Représenter graphiquement une suite

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Représenter graphiquement une suite"

Transcription

1 8 décembre 2007

2 Sommaire 1 = f (n) 2 +1 = f ( )

3 Objectif. On veut représenter la ( ) définie pour tout entier naturel n par : = n2 n+1 +1.

4 Définition de la Cette est définie par formule explicite : les termes de la sont exprimées en fonction de n. On a = f (n) avec f (x)= x2 x+1 +1.

5 = f (n). C f On trace la courbe représentative de f sur [0;+ [ ; n

6 = f (n). C f On trace la courbe représentative de f sur [0;+ [ ; on place u 0 sur l axe des ordonnées ; u n

7 = f (n). C f On trace la courbe représentative de f sur [0;+ [ ; on place u 0 sur l axe des ordonnées ; comme u 1 = f (1), u 1 est l image de 1 par f ; u n

8 = f (n). C f On trace la courbe représentative de f sur [0;+ [ ; on place u 0 sur l axe des ordonnées ; comme u 1 = f (1), u 1 est l image de 1 par f ; u 1 u n

9 = f (n). u 2 u 1 u 0 C f On trace la courbe représentative de f sur [0;+ [ ; on place u 0 sur l axe des ordonnées ; comme u 1 = f (1), u 1 est l image de 1 par f ; comme u 2 = f (2), u 2 est l image de 2 par f ; n

10 = f (n). u 5 u 4 u 3 u 2 u 1 u C f n On trace la courbe représentative de f sur [0;+ [ ; on place u 0 sur l axe des ordonnées ; comme u 1 = f (1), u 1 est l image de 1 par f ; comme u 2 = f (2), u 2 est l image de 2 par f ; on réitère la méthode de construction pour placer les autres termes sur l axes des ordonnées.

11 Sommaire 1 = f (n) 2 +1 = f ( )

12 Objectif. On veut représenter la ( ) définie pour tout entier naturel n par : { u0 = 1,5 +1 = +2.

13 Définition de la Cette est définie par la donnée de son premier terme u 0 = 1,5 et par la formule de récurrence suivante : pour tout entier naturel n, +1 = f ( ) avec f (x)= x+2.

14 +1 = f ( ). On trace la courbe C f représentant f et la droite D d équation y = x ; y = x C f x

15 +1 = f ( ). y = x On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; C f u x

16 +1 = f ( ). y = x On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; comme u 1 = f (u 0 ), u 1 est l image de u 0 par f ; C f u x

17 +1 = f ( ). y = x On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; comme u 1 = f (u 0 ), u 1 est l image de u 0 par f ; C f u 1 2u x

18 +1 = f ( ). y = x On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; comme u 1 = f (u 0 ), u 1 est l image de u 0 par f ; comme u 2 = f (u 1 ), u 2 est l image de C f u 1 par f ; u 1 2u x

19 +1 = f ( ). y = x u 1 2u 0 1 u On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; comme u 1 = f (u 0 ), u 1 est l image de u 0 par f ; comme u 2 = f (u 1 ), u 2 est l image de C f u 1 par f ; on utilise la droite D pour placer u 1 sur l axe des x abscisses ;

20 +1 = f ( ). y = x u 2 u 1 2u 0 1 u On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; comme u 1 = f (u 0 ), u 1 est l image de u 0 par f ; comme u 2 = f (u 1 ), u 2 est l image de C f u 1 par f ; on utilise la droite D pour placer u 1 sur l axe des x abscisses ; on peut ainsi obtenir u 2 sur l axe des ordonnées.

21 +1 = f ( ). y = x u 2 u 1 2u 0 1 u On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; comme u 1 = f (u 0 ), u 1 est l image de u 0 par f ; comme u 2 = f (u 1 ), u 2 est l image de C f u 1 par f ; on utilise la droite D pour placer u 1 sur l axe des x abscisses ; on peut ainsi obtenir u 2 sur l axe des ordonnées. on réitère la méthode de construction pour placer les autres termes sur l axes des ordonnées.

22 +1 = f ( ). y = x u 2 u 1 2u 0 1 u 1 1 u 2 2 On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; comme u 1 = f (u 0 ), u 1 est l image de u 0 par f ; comme u 2 = f (u 1 ), u 2 est l image de C f u 1 par f ; on utilise la droite D pour placer u 1 sur l axe des x abscisses ; on peut ainsi obtenir u 2 sur l axe des ordonnées. on réitère la méthode de construction pour placer les autres termes sur l axes des ordonnées.

23 +1 = f ( ). y = x u 3 2 u 1 2u 0 1 u 1 1 u 2 2 On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; comme u 1 = f (u 0 ), u 1 est l image de u 0 par f ; comme u 2 = f (u 1 ), u 2 est l image de C f u 1 par f ; on utilise la droite D pour placer u 1 sur l axe des x abscisses ; on peut ainsi obtenir u 2 sur l axe des ordonnées. on réitère la méthode de construction pour placer les autres termes sur l axes des ordonnées.

24 +1 = f ( ). y = x u 3 2 u 1 2u 0 1 u 1 1 u 2 2 On trace la courbe C f représentant f et la droite D d équation y = x ; on place u 0 sur l axe des abscisses ; comme u 1 = f (u 0 ), u 1 est l image de u 0 par f ; comme u 2 = f (u 1 ), u 2 est l image de C f u 1 par f ; on utilise la droite D pour placer u 1 sur l axe des x abscisses ; on peut ainsi obtenir u 2 sur l axe des ordonnées. on réitère la méthode de construction pour placer les autres termes sur l axes des ordonnées.

Méthodes sur les suites

Méthodes sur les suites Méthodes sur les suites G. Petitjean Lycée de Toucy 19 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur les suites 19 juin 2007 1 / 41 1 Déterminer par le calcul et graphiquement les premiers termes

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses Résolution graphique d inéquations Méthode \ Explications : Pour résoudre l inéquation (ou ) On regarde les portions de la courbe qui sont en-dessous de la droite d équation. L ensemble des solutions est

Plus en détail

3 ème B IE2 notion de fonction sujet 1

3 ème B IE2 notion de fonction sujet 1 3 ème B IE2 notion de fonction 2012-2013 sujet 1 Exercice 1 (5 points) Soit la fonction f : x -4x f(x) =. f(-3) = f(5) =. b) Quelle est l image de -3 par f? c) Donner un antécédent de -20 par f? d) Calculer

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

CH V Fonctions linéaires Fonctions affines Équation d une droite

CH V Fonctions linéaires Fonctions affines Équation d une droite CH V Fonctions linéaires Fonctions affines Équation d une droite I) Les repères du plan : ) Les repères du plan : a) Repère quelconque : Un repère est constitué de deux axes ayant une même origine. y J

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

x < 6 ou x > 1 ( 2. Le point A 0; 3 )

x < 6 ou x > 1 ( 2. Le point A 0; 3 ) Seconde 8/09/0 Devoir surveillé de mathématiques n o. Eercice n o (7,5 points) On donne ci-dessous la courbe d une fonction f. 7-6 -5 - - - - 0 5 6 7 8 -. Donner le domaine de définition de f. - -. Lire

Plus en détail

Généralités sur les suites

Généralités sur les suites 1 Chapitre 3 Généralités sur les suites I. Définition, mode de génération d'une suite et représentation graphique : 1) Définition : Une suite est une fonction définie de IN ou d'une partie de IN dans IR.

Plus en détail

Exercices corrigés pour améliorer ses techniques

Exercices corrigés pour améliorer ses techniques Exercices corrigés pour améliorer ses techniques Fonction carré Exercices 1 à 9 Fonction inverse Exercices 10 à 16 Un peu de logique Exercice 17 Fonctions polynômes de degré 2 Exercices 18 à 24 Fonctions

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention.

SUITES NUMERIQUES. Rem : Comme pour les fonctions, on omet souvent de préciser l ensemble de définition attention. ) GENERALITES A ) DEFINITION et NOTATIONS SUITES NUMERIQUES On appelle suite numérique toute application de IN dans IR. Une suite se note u, ( ) n IN, ( ) n 0 ou ( ), qui est la notation la plus utilisée.

Plus en détail

Représentations graphiques

Représentations graphiques Représentations graphiques Christophe ROSSIGNOL Année scolaire 2010/2011 Table des matières 1 Courbe représentative d une fonction 2 1.1 Lecture d image.............................................. 2

Plus en détail

CHAPITRE 8: FONCTIONS LINÉAIRES ET AFFINES

CHAPITRE 8: FONCTIONS LINÉAIRES ET AFFINES 1. FONCTION LINÉAIRE Une fonction linéaire (ou de proportionnalité directe) est définie de la manière suivante, où m est un nombre réel quelconque. Les fonctions linéaires se représentent dans le plan

Plus en détail

NOMBRE DÉRIVÉ ET TANGENTE

NOMBRE DÉRIVÉ ET TANGENTE CLSSE DE STG NOMBRE DÉRIVÉ ET TNGENTE NOMBRE DÉRIVÉ ET TNGENTE. Nombre dérivé.. Définition. Soit une fonction représentée par la courbe C On considère la tangente T, au point d abscisse Le coefficient

Plus en détail

Résolution graphique d équations et d inéquations

Résolution graphique d équations et d inéquations Résolution graphique d équations et d inéquations I) Equations. Soit une fonction définie sur un domaine inclus dans et à valeurs dans. Soit, un nombre réel. On suppose qu on doit résoudre une équation

Plus en détail

I- Droites d équations x = c. Dans le repère ci-contre, placer 10. points dont l abscisse (x) est 4. L ensemble des points du plan dont

I- Droites d équations x = c. Dans le repère ci-contre, placer 10. points dont l abscisse (x) est 4. L ensemble des points du plan dont I- Droites d équations x = c Dans le repère cicontre, placer 10 points dont l abscisse (x) est 4. L ensemble des points du plan dont l abscisse est 4 est la droite d équation x = 4. (la tracer et la nommer

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014

Baccalauréat S Antilles-Guyane 11 septembre 2014 Durée : 4 heures Baccalauréat S Antilles-Guyane 11 septembre 2014 EXERCICE 1 6 points Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue divers tests

Plus en détail

Objectif : Résoudre graphiquement de deux manières différentes, dans l'ensemble des réels, l'équation : 2x² - 3x - 5 = 0

Objectif : Résoudre graphiquement de deux manières différentes, dans l'ensemble des réels, l'équation : 2x² - 3x - 5 = 0 Résolution graphique d'une équation du second degré avec graphmatica Activité 1 l'équation : 2x² - 3x - 5 = 0 : 1. Démarrer le logiciel graphmatica 2 ( téléchargement sur http://www.graphmatica.com/francais/install.html)

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Droites des réels Intervalles de R 2 1.1 Définitions................................................. 2

Plus en détail

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Lycée Albert CAMUS 28 mars 2012 BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Durée de l épreuve : 4H - Coefficient : 9 (Spécialité) Les calculatrices sont AUTORISÉES Le candidat doit traiter les

Plus en détail

EXERCICE 1 (4 points)

EXERCICE 1 (4 points) EXERCICE 1 4 points) Pour chaque question de cet exercice, plusieurs réponses sont proposées. Parmi elles, une seule est exacte. Le candidat devra choisir l une des réponses et justifier son choix. 1.

Plus en détail

Cas des intervalles disjoints. Si I = [ 0 ; 2 ] et J = ] 4 ; 5 [, alors I J = et I J = [ 0 ; 2 ] ] 4 ; 5 [ ne peut pas s écrire plus simplement.

Cas des intervalles disjoints. Si I = [ 0 ; 2 ] et J = ] 4 ; 5 [, alors I J = et I J = [ 0 ; 2 ] ] 4 ; 5 [ ne peut pas s écrire plus simplement. Seconde Généralités sur les fonctions I. Intervalles a) Différents types d intervalles. a et b sont deux réels tels que a < b. Le tableau ci-dessous résume les différents types d intervalles. L intervalle

Plus en détail

Terminale S Problème de synthèse n 10 Famille de fonctions - Méthode des rectangles - Suites - Suite d'intégrales

Terminale S Problème de synthèse n 10 Famille de fonctions - Méthode des rectangles - Suites - Suite d'intégrales Terminale S Problème de synthèse n n est un entier naturel, n. On note f n la fonction définie sur I = ] ;+ [ par f n (x) = (ln x)n et C x² n.sa courbe représentative dans un repère orthonormal (O; i ;

Plus en détail

Baccalauréat ES (obligatoire) Liban 30 mai 2011

Baccalauréat ES (obligatoire) Liban 30 mai 2011 Baccalauréat ES (obligatoire) Liban 30 mai 20 Exercice 4 points Cet exercice constitue un questionnaire à choix multiples. Pour chaque question, indiquer sur votre copie le numéro de la question et la

Plus en détail

Epreuve commune maths terminales S 8 décembre 2015

Epreuve commune maths terminales S 8 décembre 2015 Exercice 1 6 points ) On considère la fonction f définie et dérivable sur l ensemble R des nombres réels par fx) = x+1+ x e x On note C sa courbe représentative dans un repère orthonormé O; i ; ) j 1 Soit

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

FONCTIONS LOGARITHMES ET EXPONENTIELLES

FONCTIONS LOGARITHMES ET EXPONENTIELLES Maths FONCTIONS LOGARITHMES ET EXPONENTIELLES I. LA FONCTION LOGARITHME DECIMAL (log) a) Découverte de la fonction Nous allons utiliser la touche log de la calculatrice. Par exemple : log 3 = (Arrondir

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques I) Rappels 1) Repérage sur le cercle trigonométrique Sur un cercle trigonométrique : - à tout nombre réel t on associe un point M unique ; - si un point M est associé à un nombre

Plus en détail

DM3. Exercice1 : Une étude de fonction rationnelle. Soit la fonction définie sur par.

DM3. Exercice1 : Une étude de fonction rationnelle. Soit la fonction définie sur par. DM3 Exercice : Une étude de fonction rationnelle Soit la fonction définie sur par Calculez les limites de la fonction aux bornes de son domaine de définition La courbe représentative de admet-elle des

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions I) L'ensemble et les intervalles : Généralités sur les fonctions Tous les nombres étudiés jusqu'à présent peuvent être rangés sur une droite graduée. 7 3, 6, 0 Tous les nombres entiers, décimau, rationnels,

Plus en détail

Seconde Générale. Algorithmique et fonctions EXERCICES

Seconde Générale. Algorithmique et fonctions EXERCICES Seconde Générale Algorithmique et fonctions EXERIES Enoncé ABDEH est un cube de côté cm M et N sont des points des arrêtes [AD] et [AB] tels que P est le point de l arrête [EA] tel que H G E F P M D A

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité Chapitre 3 Dérivée I EXERCICES page I-1 I Exercices Comment déterminer le coefficient directeur d une droite ()? Exemple : (2, ; 2) ; (4 ; 3) (l unité du repère est un carreau) Graphiquement : on compte

Plus en détail

Logarithmes et exposants

Logarithmes et exposants Le Centre d éducation en mathématiques et en informatique Ateliers en ligne Euclide Atelier n o 1 Logarithmes et eposants c 14 UNIVERSITY OF WATERLOO BOÎTE À OUTILS Soit a, b, et des nombres réels et n

Plus en détail

Baccalauréat S Liban 27 mai 2014

Baccalauréat S Liban 27 mai 2014 EXERCICE 1 Baccalauréat S Liban 27 mai 2014 Les trois parties A, B et C peuvent être traitées de façon indépendante. Les probabilités seront arrondies au dix millième. Un élève doit se rendre à son lycée

Plus en détail

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes 1. Fonction du second degré 1.1 Définition Une fonction f définie sur R dont l expression peut se mettre sous la forme = ax 2 +bx +c (où a, b et c sont des réels avec a non nul) est une fonction du second

Plus en détail

Seconde 4 IE6 fonctions carré et inverse Sujet 1. Seconde 4 IE6 fonctions carré et inverse Sujet 2

Seconde 4 IE6 fonctions carré et inverse Sujet 1. Seconde 4 IE6 fonctions carré et inverse Sujet 2 Seconde IE6 fonctions carré et inverse 20-202 Sujet Eercice : (3 points) f est la fonction définie sur [-;2] par f() = ². b) La fonction f possède-t-elle un maimum? Si oui lequel? Eercice 2 : ( points)

Plus en détail

3ème Fonctions linéaires / Fonctions affines 2011/2012

3ème Fonctions linéaires / Fonctions affines 2011/2012 3ème Fonctions linéaires / Fonctions affines 2011/2012 ----> Activité fonctions particulières Objectifs : - Je sais déterminer une fonction linéaire à partir de son graphique - Je sais utiliser la proportionnalité

Plus en détail

Corrigé du baccalauréat ST2S Nouvelle Calédonie 14 novembre 2013

Corrigé du baccalauréat ST2S Nouvelle Calédonie 14 novembre 2013 Corrigé du baccalauréat ST2S Nouvelle Calédonie 14 novembre 2013 EXERCICE 1 Une association s adresse à une agence de voyage pour organiser un séjour de vacances pour ses 210 adhérents. On constate que,

Plus en détail

Partie 1 - Séquence 1 Valeur absolue

Partie 1 - Séquence 1 Valeur absolue Lycée Victor Hugo - Besançon - Première S I. Définition I. Définition Définition On appelle valeur absolue d un nombre x et on note x la distance à zéro de ce nombre x. I. Définition Définition On appelle

Plus en détail

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution.

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution. Polynésie septembre 2010 Partie1 Soit g la fonction définie sur [0;+ [ par 1. Déterminer la limite de g en +. 2. Étudier les variations de la fonction g. 3. Donner le tableau de variations de g. 4. a.

Plus en détail

Limites et comportement asymptotique Exercices corrigés

Limites et comportement asymptotique Exercices corrigés Limites et comportement asymptotique Eercices corrigés Sont abordés dans cette fiche : Eercice 1 : détermination graphique d une limite et d une équation d asymptote à une courbe (asymptote verticale et

Plus en détail

e x lim f k (x) = (x + 1)e kx.

e x lim f k (x) = (x + 1)e kx. EXERCICE 4 (7 points ) (Commun à tous les candidats) Partie A. Restitution organisée de connaissances On suppose connu le résultat suivant : Démontrer que lim x + xe x =. e x lim x + x = +. Partie B. Restitution

Plus en détail

3 ème B DS1 PGCD - notion de fonction Sujet 1

3 ème B DS1 PGCD - notion de fonction Sujet 1 ème B DS1 PGCD - notion de fonction 201-2014 Sujet 1 Olivia avait un paquet de 20 bonbons et un paquet de 280 chewing-gums qu'elle a Il lui reste alors 5 bonbons et 10 chewing-gums. ) Combien de bonbons

Plus en détail

SUJET 1. Exercice (9 points)

SUJET 1. Exercice (9 points) SUJET 1 Exercice (9 points) Une enquête a été menée sur le mode de vie de 700 de plus de 40 ans toutes atteintes d'un cancer lié au tabac. On a obtenu les renseignements suivants : 47 % de ces n'ont jamais

Plus en détail

Fiche professeur Introduction de la fonction exponentielle en terminale S

Fiche professeur Introduction de la fonction exponentielle en terminale S 1. Niveau Terminale S Fiche professeur Introduction de la fonction exponentielle en terminale S 2. Situation-problème proposée Introduction de la fonction exponentielle à partir de la radioactivité et

Plus en détail

Baccalauréat STG Mercatique, CFE, GSI Antilles-Guyane 13 septembre 2013

Baccalauréat STG Mercatique, CFE, GSI Antilles-Guyane 13 septembre 2013 Durée : 3 heures Baccalauréat STG Mercatique, FE, GSI Antilles-Guyane 13 septembre 2013 EXERIE 1 4 points et exercice est un questionnaire à choix multiples (QM). Pour chaque question, quatre réponses

Plus en détail

Exercices supplémentaires Second degré

Exercices supplémentaires Second degré Exercices supplémentaires Second degré Partie A : Forme canonique, équations, inéquations, factorisation Mettre sous forme canonique les trinômes suivants 8 ; 3 1 ; 5 ; 3 4 Exercice On considère : 5 6

Plus en détail

3 ème E DS1 PGCD -notion de fonction Sujet 1

3 ème E DS1 PGCD -notion de fonction Sujet 1 3 ème E DS1 PGCD -notion de fonction 2013-2014 Sujet 1 Exercice 1 (5 points) Pour le 1 er mai, Julie dispose de 182 brins de muguet et de 78 roses. Elle veut faire le plus grand nombre de bouquets identiques

Plus en détail

EXERCICES SUR LES EXPONENTIELLES

EXERCICES SUR LES EXPONENTIELLES EXERCICES SUR LES EXPONENTIELLES EXERCICE 1 : Domaine de définition Déterminer le domaine de définition des fonctions eponentielles suivantes : a) f() = e - b) f() = e - c) f() = e (1/) c) f() = ep( 1

Plus en détail

2de Variations de fonctions Cours

2de Variations de fonctions Cours 2de Variations de fonctions Cours I. Fonction croissante, fonction décroissante Transmath : Activité 1 page 23 1. Définitions ( la courbe «monte» de gauche à droite, plus La courbe «descend» de gauche

Plus en détail

FONCTIONS AFFINES. Un antécédent ne peut avoir qu une image (elle est unique), mais une image peut avoir plusieurs antécédents.

FONCTIONS AFFINES. Un antécédent ne peut avoir qu une image (elle est unique), mais une image peut avoir plusieurs antécédents. FONCTIONS AFFINES 1. Vocabulaire Soit D une partie de l ensemble des nombres réels R. Une fonction f définie sur D associe à tout nombre réel x de D un unique nombre réel noté f(x). D est appelé ensemble

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

Polynômes du second degré et fonctions homographiques 2nde

Polynômes du second degré et fonctions homographiques 2nde Fonctions de référence Polynômes du second degré et fonctions homographiques 2nde Table des matières I. Fonctions homographiques...1 A. La star de la famille : La fonction inverse (Normalement vous connaissez

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

ACTIVITÉ AVEC GEOGEBRA

ACTIVITÉ AVEC GEOGEBRA ACTIVITÉ AVEC GEOGEBRA Dans un repère orthogonal, on considère la courbe représentative d une fonction f, définie et positive sur un intervalle contenant les nombres réels a et b (a b). On cherche à calculer

Plus en détail

Exercice 3 (pour tous)

Exercice 3 (pour tous) le vendredi février (ÉPREUVES GROUPÉES HEURES) Exercice ( pour tous ) / points La production d une entreprise pour l année est de pièces Chaque année sa production augmente de % Quelle est la production

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS LES FONCTIONS : GENERALITES ET VARIATIONS I. Vocabulaire et notations 1. Exemple d introduction : Avec une ficelle de longueur 10 cm, on fabrique un rectangle. On désigne par x la longueur d un côté de

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail

Corrigés des exercices

Corrigés des exercices Chapitre APPLICATION Corrigés des exercices 63 a V(r) = 4 3 π r3 ; V (r)= 4 π r = S(r) a Sur R *, f ( x ) = x ( x 3 ) = x 4 3 x b Sur R *, g ( x ) = 3 ( x x ) x x = 3 4x x x a Sur R, f ( x ) = 6cos3x sin

Plus en détail

Une enquête de l association Familles de France a étudié l évolution du coût de la rentrée pour un élève de Sixième de 2004 à 2010.

Une enquête de l association Familles de France a étudié l évolution du coût de la rentrée pour un élève de Sixième de 2004 à 2010. NOM : Prénom : Exercice 1 : calcul du prix de la rentrée (4,5 points) Une enquête de l association Familles de France a étudié l évolution du coût de la rentrée pour un élève de Sixième de 2004 à 2010.

Plus en détail

Terminale ES. La fonction logarithme népérien

Terminale ES. La fonction logarithme népérien Terminale ES La fonction logarithme népérien 1 I Liens avec la fonction exponentielle Définition On sait que la fonction exponentielle est strictement croissante sur et à valeurs dans ]0;+ [. Ainsi, pour

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Première STG Chapitre 15 : nombre dérivé et tangente. Page n

Première STG Chapitre 15 : nombre dérivé et tangente. Page n Première STG Chapitre 15 : nombre dérivé et tangente. Page n 1 Un fabricant de matériels informatiques produit, par jour, q appareils d'un modèle A. Le gestionnaire de cette entreprise a établi que le

Plus en détail

ETUDE QUALITATIVE DES FONCTIONS

ETUDE QUALITATIVE DES FONCTIONS ETUDE QUALITATIVE DES FONCTIONS I. Variations d'une fonction numérique sur un intervalle: ) Sens de variation : a) Fonction croissante sur un intervalle : Une fonction f est dite croissante sur un intervalle

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

CH VI Approcher une courbe par une droite.

CH VI Approcher une courbe par une droite. CH VI Approcher une courbe par une droite. I) Droite et équation de droite : ) Définition : Une droite caractérise une fonction affine dont l équation est =. a et b sont deux nombres réels. a est appelé

Plus en détail

Calculer les dérivées des fonctions suivantes (il n est pas demandé de préciser l ensemble de définition) :

Calculer les dérivées des fonctions suivantes (il n est pas demandé de préciser l ensemble de définition) : 1S A-C DS 6 jeudi 28 janvier 2016 Exercice 1 : (1,5 points) Calculer les dérivées des fonctions suivantes (il n est pas demandé de préciser l ensemble de définition) : Exercice 2 : (4,5 points) Vrai ou

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Pour compléter l esquisse du «dos nageur» ci-après, on considère la fonction f définie par

Pour compléter l esquisse du «dos nageur» ci-après, on considère la fonction f définie par http://maths-sciences.fr EXERCICES SUR LES FONCTIONS EXPONENTIELLES Exercice 1 Un atelier confectionne des maillots de bain «dos nageur» dont le modèle est présenté cicontre. Pour compléter l esquisse

Plus en détail

Statistiques à deux variables

Statistiques à deux variables Partie 1 : Statistique et probabilités Statistiques à deux variables Depuis 1975, la température moyenne sur le globe augmente dangereusement. Pour de nombreux scientifiques, ce phénomène est directement

Plus en détail

FONCTIONS GÉNÉRALITÉS

FONCTIONS GÉNÉRALITÉS MAT H S -COU R S.FR - COU R S E T E XE R CICES D E MAT H É MAT IQU E S SECONDE COURS FONCTIONS GÉNÉRALITÉS 1. NOTION DE FONCTION Une fonction f est un procédé qui à tout nombre réel x d une partie D de

Plus en détail

Devoir surveillé de mathématiques Enseignement de spécialité

Devoir surveillé de mathématiques Enseignement de spécialité Lycée Eugène Delacroix Terminales S samedi décembre 04 Devoir surveillé de mathématiques Enseignement de spécialité Durée : 4 heures L utilisation d UNE ET D UNE SEULE calculatrice est autorisée. Tout

Plus en détail

1) a) Les nombres réels : Il existe des nombres qui n appartiennent à aucun des ensembles IN,!, ID ou!

1) a) Les nombres réels : Il existe des nombres qui n appartiennent à aucun des ensembles IN,!, ID ou! 2 nd Fonctions 1 Objectifs : IR, les intervalles. Traduire le lien entre deux quantités par une formule. Pour une fonction définie par une courbe, un tableau de données ou une formule : _ identifier la

Plus en détail

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50]

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50] Fonctions du second degré - Exemple d étude d un problème. Activité. La recette R(x) d un spectacle dépend du prix x de la place suivant la relation R(x) = 450x 9x². Pour chaque spectacle, les frais fixes

Plus en détail

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n,

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n, Correction DC1 Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : 00. Pour tout entier naturel n, 10 100 15 100 90 100 15 100 00 3 4 330 3 4 330 3. L algorithme ci-dessous permet

Plus en détail

Dérivation, cours, terminale S

Dérivation, cours, terminale S Dérivation, Dérivation, 27 septembre 2016 Définitions : Soit f une fonction définie sur un intervalle I contenant a. Dire que f est dérivable en a de nombre dérivé f (a), signifie que le taux d accroissement

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 7 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

Baccalauréat STI Génie électronique Antilles septembre 2005

Baccalauréat STI Génie électronique Antilles septembre 2005 Durée : 4 heures Baccalauréat SI Génie électronique Antilles septembre 5 EXERCICE 5 points Un professeur d Éducation Physique et Sportive s adresse à un groupe de vingt élèves au sujet de leurs loisirs

Plus en détail

BACCALAUREAT GENERAL MATHEMATIQUES

BACCALAUREAT GENERAL MATHEMATIQUES GAN AMI Session Janvier 2014 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire et spécialité Durée de l épreuve : 4 heures Coefficient : 7 ou 9 Ce sujet comporte 4 pages. L utilisation

Plus en détail

Easy-Maths. Théorème des accroissements finis et suites numériques

Easy-Maths. Théorème des accroissements finis et suites numériques Easy-Maths Njionou Patrick, S pnjionou@yahoofr Lycée de Japoma BP : 7297, Douala, Cameroun Théorème des accroissements finis et suites numériques EXERCICE 1 Soit h la fonction définie sur R par : h(x)

Plus en détail

La fonction logarithme népérien, f(x) = ln(x).

La fonction logarithme népérien, f(x) = ln(x). La fonction logarithme népérien, f() = ln() L étude des fonctions est une notion fondamentale du programme de Terminale STG A l heure actuelle, les fonctions rencontrées sont celles connues depuis la seconde

Plus en détail

Fonction valeur absolue

Fonction valeur absolue Fonction valeur absolue Valeur absolue et distance Introduction Sur un axe gradué, on a placé quatre points A, B, C et D. Les abscisses de ces points sont x A = 3, x B = 6, x C = 2 et x D = 8,5. Comment

Plus en détail

Seconde 4 DS3 équations sujet 1. Exercice 1 (7 points) Résoudre les équations suivantes : 1) 11x (x + 1) = x 1 2) (x 1)(x + 3) = x²

Seconde 4 DS3 équations sujet 1. Exercice 1 (7 points) Résoudre les équations suivantes : 1) 11x (x + 1) = x 1 2) (x 1)(x + 3) = x² Seconde DS3 équations 2012-2013 sujet 1 Eercice 1 (7 points) Résoudre les équations suivantes : 1) 11 ( + 1) = 1 2) ( 1)( + 3) = ² 3) 1 3 + () = 0 ) (2 1)( + 1) (2 1)(3 ) = 0 ) (1 3)² = 6) 2 1 = 2 + 1

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 9 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

Exercice 1 sur 6,5 points

Exercice 1 sur 6,5 points NOM PRENOM : Bac blanc Mathématiques TSMG2 Mercredi 12 février 2014 Exercice 1 sur 6,5 points Une entreprise de menuiserie fait une étude sur la fabrication de chaises en bois pour une production comprise

Plus en détail

NOM : SECOND DEGRE 1ère S

NOM : SECOND DEGRE 1ère S Exercice 1 Dans un triangle ABC rectangle en A, on place les points D et E respectivement sur [AC] et [AB] tels que AD = BE = x. Déterminer x pour que l aire du triangle ADE soit égale à la moitié de celle

Plus en détail

cours de mathématiques en troisième

cours de mathématiques en troisième Les fonctions linéaires. cours de mathématiques en troisième Dans cette leçon on considérera un repère. I.Les fonctions linéaires : 1. Activité d introduction : Un tissu coûte 3 euros le mètre chez un

Plus en détail

2. Remplissage du tableau Quelle démarche adopter pour trouver les résultats attendus? Le détail des calculs n est pas demandé.

2. Remplissage du tableau Quelle démarche adopter pour trouver les résultats attendus? Le détail des calculs n est pas demandé. Eercice (6,5 points) Mathématiques Bac Pro juin 28 proposition correction. Nombre d électeurs Soit N le nombre d électeurs de la communauté de communes. 85 85% des électeurs (inscrits), soit 394, se sont

Plus en détail

TERMINALE ES Fonctions 2/2 La convexité

TERMINALE ES Fonctions 2/2 La convexité * 1. Rappels sur la dérivation 1. Définition Soit f une fonction définie sur un intervalle I de R et a un réel de I. Soit h un nombre très petit et non nul. Alors Dire que f est dérivable en a de I signifie

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

Baccalauréat L spécialité France 19 juin 2009

Baccalauréat L spécialité France 19 juin 2009 Baccalauréat L spécialité France 19 juin 2009 L usage d une calculatrice est autorisé Deux annexes sont à rendre avec la copie 3 heures EXERCICE 1 5 points Quatre affirmations sont données ci-dessous.

Plus en détail

Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée

Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée ... Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée Le sujet comporte 4 exercices : Les élèves n ayant pas choisi l option Mathématiques en spécialité traiteront

Plus en détail

Correction-Devoir maison n 8

Correction-Devoir maison n 8 Classe de TS2 pour le 4 novembre 20 Exercice : A - Étude d une fonction On considère la fonction f définie sur R par : Correction-Devoir maison n 8 f(x) = (x+)e x. On note (C) sa représentation graphique

Plus en détail

Équations du second degré

Équations du second degré Équations du second degré Racines du trinôme et factorisation Soit le trinôme, avec. Transformation de l écriture de : ( ) [ ] [ ]. On a donc l égalité : [ ] pour tout réel. La factorisation éventuelle

Plus en détail

Synthèse de cours PanaMaths Fonctions dérivables convexes

Synthèse de cours PanaMaths Fonctions dérivables convexes Synthèse de cours PanaMaths Définitions et eemples fondamentau Définitions à un point Soit C sa courbe représentative dans un repère tel que l ae des ordonnées est orienté du bas vers le haut La fonction

Plus en détail

COURS 30 : Fonction affine

COURS 30 : Fonction affine CHAPITRE 8 : FONCTIONS AFFINES COURS 30 : Fonction affine Définition Soient a et b deux nombres quelconques «fixes». Si, à chaque nombre x, on peut associer le nombre affine, que l on notera ou, alors

Plus en détail

Fonctions numériques d une variable réelle Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions numériques d une variable réelle Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions numériques d une variable réelle Site athstice de Adama Traoré Lcée Technique Bamako I Opérations sur les fonctions Soit f et g deu fonctions d ensembles de définitions respectives D f et D g.

Plus en détail