x telle que y x (0) =p(x) et yi(0)=#/ a;. Le théorème de Hopf-Rinow [20] assure que, si V est un espace topologique complet, alors y x (t) existe quel que soit x T(V)%, quel que soit mgfet quel que soit teêet que, de plus, quels que soient m,n V:SC(m,n)=%=0 (évidemment SC(m,n) peut avoir plus d'un élément). Dorénavant toutes les v.r. considérées seront COMPLèTES. 4. La courbure sectionnelle Pour découvrir si une v.r. V est isométrique ou non à R d, pensant à S d czr d+1, il est naturel de procéder ainsi:soit PczT(V) m un sous-espace vectoriel de dimension deux de T( V) m (on désignera par G( V) l'ensemble de tous ces P lorsque m parcourt V). Soit alors C(P;e) le petit cercle de V de direction P et de rayon e, c'est-à-dire C(P;e) = {y t (e)\x6t(v)î l ()P}. Il s'agit d'étudier l(p;e)=l(c(p;e)). Il faut donc calculer le vecteur tangent à C(P;e) au point y x (s). Il est facile de voir que si {x,y} est un repère orthonormé de P, ce vecteur tangent Y(x,y;e) est, après identifications convenables, la valeur Z(e) de la solution Z de l'équation différentielle dans T(V) m : ^ = TïHR{y' x (t), T t {Z(t))y' x {t)) (4) telle que Z(0) =0 et dzjdt\t^o=y et où r t désigne le transport parallèle le long de y x de y x (0) =m à y x (t). On obtient donc pour F(a;,y;e) l'approximation : \\Y(x,y;e)\\=s + ^-<R(x,y)x,yy + o(e 3 ). (5) Il se trouve, grâce aux identités (1) et (2) que (R(x,y)x,y} ne dépend que de P et non du repère orthonormé choisi dans P. Puisque, lorsque d=2, (R(x,y)x,y) n'est autre que la courbure totale de la surface V, il est naturel de définir la courbure sectionnelle de V pour P par c(x,y)=c(p) = (R(x,y)x,y} pour tout repère orthonormé {x, y} de P. On aura donc c(p) = 3 lim -. (2ne-l(P\ s))/s 3. On posera c(v) = {c(p)\peg(v)} et on l'appellera Y ensemble de courbure de V. La connaissance de la fonction réelle P->c(P) sur G( V) entraîne celle du tenseur de courbure lui-même. Exemples. (A) On a c(r?) = {0} (puisque 1(P;S)=27ü6 que R(X, F) =0 quels que soient X, Y). OU bien parce

4 450 M. BERGER (B) (a) Si f:v->w est un revêtement riemannien, alors c(v)=c(w) puisque / est localement une isométrie. (ô) On a c(sf ) = {l/r 2 } (longueur d'un petit cercle). On sait aussi que, quel soit A<0, il existe sur R d une s.r., notée û d (A) et dite hyperbolique, telle que c(a d (A)) = {A}. On posera aussi, en v.r. : a d (0) = R d et, si &>0:a d (&)=Sf IVÄ. (C) On montre que, pour toute s.r. naturelle sur G\H, on a c(g\h) >0. Plus précisément, si l'on identifie T(GjH) Pie) avec le W e de la décomposition orthogonale T(G) e =V e +W e et T(G) e avec l'algèbre de Lie de G, on peut définir le crochet dans T(G/H) p(e). On montre alors que c(x,y)=0 est équivalent à [x,y]=0. D'autre part, pour les espaces riemanniens symétriques de rang un listés à la fin du 2, autre que les sphères, on a : c(f) = [A/4,A](A>0). 5. La courbure de Ricci Il est aussi naturel de calculer le volume v(m;e) de la sphère de V de centre m et de rayon e, définie par S(m;s) = {y x (e) \x T(V)m} (on sait que, pour s assez petit, on a S(m;s) = {ne V\d(m,n) =e}). Si da est l'élément de volume de la sphère unité Sf' 1 de T(V) m, on aura v(m;e)= \ s <t-i v(x;e)da, où v(x;e) = \\Y(x,y x,6)a... A F^^^e)!! pour une base orthonormée de la forme {x,y x,...,y d _ x } de T(V) m. De (5) on obtient : Y(x, y x ; e) A... A Y(x, y d -\\ s) / Fd+1 d-l \ = (y x A... A y d^) (e*' 1-2 c(x, yù + o(e d+1 )J. Pour un x tel que a; =l, la quantité rc(x) = 2f=i c(x,y t ) n'est autre que la trace de la forme quadratique {y-> (R(x,y)x,y}}, trace qui est appelée la courbure de Ricci de V en x. On posera rc( V) = {rc(x) x G T( V) et a; =1}. En général, pour un m fixé, rc(x) dépend de x. Pour d = 2, on a rc(v) =c(v); pour d = 3, la connaissance de rc(v) entraîne celle de c(v), par exemple rc(v) = {A} entraîne c(f) = {A/2}. En général, s'il existe f F (V) telle que rc(#)=/(ra) # 2 quel que soit x V m, on déduit de (3) que / est nécessairement constante et donc que rc(v) = {A}. Exemples. Si c(v) = {A} alors rc(v) = {(d 1)A}; mais un exemple moins trivial est un espace homogène GjH du type de l'exemple (C) du 2 tel que de plus la représentation adjointe ad H de H dans T(GjH) p{e) soit irréductible : en effet cette représentation laisse invariante sur T(GIH) p(e ) deux formes quadratiques : et rc. Puisque est définie positive et ad H irréductible, ceci implique que rc et sont proportionnelles. 6. La courbure scalaire On peut maintenant achever le calcul de v(m; s). Si a d = j s d-i da, on aura : ryd+l J-î- 1 * v(m;s) = a d 's d ~ 1 L d -i^(a;) -da + o(e d+1 ).

5 VARIETES RIEMANNIENNES 451 Puisque rc(x) est une forme quadratique en xet( V) m, si sa trace est notée sc(m), on aura J s _1 x fc(x) da = (Ijd) sc(m). La fonction réelle se : V->R est appelée la courbure scalaire. Quelle que soit la base orthonormée {x t } de T(V) m, on aura sc(m)=^i^jc(x i,x j ). Et / x T flj ove 0 * 1 -^; s) sc(m) = lim e^o 6d ^. Exemple. Soit 6r le groupe de Lie simple, compact, simplement connexe, de dimension trois (donc G est difféomorphe à S s ). A l'aide des formules de Maurer-Cartan et des équations de structure, il est facile de construire sur G, quel que soit AGi?, une structure riemannienne 6r A invariante à gauche et telle que sc(g A ) = {A}. 7. Les problèmes considérés Nous nous proposons maintenant de donner ci-dessous un exposé de résultats connus sur les relations entre la topologie de V et des hypothèses sur l'un des ensembles c(v), rc(v), sc(v). Les résultats seront énoncés sans démonstration et nous nous restreindrons à trois types d'hypothèses : dans le 8 : la courbure est constante; dans le 9 : la courbure a un signe constant; dans le 10 : la courbure varie dans un certain domaine. Une remarque préliminaire est: soit V une v.r. telle que c(v), ou rc(v), ou sc(v) satisfasse une certaine condition. Si F->F est le revêtement riemannien universel de V, alors (d'après 2, exemple (B), (a)) : c(v), ou rc(v), ou sc(v) satisfait la même condition. Le problème étudié se coupe donc en deux : problème I : étudier une telle variété lorsqu'elle est simplement connexe; problème II : étudier le groupe fondamental d'une telle variété. Nous observerons cette coupure dans les 8 et 9. Rappelons qu'implicitement toutes les variétés considérées sont des VARIéTéS RIEMANNIENNES INDéFI NIMENT DIFFéRENTIABLES, CONNEXES ET COMPLèTES, de dimension supérieure ou égale à deux. 8. Les variétés à courbure constante Problème I THéORèME 1 [15]. Soit V simplement connexe telle que c(v) = {A}. Alors V est isométrique à û(a). Rappelons le fait classique : si d =2, il existe sur V compacte une s.r. telle que c(v) = {A} (pour un certain A). La généralisation est le : THéORèME 2 [30]. Soit V une v.r. compacte (d>3). Il existe sur_v une fonction partout strictement positive et A G R telle que la nouvelle s.r. V sur V définie par =/ vérifie sc(v) = {A}. (La démonstration est un résultat fin d'équation aux dérivées partielles, elliptique et non linéaire.)

6 452 M. BERGER Le Théorème 2 montre que la courbure scalaire a peu de signification topologique. En outre l'exemple du 6 montre que, pour d=3 (et peut être pour tout d>3) même le signe de la courbure scalaire n'a pas d'implication topologique (tandis que, pour d=2, la formule de Gauss-Bonnet relie ce signe à celui de la caractéristique d'euler-poincaré de V). Entre les deux théorèmes extrêmes 1 et 2, comment se comporte l'hypothèse rc(f) = {A}? Le 5 montre d'abord que cette question ne se pose que pour d>é. Est-ce qu'une telle hypothèse est forte on non? Peu de résultats sont connus. Remarquons d'abord que rc(v) = {A} a certainement des implications : THéORèME 3. Soit V compacte telle que d=4 et rc (F) = {A}. Alors la caractéristique d'euler-poincaré %(V) est positive ou nulle. (Ce résultat se déduit facilement de [11]). Notons aussi qu'on ne connaît pas d'exemples de v.r. compacte V telle que rc(v) = {A}, autres que les espaces homogènes riemanniens GjH avec ad H irréductible. Les deux théorèmes suivants semblent montrer que V compacte et rc(v) = {A} est une très forte restriction : THéORèME 4 [4, 6]. Soit V compacte orientable telle que d =4 et rc(v) = {A}. Si de plus : a) il existe A > 0 tel que c( V) c ]A/4, A] alors V est isométrique à û(a') (pour un certain A'); b) si c(v)>0 et si V est Jcahlêrienne, alors V est isométrique a P 2 (C) ou a S 2 *S 2. THéORèME 5 [5]. La structure riemannienne û(a) sur S d est isolée parmi les s.r. dont la courbure de Ricci est égale à la constante (d 1)A. (Ces deux théorèmes reposent essentiellement sur la formule (6.8) de [19].) Problème II Ce qui précède montre que le Problème II n'a guère de sens, actuellement, que lorsque le revêtement universel riemannien de V est un d(a). Le Théorème 1 montre alors que le problème considéré est purement algébrique. Cependant, dans le cas A<0, on ne sait rien de plus que les Théorèmes 11, 12, 13 du 9. Pour A =0, on a le : THéORèME 6 [8]. Soit V compacte telle que c( V) = {0}. Il existe un revêtement riemannien W de V tel que W soit un tore. Pour A>0, le Théorème 14 montre d'abord que seul le cas d'impair est à considérer. Lorsque d=3, le problème est complètement résolu par [25]. Pour d >5, surtout en fait lorsque d est de la forme 4Jc +1, le problème a été ramené dans [28] a un problème de pure arithmétique. Un résultat partiel mais complet est le : THéORèME 7 [29]. Soü V telle que c(f) = {A} (A>0) et homogène. Alors n x ( V) est, soit cyclique, soit polyhedral binaire. (Le point de départ est de remarquer que l'homogénéité implique que les isométries de û(a) qui réalisent n x ( V) sont des translations. On prouve alors le résultat algébrique conjecturé par Vincent.)

7 VARIÉTÉS RIEMANNIENNES Les variétés dont la courbure a un signe constant Problème I On a déjà vu au 8 qu'il n'a de sens que pour c(v) ou rc(v). On n'a de résultat en fait que pour c(v) (voir cependant Théorème 17). C'est un problème naturel de rechercher les variétés topologiques qui admettent des s.r. telles que c(v)>0, ou c(f)<0. Du côté négatif ou nul, le problème est complètement résolu par le : THéORèME 8 [14, 10]. Soit V simplement connexe telle que c(v) <0. Alors V difféomorphique à R d. (La démonstration repose essentiellement sur le théorème de Hopf- Rinow et le fait que, grâce à (4), l'application exponentielle exp m : T(V) m -+V (pour un m quelconque) a une différentielle partout bijective, et est alors un revêtement). Du côté positif ou nul, les exemples du 4 (C) montrent que le problème n'est pas aussi simple (excepté en dimension deux : voir 8). Même le cas c( V) >0 est difficile (exemples ( C) du 4). En fait on ne connaît actuellement aucune implication topologique de la condition c(f)>0. Quelques résultats partiels : THéORèME 9 [13]. Soit V hahlérienne compacte telle que c(v)>0. Alors deux sous-variétés analytiques complexes compactes, de dimension complémentaires, de V se rencontrent nécessairement. Si de plus d =4, ceci implique que V est homéomorphe à P 2 (C). (La démonstration de la première partie utilise un argument de minimum et la variation seconde; la deuxième partie est due à Andreotti.) THéORèME 10 [3]. Soit G\H un espace homogène riemannien naturel simplement connexe et tel que c(g\h)>0. A part deux exceptions (Vune pour d = l, Vautre pour d = l3), la structure variété sous-jacente de G/H est homéomorphe a Vune des : S d, P (d/2) (C), P (d/4) )(#), P 2 (Ca). (La démonstration consiste à utiliser ce qui a été dit dans l'exemple (C) du 4 pour se ramener à un problème d'algèbres de Lie.) Problème II THéORèME 11 [10]. Soit V telle que c(v)<0. Alors tout sous-groupe de n x ( V) est infini. (La méthode consiste à montrer que c(f)<0 entraîne qu'un compact de F a un barycentre unique; on utilise alors comme compact l'orbite d'un sous-groupe fini de n x (V).) THéORèME 12 [23]. Soit V compacte telle que c(f)<0. Alors n x (V) ne peut pas être abélien et tous ses sous-groupes abéliens sont cycliques. (La démonstration utilise l'existence d'une géodésique fermée dans une classe d'homotopie libre non nulle de V et le fait que c(v) <0 entraîne que tout quadrilatère de F a des angles dont la somme est strictement inférieure à 2Tï).

8 454 M. BERGER THéORèME 13 [18]. Soit V une variété riemannienne homogène telle que c(v)<0. Alors V est simplement connexe. (Utilise une géodésique fermée comme ci-dessus et un champ de Jacobi- Killing le long d'icelle : contradiction si c(v)<0.) On trouvera dans [12] des résultats fins sur les V telles que d=2, c( V) >0, V non compacte. On a un résultat définitif : THéORèME 14 [26]. Soit V compacte, orientable, de dimension paire et telle que c(f)>0. Alors V est simplement connexe. (On applique la variation seconde le long d'une plus courte géodésique fermée). Et des résultats partiels : THéORèME 15 [21]. Soit V compacte telle que rc(v) >0. Alors n x (V) est fini. (La variation seconde montre que rc(v)>ô>0 implique que V est de diamètre fini donc compacte. On applique ceci à V.) THéORèME 16 [11]. Soit V compacte telle que d=é. Alors, si c(v)>0 ou si c(v) <0,ona x(v) >0; et %(V) =0 implique c(v) = {0}. (S'obtient en choisissant un repère orthonormé tel que l'expression figurant sous le signe somme dans la formule généralisée de Gauss-Bonnet [1] ait une forme simple faisant intervenir la courbure sectionnelle.) THéORèME 17 [9]. Soit V kahlêrienne compacte telle que rc(f)>0. Alors il n'existe pas sur V de formes extérieures holomorphes fermées non triviales. (La méthode est celle des formes harmoniques : voir formule (3.4) de [19].) THéORèME 18 [17]. Soit V kahlêrienne compacte telle que rc(v)>0. Alors V est simplement connexe. (On utilise simultanément : le Théorème 15, le fait que V est algébrique d'après le théorème de plongement de Kodaira et les genres arithmétiques de V et f). 10. Les variétés fe-pincées On introduit une notion plus forte que c(v) >0. Une v.r. est dite k-pincée s'il existe A>0 et k tels que c(f)c= [&A,A]. (Seul le Problème I a été considéré. Pour k = \ les résultats sont satisfaisant (seule la question du difféomorphisme restant ouverte)). THéORèME 19 [24, 16]. Soit V simplement connexe et k-pincée. Si alors V est homéomorphe à S d. (La démonstration repose essentiellement sur deux résultats : celui de [16] sur le cut-locus et celui de [27] qui est essentiellement une inégalité trigonométrique). THéORèME 20 [2]. Soit V simplement connexe, non homéomorphe à S d et (D-pincêe. Alors V est isométrique a l'un des : P< d,2) (C), I* m) (H), P 2 (Ca). k>\,

9 VARIÉTÉS RIEMANNIENNES 455 (Raffinant la démonstration du Théorème 19, on montre que la courbure sectionnelle à travers une géodésique quelconque est invariante par transport parallèle le long d'elle; d'après [10], ceci implique que V est une v.r. symétrique). Bien que son existence théorique soit probable, on ne connaît pas actuellement un s (0<e<(D) tel que l'hypothèse «V est simplement connexe et ifc-pineée avec k>(l)-e» entraîne «Fest homéomorphe à l'une des : S d, P idl2) (C), P (dlé) (H), P 2 (Ca)» (on remarquera les deux exceptions du Théorème 10). On a un résultat partiel : THéORèME 21 [2]. Soit V compacte telle que d=2n-\-l (n>2) et k-pincée. Alors si k=2(n l)l(8n 5), le deuxième nombre de Betti réel de F est nul. (La méthode utilise la formule (3.4) de [19]). En particulier si d=5 et Jfc=2/ll, alors F aura la cohomologie réelle de S 5. Un seul résultat (très faible comme le montrent la substitution k = J et le Théorème 20) est connu reliant l'hypothèse ^-pincée et la topologie de F: THéORèME 22 [7]. Soit V compacte, k-pincée avec k>0 et telle que d=2n. Alors : \%(V)\ <2- n -(2n)\-k- n. (La méthode utilise la formule généralisée de Gauss-Bonnet [1] et les majorations pour le tenseur de courbure de [2].) BIBLIOGRAPHIE [1]. AXLENDOERFER, C. & WEIL, A., The Gauss- Bonnet theorem for Riemannian polyhedra. Trans. Amer. Math. Soc., 53 (1943), [2]. BERGER, M., Sur quelques variétés riemanniennes suffisamment pincées. Bull. Soc. Math. France, 88 (1960), [3]. Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Scuola Norm. Sup. Pisa, XV 1961, ). [4]. Sur quelques variétés d'einstein compactes. Ann. di Mat. 53 (1961), [5]. Les sphères parmi les variétés d'einstein. C. R. Acad. Sci. Paris, 254 (1962), [6]. L es variétés kahlériennes d'einstein de dimension quatre à courbure positive (A paraître dans Tensor.) [7], On the characteristic of positively-pinched Riemannian manifolds. (A paraître 1962 dans Proc. Nat. Acad. Sci. U.S.A.) [8]. BEEBERBACH, Über die Bewegungsgruppen der Euklidischen Räume. Math. Ann. 72 (1912), [9]. BOCHNER, S., Tensorfields and Ricci curvature in Hermitian metric. Proc. Nat. Acad. Sei. U.S.A., 37 (1951), [10]. CARTAN, E., Leçons sur la géométrie des espaces de Riemann. Paris, [11]. CHERN, S. S., On curvature and characteristic classes of a Riemannian manifold Abh. Math. Sem. Hamburg, 20 (1955), [12]. COHN-VOSSEN, Totalkrünunung und Geodätische Linien auf einfach zusammenhängenden, offenenvollständigen Flächenstücken. Mat. Sb. N.S., 1 (1936)

10 456 M. BERGER [13]. FRANKEL, T., Manifolds with positive curvature. Pacific J. Math., 11 (1961), [14]. HADAMARD, J., Les surfaces à courbures opposées et leur lignes géodésique s. J. Math. Pures Appi., 4 (1898), [15]. HOPF, H., Zum Clifford-Kleinschen Raumproblem. Math. Ann., 95 (1926), [16]. KLTNGENBERG, W., Über Riemannsche Mannifaltigkeiten mit nach oben beschränkter Krümmung. (A paraître dans Ann. di Mat ) [17]. KoBAYAsm, S., On compact Kahler manifolds with positive definite Ricci tensor. Ann. Math., 74 (1961), [18]. Homogeneous Riemannian manifolds of negative curvature. Bull. Amer. Math. Soc, (1962), [19]. LICHNEROWICZ, A., Géométrie des Groupes de Transformations. Paris, 1958). [20]. MYERS, S., Riemannian manifolds in the large. Duke Math. J., 1 (1935), [21]. Riemannian manifolds with positive mean curvature. Duke Math. J., 8 (1941), [22]. NASH, J., The imbedding problem for Riemannian manifolds. Ann. Math., 63 (1956), [23]. PREISSMANN, A., Quelques propriétés globales des espaces de Riemann. j) Comment. Math. Helv., 15 (1942), [24]. RAUCH, H. E., Geodesies and Curvature in Differential Geometry in the Large. New York, Yeshiva University, [25]. SEIFERT, H. & THREULFAUû, W., Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes. Math. Ann., 107 (1932), [26]. SYNGE, J. L., On the connectivity of spaces with positive curvature. Quart. J. Math. Oxford, (1936), [27]. TopoHorov, V. A. PimaHOBH npoctpahctba KPHBH3HH orpahhqehhoft CHH3y. yenexu Mam. nayn, 85 (1959), [28]. VINCENT, G., Les groupes linéaires finis sans points fixes. Comment. Math. Helv., 20 (1947), [29]. WOLF, J. A., Vincent's conjecture on Clifford translations of the sphere. Comment. Math. Helv., 136 (1961), [30]. YAMABE, H., On deformation of Riemannian structures on compact manifolds. Osaka Math. J., 12 (1960),

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Devoir à la maison : correction

Devoir à la maison : correction Calcul différentiel 2 Sous-variétés : bilan Devoir à la maison : correction Exercice 1. Un exemple de sous-variété : les structures complexes Soit E un R-espace vectoriel. Montrer que la donnée d une structure

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Classification des structures CR invariantes pour les groupes de Lie compacts.

Classification des structures CR invariantes pour les groupes de Lie compacts. Journal of Lie Theory Volume 14 (2004) 165 198 c 2004 Heldermann Verlag Classification des structures CR invariantes pour les groupes de Lie compacts. Jean-Yves Charbonnel et Hella Ounaïes Khalgui Communicated

Plus en détail

On ne peut pas entendre la forme d un tambour

On ne peut pas entendre la forme d un tambour On ne peut pas entendre la forme d un tambour Pierre Bérard Institut Fourier Laboratoire de Mathématiques Unité Mixte de Recherche 5582 CNRS UJF Université Joseph Fourier, Grenoble 1 Introduction 1.1 Position

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

FEUILLETAGES PAR VARIÉTÉS COMPLEXES ET PROBLÈMES D UNIFORMISATION LAURENT MEERSSEMAN

FEUILLETAGES PAR VARIÉTÉS COMPLEXES ET PROBLÈMES D UNIFORMISATION LAURENT MEERSSEMAN FEUILLETAGES PAR VARIÉTÉS COMPLEXES ET PROBLÈMES D UNIFORMISATION LAURENT MEERSSEMAN Abstract. Ce texte est une introduction aux feuilletages par variétés complexes et aux problèmes d uniformisation de

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Franck LESIEUR Mathématiques et Applications, Physique Mathématique d Orléans UMR 6628 - BP 6759 45067 ORLEANS CEDEX 2 - FRANCE e-mail

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Première S Valère BONNET valere.bonnet@gmail.com 0 juin 009 Lycée PONTUS DE TYARD 3 rue des Gaillardons 700 CHALON SUR SAÔNE Tél. : 33 03 85 46 85 40 Fax : 33 03 85 46 85 59 FRANCE

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Maîtrise universitaire ès sciences en mathématiques 2012-2013

Maîtrise universitaire ès sciences en mathématiques 2012-2013 1 / 6 Remarques liminaires : Ce master à (3 semestres) permet 2 orientations distinctes : - Un master général : "Mathématiques, Systèmes dynamiques et phénomènes d'évolution" - Un master qui permet de

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Séminaire BOURBAKI Novembre 2003 56ème année, 2003-2004, n o 924. LA CONJECTURE DE GREEN GÉNÉRIQUE [d après C. Voisin] par Arnaud BEAUVILLE

Séminaire BOURBAKI Novembre 2003 56ème année, 2003-2004, n o 924. LA CONJECTURE DE GREEN GÉNÉRIQUE [d après C. Voisin] par Arnaud BEAUVILLE Séminaire BOURBAKI Novembre 2003 56ème année, 2003-2004, n o 924 LA CONJECTURE DE GREEN GÉNÉRIQUE [d après C. Voisin] par Arnaud BEAUVILLE 1. Énoncé de la conjecture La conjecture de Green est une vaste

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Fonctions analytiques

Fonctions analytiques CHAPITRE Fonctions analytiques Les principaux résultats à retenir : soit U un ouvert de C et f : U C. f est analytique sur U si et seulement si f est développable en série entière au voisinage de chaque

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Axiomatique de N, construction de Z

Axiomatique de N, construction de Z Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

PROPRIÉTÉS UNIVERSELLES ET EXTENSIONS DE KAN DÉRIVÉES

PROPRIÉTÉS UNIVERSELLES ET EXTENSIONS DE KAN DÉRIVÉES PROPRIÉTÉS UNIVERSELLES ET EXTENSIONS DE KAN DÉRIVÉES DENIS-CHARLES CISINSKI Résumé. On démontre que pour toute petite catégorie A, le dérivateur HOT A associé à la théorie de l homotopie des préfaisceaux

Plus en détail

RELATIONS DES CONTACTS HERTZIENS

RELATIONS DES CONTACTS HERTZIENS RELATIONS DES CONTACTS HERTZIENS 2004-203 Frédy Oberson et Fred Lang LES RELATIONS DES CONTACTS HERTZIENS Lorsque deux solides non conformes sont mis en contact 2, ils se touchent initialement en un point

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Carl-Louis-Ferdinand von Lindemann (1852-1939)

Carl-Louis-Ferdinand von Lindemann (1852-1939) Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 sai1042@ensai.fr Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail

Corps des nombres complexes, J Paul Tsasa

Corps des nombres complexes, J Paul Tsasa Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots

Plus en détail

SUR LES FONCTIONS DE PLUSIEURS VARIABLES COMPLEXES: LES ESPACES ANALYTIQUES

SUR LES FONCTIONS DE PLUSIEURS VARIABLES COMPLEXES: LES ESPACES ANALYTIQUES 33 SUR LES FONCTIONS DE PLUSIEURS VARIABLES COMPLEXES: LES ESPACES ANALYTIQUES Par HENRI GARTAN Je voudrais résumer ici quelques résultats obtenus depuis trois ou quatre ans dans la théorie des espaces

Plus en détail

Compacité faible et Axiome du Choix Séminaire ERMIT

Compacité faible et Axiome du Choix Séminaire ERMIT Compacité faible et Axiome du Choix Séminaire ERMIT Marianne Morillon 12 et 19 février 2007 Questions Etant donné un espace normé E, on note par défaut. sa norme, B E sa boule unité large: B E := {x E

Plus en détail

Master of Science en mathématiques 2015-2016

Master of Science en mathématiques 2015-2016 Remarques liminaires : 1/9 Ce master à 90 ECTS (3 semestres) permet 2 orientations distinctes : - Un master général en mathématiques - Un master qui permet de choisir des mineurs en finance, statistique

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

De la composition de taux à l'espace vectoriel des taux

De la composition de taux à l'espace vectoriel des taux De la composition de taux à l'espace vectoriel des taux Marcel Délèze, Collège du Sud, 630 Bulle Dans la majorité des livres scolaires, les chapitres consacrés à l'utilisation des taux font intensément

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 245 250. Géométrie différentielle/physique mathématique

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 245 250. Géométrie différentielle/physique mathématique C. R. Acad. Sci. Paris, Ser. I 336 (2003) 245 250 Géométrie différentielle/physique mathématique Feuilletages des espaces temps globalement hyperboliques par des hypersurfaces à courbure moyenne constante

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Opérateurs non-bornés

Opérateurs non-bornés Master Mathématiques Analyse spectrale Chapitre 4. Opérateurs non-bornés 1 Domaine, graphe et fermeture Soit H un espace de Hilbert. On rappelle que H H est l espace de Hilbert H H muni du produit scalaire

Plus en détail

Une borne supérieure pour l entropie topologique d une application rationnelle

Une borne supérieure pour l entropie topologique d une application rationnelle Annals of Mathematics, 161 (2005), 1637 1644 Une borne supérieure pour l entropie topologique d une application rationnelle By Tien-Cuong Dinh and Nessim Sibony Abstract Let be a complex projective manifold

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail