Exercice n HA Corrigé

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercice n HA Corrigé"

Transcription

1 ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA Corrigé Logo opimisé par J.-D.Bonour, SI-DGR ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Séparaion des écoulemens par raçage environnemenal - Applicaion au bassin versan de la Haue-Menue (VD, Suisse) Données de l exercice : Les mesures fournies on éé faies dans la parie foresière du bassin de la Haue-Menue, dans les bois du Jora. Les eneurs en oxygène 18, de la nappe, de la pluie arrivan au sol e de l eau du sol son données dans le ableau 1 -énoncé. Les débis e les eneurs en oxygène 18, Silice e Calcium (Tableau 2-énoncé) on éé enregisrés à l'exuoire du sous-bassin de Bois-Vuacoz (24 ha). Le fichier Excel «HA0101_enonce.xls» conien les données de l événemen du 9 sepembre Le corrigé se rouve aussi le fichier Excel «HA0101_corrige.xls» Quesion 1. Rappel sur l uilisaion des raceurs Pour l uilisaion de modèles de mélange isoopiques à deux composanes e un raceur, les hypohèses suivanes son avancées : l eau «ancienne» es caracérisée par une valeur isoopique unique ou de variaion connue, de même que l eau «nouvelle» le signal isoopique de l eau «ancienne» es significaivemen différen de celui de l eau «nouvelle» la conribuion de l eau du sol es négligeable ou prise en compe la conribuion de l eau sockée en surface es négligeable L uilisaion de raceurs environnemenaux comme la silice e le calcium es suee aux mêmes hypohèses, auxquelles s aoue celle de la non-réacivié des raceurs avec l environnemen qu ils raversen, ceci du moins à l échelle de emps de l événemen éudié. Quesion 2. Séparaion des écoulemens en deux composanes. Méhode à appliquer : modèle mahémaique de mélange à deux composanes Les deux composanes à idenifier son l eau «ancienne» (i.e. présene dans le bassin versan avan le débu de l épisode pluvieux) e l eau «nouvelle» qui provien des précipiaions. Le modèle mahémaique de mélange consise à exprimer la conservaion du débi à l exuoire du bassin (équaion 1), ainsi que de la masse du raceur observé pour effecuer cee séparaion (équaion 2). Q Q Q = a + n δ Q = δ Q + δ a a n Q n (1) (2) Q : débi oal mesuré à l exuoire, en Q a : débi de l eau «ancienne», en Q n : débi de l eau «nouvelle», en δ : concenraion du raceur dans l écoulemen oal à l exuoire δ a : concenraion du raceur dans l eau «ancienne» δ n : concenraion du raceur dans l eau «nouvelle» Mise à our le HA Page 1

2 La résoluion de ce sysème es immédiae e l on obien : n Qa Q δ = δ δ a δ n Qn Q Q a (3) = (4) On peu ainsi calculer pour chaque pas de emps le débi généré par l eau «ancienne» ; le débi de crue (eau «nouvelle») peu en êre dédui par sousracion du débi oal. Comme on ne dispose pas de mesures pour chaque heure, on procède à une inerpolaion linéaire des débis e de la concenraion du raceur observé enre les mesures à défau d aures informaions. Cee echnique peu êre appliquée indifféremmen à l un des rois raceurs environnemenaux : les résulas son alors légèremen différens ce qui es dû noammen à la variabilié d un événemen à l aure de la concenraion en raceur, alors que l on a reenu ici une valeur moyenne. Résulas : Les résulas de la séparaion des écoulemens avec l oxygène 18 son présenés dans la figure 1. Les valeurs numériques son regroupées dans le ableau 1. Décomposiion d'hydrogramme par raçage environnemenal Modèle de mélange à une composane / Traceur: oxygène débi oal inensié [mm/h] emps [h] ( = 0 à 17h00 le ) précipiaion débi oal débi "eau ancienne" débi "eau nouvelle" Figure 1 : Séparaion par raceur environnemenal (oxygène-18) des écoulemens pour l événemen du 7 sepembre 1993 bassin versan de Bois-Vuacoz (Haue-Menue) Mise à our le HA Page 2

3 Tableau 1 : Résulas numériques de la séparaions des écoulemens en deux (oxygène-18) e rois composanes (silice e calcium) de l événemen du 7 sepembre 1993 observé à Bois-Vuacoz (Haue-Menue) 2 composanes 3 composanes Dae & heure Débi oal Débi «eau ancienne» Débi «eau nouvelle» Débi «nappe» Débi «eau du sol» Débi «pluie» : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Quesion 3. Séparaion des écoulemens en 3 composanes. Méhode à appliquer : modèle mahémaique de mélange à rois composanes Cee séparaion se base sur le même principe que celle à deux composanes, mais il fau définir une 3 ème relaion ainsi qu inroduire le 2 ème raceur dans ces relaions comme le monre l équaion (5). Mise à our le HA Page 3

4 δ Q = n δi Qi i= 1 (5) avec : Q : débi oal mesuré à l exuoire, en Q i : débi de la composane i, en δ : concenraion du raceur dans l écoulemen oal à l exuoire δ : concenraion du raceur dans l écoulemen de la i composane i Résulas : Les résulas de la séparaion des écoulemens avec la silice e le calcium son présenés dans la figure 2. Les valeurs numériques son regroupées dans le ableau 1. Décomposiion d'hydrogramme par raçage environnemenal Modèle de mélange à deux composanes / Traceur: Si e Na débi inensié [mm/h] emps [h] ( = 0 à 17h00 le ) précipiaion débi oal débi "nappe profonde" débi "sol" débi "pluie" Figure 2 : Séparaion par raceur environnemenal (oxygène-18) des écoulemens pour l événemen du 7 sepembre 1993 bassin versan de Bois-Vuacoz (Haue-Menue) Quesion 4. Aure echnique de séparaion des écoulemens? Méhode à appliquer : Séparaion des écoulemens par la méhode graphique La séparaion des écoulemens par raçage environnemenal ne se usifian que pour des éudes rès poinues, à cause du coû de cee echnique, l esimaion des différenes composanes de l écoulemen s effecue généralemen en faisan l hypohèse que chaque composane possède une courbe de arissemen qui lui es propre ; celle-ci s exprime de la manière suivane : Q () = Q0 e α (6) Q() : débi oal à l insan, en Q 0 : débi iniial à l insan 0, en : emps écoulé depuis l observaion de Q 0, en [h] α : coefficien de arissemen, en [1/h] Il s agi donc d idenifier le arissemen sur un hydrogramme e le débi de base en procédan à la séparaion des écoulemens. Cee echnique se base sur une représenaion logarihmique de la Mise à our le HA Page 4

5 décroissance du débi en foncion du emps. Une elle représenaion es censée mere en évidence les cassures de la courbe de décrue e par conséquen les différens ypes d'écoulemen.. Démarche e résulas : Eape 1 : Idenificaion de la dae de débu de ruissellemen à parir de l hydrogramme de crue (augmenaion bruale au débu de l évènemen) Débu de l écoulemen rapide 5h00 le 8 sepembre Eape 2 : Idenificaion de la dae de fin de ruissellemen par la méhode graphique (Figure 1). Représenaion logarihmique de la décroissance du débi en foncion du emps. Mise en évidence des cassures de la courbe de décrue e par conséquen des différens ypes d'écoulemen (ausemen à l œil de droies). Le poin d inersecion enre la droie de arissemen e la droie «précédene» es le poin de fin du ruissellemen de surface. Fin de l écoulemen reardé 00h00 le 9 sepembre 1993 Eape 3 : Séparaion de l écoulemen de surface e de l écoulemen de base par la méhode de «la ligne droie» Sraigh line mehod. (Figure 1). Tracer la droie enre les daes de débu e de fin de ruissellemen. Décomposiion d'hydrogramme par la méhode "graphique" Séparaion en deux composanes débi LOG (débi) emps [h] ( = 0 à 17h00 le ) débi oal débi de base esimé Log(débi) Figure 3 : Séparaion des écoulemens par la méhode graphique pour l événemen du 7 sepembre 1993 bassin versan de Bois-Vuacoz (Haue-Menue) Le modèle de mélange fai apparaîre un pic à = 21 heures pour le débi de base (graphique 1), ce qui suggère un effe «pison» de la pluie sur le débi de base (eau «ancienne»). Au conraire la séparaion graphique adopée fai l hypohèse d une variaion linéaire du débi de base à défau d informaions aures que le débu e la fin supposés de l écoulemen rapide. Mise à our le HA Page 5

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Année universitaire Exercice 1. Travaux Dirigés numéro 4 SERIES TEMPORELLES

Année universitaire Exercice 1. Travaux Dirigés numéro 4 SERIES TEMPORELLES U Année universiaire 2-2 Travaux Dirigés numéro 4 SERIES TEMPORELLES 1 Exercice 1 Nous avons simulé les séries suivanes, où es un brui aléaoire, s une série d effes saisonniers, une endance linéaire e

Plus en détail

CHAPITRE III : LES COMPTEURS

CHAPITRE III : LES COMPTEURS CHAPITRE III : LES COMPTEURS I. Inroducion Dans de nombreuses applicaions on es amené à faire des compages d impulsions dans un emps donné pour la mesure de fréquences (par exemple) ou ou simplemen comper

Plus en détail

CORRECTION des EXERCICES de RADIOACTIVITE

CORRECTION des EXERCICES de RADIOACTIVITE CORRECTIO des EXERCICES de RDIOCTIVITE.1. Désinégraion du carbone 14. On donne Les numéros aomiques suivans : Z 6 pour le carbone (C) e Z 7 pour l azoe (). Pourquoi les noyaux de symboles 1 6 C e 13 6

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure TP SdF N 25 Modélisaion e opimisaion de la mainenance prévenive e correcive d un maériel soumis à usure Ce TP complèe le TP N 22 sur la modélisaion e l opimisaion de la mainenance d un maériel réparable

Plus en détail

Série chronologique = Chronique, série temporelle Valeurs successivement prises par une variable statistique au cours du temps

Série chronologique = Chronique, série temporelle Valeurs successivement prises par une variable statistique au cours du temps Série chronologique = Chronique, série emporelle Valeurs successivemen prises par une variable saisique au cours du emps E Série saisique bidimensionnelle (, ) Objecifs de l analyse d une série chronologique

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

Les systèmes séquentiels Bascules et compteurs

Les systèmes séquentiels Bascules et compteurs si Les sysèmes séqueniels Bascules e compeurs Applicaions Ces exercices d applicaion son faculaifs. 1. rucures à base de bascules (bisables) Exercice 1 Compléer le chronogramme ci-dessous. Exercice 2 A

Plus en détail

CHAPITRE 4 LA VAR MONTE CARLO... 2

CHAPITRE 4 LA VAR MONTE CARLO... 2 CHAPITRE 4 LA VAR MONTE CARLO... I. PRINCIPE... A. Quel modèle uiliser?... B. Algorihme de simulaion... 3 II. EXEMPLE D APPLICATION... 4 A. Travail préliminaire... 4 B. Simulaion des rajecoires... 6 Algorihme...

Plus en détail

Echantillonnage d un signal : principe et conditions à satisfaire.

Echantillonnage d un signal : principe et conditions à satisfaire. Page 1 Echanillonnage d un signal : principe e condiions à saisfaire. I. Inroducion. L acquisiion d une grandeur analogique par l inermédiaire d une care d acquisiion possédan plusieurs enrées analogiques

Plus en détail

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions 1 Juille 2001 Evaluaions socio-économiques e financière des projes de ranspors collecifs : méhode de calcul, paramères e convenions Période de l éude La période de l éude débue à l année de mise en service.

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Équations différentielles du premier ordre

Équations différentielles du premier ordre Équaions différenielles du premier ordre Vous rouverez ici de brefs résumés e exemples sur les applicaions concrèes des équaions différenielles du premier ordre : variaion de empéraure désinégraion radioacive

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

LES COMPTEURS 3. COMPTEURS ET DECOMPTEURS ASYNCHRONES :

LES COMPTEURS 3. COMPTEURS ET DECOMPTEURS ASYNCHRONES : ISET de Nabeul ours de Sysème logique (2) hapire 3. OBJETIFS LES OMPTEURS Eudier les différens ypes de compeurs. omprendre le principe de foncionnemen de chaque ype. Mairiser les éapes de synhèse d un

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI UNIVERSIE PARIS OUES, NANERRE LA DEFENSE UFR SEGMI Année universiaire 202 203 Cours d économérie L3 Economie Cours de Valérie MIGNON D de Benoî CHEZE e David GUERREIRO Exercice : Données en coupe D Inroducion

Plus en détail

4. Principe de la modélisation des séries temporelles

4. Principe de la modélisation des séries temporelles 4. Principe de la modélisaion des séries emporelles Nous raierons ici, à ire d exemple, la modélisaion des liens enre la polluion amosphérique e les indicaeurs de sané. Mais les méhodes indiquées, comme

Plus en détail

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation»

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation» Exercice du cours Managemen Bancaire : «Calcul de la VaR d une obligaion» L une des préoccupaions des gesionnaires des risques dans les banques es de prendre en compe les caracérisiques des porefeuilles

Plus en détail

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan.

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan. Cas du circui I. Un exemple d applicaion d un circui : un composan du sysème d alimenaion en gazole d une ogan. xrai du suje IBAN 2006 a Dacia ogan, conçue par le consruceur français enaul es produie au

Plus en détail

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque?

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque? Nom : Prénom : Conrôle de mahémaiques, Le mercredi 30 mai 2012 Exercice 1. [3 poins] 1) Parmi les cinq premières figures numéroées de a) à e) recopie sur a copie le numéro de celles qui son des polygones

Plus en détail

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps.

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps. Modélisaion des sysèmes mécaniques LA CINÉMATIQUE DU POINT Dae : Inroducion : La cinémaique es la parie de la mécanique qui éudie le mouvemen des corps, indépendammen des effors qui les produisen. Les

Plus en détail

L.S. EL AMEL Fouchana DEVOIR DE SYNTHESE N 1 Année scol : 2012 / 2013 Réalisé par : S. Dhahri TECHNOLOGIE Classe : 3 ème année S.

L.S. EL AMEL Fouchana DEVOIR DE SYNTHESE N 1 Année scol : 2012 / 2013 Réalisé par : S. Dhahri TECHNOLOGIE Classe : 3 ème année S. L.S. EL AMEL Fouchana DEVOIE SYNTHESE N Année scol : / Réalisé par : S. Dhahri TECHNOLOGIE Classe : ème année S.Tech Dae : / / Durée : Heures PROBLEME : COMMANDE DE FEUX TRICOLORES D UN CARREFOUR ROUTIER

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

Le Principe de PASCAL

Le Principe de PASCAL Hydraulique LES LOIS D HYDROSTATIQUE N 1/8 LA FORCE. On appelle FORCE oue acion qui end à modifier l éa d un corps. Elle s exprime en NEWTON (symbole N). La force es définie par son sens, son inensié,

Plus en détail

Les fonctions logiques & l algèbre de Boole

Les fonctions logiques & l algèbre de Boole Les foncions logiques & l algèbre de Boole 1 - Algèbre de Boole Hisorique : Georges BOOLE, philosophe e mahémaicien anglais, publia en 1854 un essai sur les raisonnemens logiques poran sur les proposiions

Plus en détail

Chapitre n 10 LES RÉACTIONS D ESTÉRIFICATION ET D HYDROLYSE

Chapitre n 10 LES RÉACTIONS D ESTÉRIFICATION ET D HYDROLYSE Chapire n LES RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE T ale S I- Les esers )Formule générale Un eser comprend deux chaînes carbonées R e R séparées par la foncion eser : Rq. : Si les chaînes carbonées son

Plus en détail

DOSSIER TECHNIQUE. FONCTION RETARD ou TEMPORISATION

DOSSIER TECHNIQUE. FONCTION RETARD ou TEMPORISATION DOSSIER TECHNIQUE Foncion FONCTION RETARD ou TEMPORISATION La foncion reard ou emporisaion es une foncion dans laquelle oue ransiion d enrée (commande) se radui par une ransiion reardée de l informaion

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

SERIES CHRONOLOGIQUES

SERIES CHRONOLOGIQUES SERIES CHRONOLOGIQUES On appelle série chronologique ou chronique une série d'observaions échelonnées dans le emps. Les inervalles enre deux mesures peuven êre quelconques. En général, ils son de même

Plus en détail

Installations électriques des bâtiments.

Installations électriques des bâtiments. TP 4 : Eude de la errasse (Minuerie) Objecifs : Insallaions élecriques des bâimens. Prendre connaissance du CCTP, des plans dexécuion. Prendre connaissance e simuler sous chemaplic le monage Minuerie.

Plus en détail

Cinétique Chimique. Cinétique simple. Besançon, Pharmacie 1 ère Année. E. Cavalli - UFR SMP - UFC

Cinétique Chimique. Cinétique simple. Besançon, Pharmacie 1 ère Année. E. Cavalli - UFR SMP - UFC Cinéique Chimique Cinéique simple Besançon, Pharmacie ère nnée E. Cavalli - UFR SMP - UFC I - Inroducion Cinéique Chimique - Obje e inérê de la cinéique chimique Cinéique simple E. Cavalli - UFR SMP -

Plus en détail

STRATEGIES DE MAINTENANCE LA FIABILITE DES SYSTEMES DE PRODUCTION

STRATEGIES DE MAINTENANCE LA FIABILITE DES SYSTEMES DE PRODUCTION I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

ANALYSE GEOSTATISTIQUE DE LA REPARTITION DES CREVETTES DANS LE LAC NOKOUE A SO-AVA (BENIN)

ANALYSE GEOSTATISTIQUE DE LA REPARTITION DES CREVETTES DANS LE LAC NOKOUE A SO-AVA (BENIN) ANALYSE GEOSTATISTIQUE DE LA REPARTITION DES CREVETTES DANS LE LAC NOKOUE A SO-AVA (BENIN) Naboua KOUHOUNDJI, Lamber C. HINVI 2, Brice TENTE 3, Georges AGBAHUNGBA, Brice SINSIN 4 Chaire Inernaionale en

Plus en détail

Première STG Chapitre 4 : taux d'évolution. page n

Première STG Chapitre 4 : taux d'évolution. page n Première STG Chapire 4 : aux d'évoluion. page n 1 On peu lire dans un journal : " Le prix de la able basse, qui es passé de 500 à 502, n'a praiquemen pas bougé. " e plus loin : " Hausse impressionnane

Plus en détail

Un modèle de propagation d un nuage de fumée

Un modèle de propagation d un nuage de fumée Un modèle de propagaion d un nuage de fumée Gabriel Caloz & Grégory Vial 9 février 26 Résumé L obe de ce documen es de présener à l aide d ouils élémenaires le problème de ranspor dans R. Une modélisaion

Plus en détail

CHOIX DE DISJONCTEURS

CHOIX DE DISJONCTEURS CHOX DE DSJONCTEURS 1) Séleciviés des proecions : l y a sélecivié des proecions si un défau, survenan en un poin quelconque du réseau, es éliminé par l appareil de proecion placé immédiaemen en amon du

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores

Figure 1. Enregistrements et spectres fréquentiels des deux émetteurs sonores Classe de Terminale S Physique Thème abordé : Ondes sonores Poin Cours Exercice Pour ou l exercice, on considère la célérié v du son dans l air, à 2 C, égale à 34 m.s. Les rois paries de l exercice son

Plus en détail

S 4 : Phénomène d interférence et de battement

S 4 : Phénomène d interférence et de battement : PCSI 016 017 I Inerférence : mise en évidence epérimenale 1. Disposiif epérimenal n dispose deu émeeurs ulrasons (f = 40 khz) que l on va brancher sur le même généraeur e d un récepeur qu on va brancher

Plus en détail

MATHEMATIQUES FINANCIERES II

MATHEMATIQUES FINANCIERES II Formaion Ouvere e A Disance LIVRET 52 BIS : MATHEMATIQUES FINANCIERES II LES ANNUITES Page 1 INTRODUCTION : FOAD mahémaiques financières II Exemple 1 : Une personne veu acquérir une maison pour 60000000

Plus en détail

Problème d'examen (Représentation triangulaire, ACP et élections)

Problème d'examen (Représentation triangulaire, ACP et élections) ISFA 2 année 2-21 Problème d'examen (Représenaion riangulaire, ACP e élecions) D. Chessel Les exercices (17-2) son indépendans du problème (1-16). 1. Quesions On considère la marice A à n = 14 lignes e

Plus en détail

Première E.S. Lycée Desfontaines Melle. Pourcentages

Première E.S. Lycée Desfontaines Melle. Pourcentages Première E.S. Lycée Desfonaines Melle I. Inroducion Pourcenages Définiion : On considère deux quaniés Q e Q de même naure, exprimées dans la même unié. Dire que Q es égale à % de Q revien à dire que Q

Plus en détail

FIABILITE. Eléments de cours CONCEPTION - RÉALISATION FIABILITÉ DE CONDUITE FIABILITÉ PRÉVISIONNELLE FIABILITÉ FIABILITÉ D'EXPLOITATION

FIABILITE. Eléments de cours CONCEPTION - RÉALISATION FIABILITÉ DE CONDUITE FIABILITÉ PRÉVISIONNELLE FIABILITÉ FIABILITÉ D'EXPLOITATION Ce chapire es le premier, d une série de rois, consacré à ce que l on appelle en mainenance le concep «FMD» ; c es à dire, MAINTENABILITE e DISPONIBILITE. Les objecifs de ce chapire seron de déerminer

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail

COMPARATEURS ANALOGIQUES

COMPARATEURS ANALOGIQUES I/ RAPPEL COMPARATEURS ANALOGIQUES Page 1 Signal logique e signal On di qu'un signal élecrique es logique lorsqu'il. analogique V On di qu'un signal es analogique lorsque son évoluion (en général en foncion

Plus en détail

TD : IS LM. p Le modèle IS/LM. p L'interface proposée. p Faire évoluer la feuille. 4. Implémenter un modèle plus général.

TD : IS LM. p Le modèle IS/LM. p L'interface proposée. p Faire évoluer la feuille. 4. Implémenter un modèle plus général. TD : IS LM Dora Rémi 1. Le modèle IS/LM p 2 2. L'inerface proposée p 4 3. Faire évoluer la feuille p 5 4. Implémener un modèle plus général p 7 TD-Modèle IS/LM 1 1. Le modèle IS/LM La courbe IS Le modèle

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Modèles stochastiques. Chaînes de Markov discrètes

Modèles stochastiques. Chaînes de Markov discrètes odèles sochasiques Chaînes de arkov discrèes 1. Processus sochasique discre { } Suie de variables aléaoires X, T T es un ensemble d'eniers non-négaifs e X représene une mesure d'une caracérisique au emps

Plus en détail

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3 PHYSIQUE APPLIQUÉE Durée : 4 heures Coefficien 3 Le problème éudie l enraînemen d un venilaeur conrôlan le irage d une chaudière de fore puissance équipan une usine de pâe à papier. La régulaion de empéraure

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

La réponse d un système linéaire en questions

La réponse d un système linéaire en questions La réponse d un sysème linéaire en quesions Version juille 00 Quesions La réponse d un sysème linéaire en quesions _1_ Un sysème es caracérisé par la ransmiance : jω) = 3 + 5jω quelle es l équaion différenielle

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Macroéconométrie II. Approche alternative aux mécanismes dynamiques : la modélisation VAR

Macroéconométrie II. Approche alternative aux mécanismes dynamiques : la modélisation VAR acroéconomérie II. Aroche alernaive aux mécanismes dynamiques : la modélisaion VAR Claudio Araujo CERDI, Universié d Auvergne Clermon-Ferrand, France www.cerdi.org h://www.cerdi.org/claudio-araujo/erso/.

Plus en détail

Gérard Roland, Economie Politique Chapitre 23 CHAPITRE 23 LA CROISSANCE ECONOMIQUE 1. INTRODUCTION : LES CHIFFRES CLES DE LA CROISSANCE ECONOMIQUE

Gérard Roland, Economie Politique Chapitre 23 CHAPITRE 23 LA CROISSANCE ECONOMIQUE 1. INTRODUCTION : LES CHIFFRES CLES DE LA CROISSANCE ECONOMIQUE Gérard Roland, Economie Poliique Chapire 23 CHAPITRE 23 LA CROISSACE ECOOMIQUE Ce chapire consiue une inroducion aux héories de la croissance économique. Après un bref exposé des fais sylisés de la croissance

Plus en détail

Convertisseurs. Figure 1 Figure 2

Convertisseurs. Figure 1 Figure 2 Converisseurs Converisseurs On se propose d éudier expérimenalemen les converisseurs permean de passer d un signal analogique à un signal numérique, e inversemen. Il s agi de mesurer leurs principales

Plus en détail

Gérard Roland, Economie Politique Chapitre 23 CHAPITRE 23 LA CROISSANCE ECONOMIQUE 1. INTRODUCTION : LES CHIFFRES CLES DE LA CROISSANCE ECONOMIQUE

Gérard Roland, Economie Politique Chapitre 23 CHAPITRE 23 LA CROISSANCE ECONOMIQUE 1. INTRODUCTION : LES CHIFFRES CLES DE LA CROISSANCE ECONOMIQUE Gérard Roland, Economie Poliique Chapire 23 CHAPITRE 23 LA CROISSACE ECOOMIQUE Ce chapire consiue une inroducion aux héories de la croissance économique. Après un bref exposé des fais sylisés de la croissance

Plus en détail

I - Variation et suites

I - Variation et suites I - Variaion e suies Résulas d apprenissage généraux décrire e effecuer des opéraions sur des ableaux pour résoudre des problèmes, en uilisan des ouils echnologiques, si nécessaire produire e analyser

Plus en détail

Logique combinatoire : Partie 1

Logique combinatoire : Partie 1 1. Inroducion Lorsqu'on exprime les variables de sories uniquemen en foncion des variables d'enrées, le problème à résoudre relève de la logique combinaoire. Auremen di à chaque combinaison des variables

Plus en détail

1 ère L Les pourcentages

1 ère L Les pourcentages 1 ère L Les pourcenages Ce chapire se place dans le cadre de l informaion chiffrée. III. Calculer une valeur après un pourcenage d augmenaion e de diminuion (opéraeur associé à un pourcenage d évoluion)

Plus en détail

Textures. François Faure. 2 Coordonnées de texture Modes de répétition Le problème des surfaces courbes... 5

Textures. François Faure. 2 Coordonnées de texture Modes de répétition Le problème des surfaces courbes... 5 Texures François Faure Résumé Table des maières 1 Inroducion 2 2 Coordonnées de exure 3 2.1 Modes de répéiion............................... 3 2.2 Le problème des surfaces courbes.......................

Plus en détail

Faisabilité d une méthode par scénarios sur des projets routiers

Faisabilité d une méthode par scénarios sur des projets routiers Rappor d éude Prise en compe du risque macro-économique dans le calcul socio-économique Faisabilié d une méhode par scénarios sur des projes rouiers Avril 2014 Collecion «L'esseniel» Prise en compe du

Plus en détail

LOIS DE PROBABILITÉS CONTINUES

LOIS DE PROBABILITÉS CONTINUES LOIS DE PROBABILITÉS CONTINUES Probabiliés Sujes de Bac Eercice (Cenre éranger Groupe, juin 23) Une enreprise desser une région monagneuse. En chemin, les véhicules peuven êre bloqués par des incidens

Plus en détail

Prévision de court terme de la croissance du PIB français à l aide de modèles à facteurs dynamiques

Prévision de court terme de la croissance du PIB français à l aide de modèles à facteurs dynamiques Prévision de cour erme de la croissance du PIB français à l aide de modèles à faceurs dynamiques Marie Bessec, Caherine Doz To cie his version: Marie Bessec, Caherine Doz. Prévision de cour erme de la

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

LA LOGIQUE SEQUENTIELLE

LA LOGIQUE SEQUENTIELLE Auomaique e Informaique Indusrielle LA LOGIQUE SEQUENTIELLE SOMMAIRE Tire Page I. Définiion (rappel) : Sysème séqueniel 2 II. Prise en compe du emps 2 a) foncion mémoire 2 b) foncion(s) reard(s), emporisaion

Plus en détail

Lois générales de l'électrocinétique

Lois générales de l'électrocinétique Lois générales de l'élecrocinéique «Paience e longueur de emps Fon plus que force ni que rage.» Jean de La Fonaine in «Fables», le Lion e le Ra. Résumé L élecrocinéique raie de la circulaion des charges

Plus en détail

LA GESTION DES CENTRALES HYDROÉLECTRIQUES EN SÉRIE PAR BALANCEMENT DES RÉSERVOIRS

LA GESTION DES CENTRALES HYDROÉLECTRIQUES EN SÉRIE PAR BALANCEMENT DES RÉSERVOIRS UNIVERSITÉ DE MONTRÉAL LA GESTION DES CENTRALES HYDROÉLECTRIQUES EN SÉRIE PAR BALANCEMENT DES RÉSERVOIRS IMED LAOUINI DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Plus en détail

On verra des signaux communs analogiques et discrets et l application de ces signaux à des systèmes simples par l entremise de la convolution.

On verra des signaux communs analogiques et discrets et l application de ces signaux à des systèmes simples par l entremise de la convolution. Chapire Signaux e sysèmes Ce premier chapire ser de révision des principes de base des signaux, comme par exemple les définiions de période, phase, ainsi qu une inroducion aux sysèmes. Les conceps de signaux

Plus en détail

INTRODUCTION AUX MODÈLES ESPACE-ÉTAT ET AU FILTRE DE KALMAN

INTRODUCTION AUX MODÈLES ESPACE-ÉTAT ET AU FILTRE DE KALMAN INTRODUCTION AUX MODÈLES ESPACE-ÉTAT ET AU FILTRE DE KALMAN Mahieu Lemoine * Déparemen analyse e prévision de l OFCE Florian Pelgrin * Banque du Canada, Eurequa, Universié Paris I e OFCE Nous déaillons

Plus en détail

3.1 La définition des tâches

3.1 La définition des tâches TÂCHES Projec 2016 3.1 La définiion des âches A- Saisir les âches d'un proje Les âches représenen le ravail à accomplir pour aeindre l objecif du proje. Elles représenen, de ce fai, les élémens de base

Plus en détail

Module TS (Théorie de Signal)

Module TS (Théorie de Signal) Module TS (Théorie de Signal) Conenu de Module Chap1 : Signaux, Foncions e Opéraeurs de base. Chap2 : Classificaion des Signaux. Chap3 : Séries e Transformée de Fourier. Chap4 : Convoluion e Corrélaion.

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

Réponse d un dipôle RL à un échelon de tension

Réponse d un dipôle RL à un échelon de tension éonse d un diôle L à un échelon de ension Tire Descriion emarques 1- Le diôle L es une associaion en série d une bobine e d un conduceur ohmique (ou résisor) : I- Inroducion 2- L échelon de ension : es

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonne Maser GSI - Capeurs Chaînes de Mesures 1 Plan du Cours Propriéés générales des capeurs Noion de mesure Noion de capeur: principes, classes, caracérisiques

Plus en détail

TD Biomécanique 4. t vol t

TD Biomécanique 4. t vol t Exercice La fiure suiane représene la force ericale appliquée par un indiidu lors d un es de déene sur plae forme de force. Lors de ce es, l indiidu par arrêé. - -4-6 -8 - - -4-6 -8 - -..4.6.8. Calculer

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail