Exercice 2 (Séries de fonctions - 7 points)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercice 2 (Séries de fonctions - 7 points)"

Transcription

1 INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple des séries etières : 1 x, x R 2 N a +1 O peut utiliser la règle de d'alembert e posat a O a 1 Doc le + a rayo de covergece est R 1 De plus, N diverge et N ( 1) diverge Doc le domaie de covergece est D ] 1, 1[ ( 1) x, x R N D'après la règle de d'alembert, R 1 La série 1 N diverge (série harmoique) et la série ( 1) N coverge (série alterée) Le domaie de covergece est doc D ] 1, 1] Dire si les armatios suivates sot vraies ou fausses E doer ue démostratio ou u cotre-exemple 1 Les séries a z et ( 1) a z ot même rayo de covergece C'est vrai E eet, z C, z < R, a z et a ( z) coverget De même, pour z > R, a z et a ( z) diverget O voit doc que z C, N ( 1) a z a le même rayo de covergece que N a z 2 Les séries a z et ( 1) a z ot même domaie de covergece C'est faux Par exemple, sur R, la série ( 1) x a pour domaie de CVS l'itervalle ] 1, 1], tadis que la série 1 x a pour domaie de CVS l'itervalle [ 1, 1[ 3 Si a x a u rayo de covergece i R >, alors sa somme admet ue ite iie e R (ie la ite à gauche de R) C'est faux Par exemple, la série ( 1) x coverge au poit x R 1 N Exercice 2 (Séries de foctios - 7 poits) Pour x R + et N, 2, o pose f (x) x exp( x) de covergece) et S(x) 2 f (x) (sous réserve

2 1 Etudier la covergece simple, ormale et uiforme de la série f sur R + Covergece simple : Pour tout x >, o a - à partir d'u certai rag - f (x) 1 d'après les croissaces 2 comparées Doc par le théorème de comparaiso pour les séries à termes positifs, 2 f coverge simplemet sur ], + [ De plus f (), 2 Doc 2 f coverge simplemet sur [, + [ Covergece ormale : O calcule f O a f () et x + f (x) De plus f (x) exp( x)(1 x) x 1 Pour coclure : ( ) 1 f f exp( 1) D'après les résultats sur les séries de Bertrad, N f diverge (comparaiso de la série à l'itégrale de Covergece uiforme : 1 x l(x) ) Sur tout itervalle de type [a, + ], avec a >, o peut coclure que f x exp( a) Doc à partir d'u certai rag, f 1 2 O a doc covergece ormale, uiforme et simple sur l'itervalle ], + [ Par cotre, o 'a pas ecore coclu sur l'itervalle [, + [ remarquer que le reste d'ordre satisfait : k f k (x) 1 x exp( kx) k x exp( x) (1 exp( x)) Et le membre de droite ted bie vers e + O a doc bie : S S R + où S représete ue somme partielle et R représete le reste d'ordre 2 Motrer que S est de classe C 1 sur R + Pour coclure, o peut sup(t/(1 exp( t)), t ) O a f (x) 1 exp( x)(1 x) Par les croissaces comparées, o peut doc coclure que sur tout itervalle de type [a, + [ avec a > : f 1 2 à partir d'u certai rag Aisi, 2 f coverge ormalemet, uiformémet et simplemet sur ], + [ O peut coclure e utilisat les théorèmes d'iterversio dérivée et somme que : S (x) f (x) sur ], + [ De plus, S est cotiue d'après le théorème de cotiuité pour les séries de foctios Doc S est C 1 sur R + ], + [ 2 2

3 3 Motrer que S 'est pas dérivable à droite e O doit calculer : S(x) S() x + x O pose S (x) k2 f k(x) Aisi : S (x) x k2 x + S(x) x exp( kx) l(k) E particulier, pour x 1 et e remarquat que la suite (S (x)) N est croissate, o a doc : S(1/) 1/ S (1/) exp( 1) 1/ l(k) k2 Or + k2 e + exp( 1) l(k) + Doc x + S(x) x + et doc S 'est pas dérivable 4 Motrer que x k S(x) ted vers e + pour tout k N O ote : et U(x) T (x) x k f (x) x k S(x) 2 x k+1 f (x) x k+1 S(x) 2 T (x) ted vers ue valeur ie sur l'itervalle [1, + [ car pour susammet grad : Or T (x) xu(x) Doc : sup x k+1 f (x) 1 x [1,+ [ 2 U(x) T (x) x + x + x Exercice 3 (Suites de foctios - 4 poits) Soit f : R + R ue foctio cotiue, o idetiquemet ulle, telle que f() et f(x) O pose f (x) f(x) et g (x) f ( x x + ) 1 Doer u exemple de foctio f O peut predre par exemple : x si x [, 1] f(x) 1 x si x [1, 2] sio 3

4 2 Motrer que f et g coverget simplemet vers la foctios ulle Soit ɛ > Comme f est cotiue et de ite ulle, o sait qu'il existe A > tel que x > A, f(x) < ɛ Doc pour tout x >, il existe, tel que, f (x) f(x) < ɛ O coclut que x >, + f (x) et doc (f ) N coverge simplemet vers De plus f (), N Doc (f ) N coverge simplemet vers sur [, + [ De même, comme f est cotiue et ulle e, o sait qu'il existe a > tel que x [, a], g(x) < ɛ Aisi, pour tout x >, il existe, tel que, g (x) f(x/) < ɛ O coclut que x >, + g (x) et doc (g ) N coverge simplemet vers De plus g (), N Doc (g ) N coverge simplemet vers sur [, + [ 3 Motrer que la covergece 'est pas uiforme O a f f pour tout N E eet : f De même, g f, N sup f(x) sup f(x) f x [,+ [ x [,+ [ Or par hypothèse, f 'est pas idetiquemet ulle Doc f > et 4 Si f(t)dt coverge, chercher + O a : f g f > + + f (t)dt f (t)dt et 1 + f(t)dt f(x) dx f(x)dx g (t)dt Doc : + f (t)dt Par u chagemet de variable similaire, o obtiet : + g (t)dt + Exercice 4 (Espaces vectoriels ormés - 5 poits) O cosidère E C, l'esemble des foctios cotiues sur R O rappelle que pour tout f E, la orme L 1 est déie par : f 1 1 f(t) dt 4

5 Pour tout N, 2, o cosidère la foctio f déie pour tout x [, 1] par : 1 si x f (x) x + 1 si 1 x si x Dessier grossièremet la foctio f f est ue foctio cotiue Elle vaut 1 au poit x 1 1 Elle décroît liéairemet 2 vers sur l'itervalle 1 1 x 1, puis est aule jusqu'à Détermiez la ite simple de la suite de foctios (f ) N La ite simple de cette suite de foctios est : { 1 si x [, 1/2[ f(x) sio 3 Motrer que la suite (f ) N est de Cauchy O calcule f +p f 1 : f +p f 1 f +p (x) f (x) dx f +p (x) f (x)dx Or sur l'itervalle [1/2 1/, 1/2], o remarque que f +p (x) f (x) 1 Doc : f +p f 1 1/2 1/2 1/ 1dx 1/ et + f +p f 1, ce qui motre que (f ) N est de Cauchy das (E, 1 ) 4 E déduire que l'espace vectoriel ormé (E, 1 ) 'est pas complet La suite (f ) N est de Cauchy, or elle e coverge pas, car sa ite simple f 'appartiet pas à E (l'esemble des foctios cotiues) Doc (E, 1 ) 'est pas complet

Exercices corrigés sur les séries de fonctions

Exercices corrigés sur les séries de fonctions Eercices corrigés sur les séries de foctios Eocés Eercice Motrer que la série ( ) est uiformémet covergete mais o ormalemet covergete sur [, ] Eercice 2 Étudier la covergece sur R + de la série de foctios

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

L2 - Math4 Exercices corrigés sur les séries numériques

L2 - Math4 Exercices corrigés sur les séries numériques L - Math4 Exercices corrigés sur les séries umériques Eocés Exercice Soiet a et b deux séries à termes strictemet positifs vériat : N:, a + a b + b Motrer que si b coverge, alors a coverge ; si a diverge,

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 SESSION 22 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE MP MATHEMATIQUES EXERCICE : ormes équivaletes. Soit f E. f est de classe C sur [,]. Doc la foctio f est cotiue sur le segmet [,] et par suite la foctio

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Université Claude Bernard - Lyon 1 Semestre de printemps Partie CCP - Devoir numéro 3

Université Claude Bernard - Lyon 1 Semestre de printemps Partie CCP - Devoir numéro 3 Uiversité Claude Berard - Lyo Semestre de pritemps 24-25 Math IV - Cursus préparatoire 2A Durée : heure et 3 miutes Partie CCP - Devoir uméro 3 Le cadidat attachera la plus grade importace à la clarté,

Plus en détail

Exercices sur les suites de fonctions

Exercices sur les suites de fonctions ercices sur les suites de foctios océs ercice Étudier la covergece simple et uiforme des suites de foctios de R das R suivates : f ) = ), g ) = si, ϕ ) = e si, ψ ) = e cos. ercice 2 Étudier la covergece

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

L2 - Math4 Exercices corrigés sur les suites numériques

L2 - Math4 Exercices corrigés sur les suites numériques L2 - Math4 Exercices corrigés sur les suites umériques Eocés Exercice Les assertios suivates sot-elles vraies ou fausses? Doer ue démostratio de chaque assertio vraie, et doer u cotre-exemple de chaque

Plus en détail

C.C.P TSI Mathématiques 1

C.C.P TSI Mathématiques 1 CCP TSI Mathématiques Eercice -) L'éocé e dit pas que f est défiie sur IR O pourrait doc cosidérer que f est défiie sur IR πz et, das ce cas, f() et f(π) 'eisteraiet pas Si f est défiie sur IR, par imparité

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1 SESSION 2005 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES PREMIER EXERCICE a. T (x + y dxdy = = ( y= (x + y dy y= x dx = ((x + 2 ( x2 + x2 2 dx = T (x + y dxdy = 4 3. [xy +

Plus en détail

Corrigé du problème: autour de la fonction zeta alternée de Riemann

Corrigé du problème: autour de la fonction zeta alternée de Riemann Corrigé du problème: autour de la foctio zeta alterée de Riema I Gééralités Pour x >, la suite décroît vers, doc la série coverge par le critère spécial des séries alterées Pour x, e ted pas vers, ce qui

Plus en détail

D.M. 21 : fonctions absolument monotones, solutions

D.M. 21 : fonctions absolument monotones, solutions DM : foctios absolumet mootoes, solutios IA a) (i) Soiet f et g AM Pour tout N, (f + g) () = f () + g (), doc comme f et g sot AM, f () + g () pour tout N, doc (f + g) est AM Par la formule de Leibiz,

Plus en détail

Feuille d exercices 11

Feuille d exercices 11 Mathématiques Aalyse I M. Samy Modeliar Feuille d eercices Itégratio Correctio Eercice Détermier, si elle eiste, la ite e + de la suite de terme gééral si ( π + ) d + Correctio. Pour tout etier, la foctio

Plus en détail

Limites de suites, cours, terminale S

Limites de suites, cours, terminale S Limites de suites, cours, termiale S Covergece de suites Déitio : Soit (u ) ue suite. O dit que (u ) coverge vers u réel l ou a pour limite l lorsque tout itervalle ouvert A coteat l, cotiet tous les termes

Plus en détail

CCP PSI première épreuve : corrigé

CCP PSI première épreuve : corrigé CCP 006 -PSI première épreuve : corrigé Partie I... D après la formule du biôme, =0 = ( + ) =.. O a doc N, a =..3. Les séries (a ) et (a ) sot grossièremet divergetes... La formule du biôme idique que

Plus en détail

Exercices corrigés sur les séries entières

Exercices corrigés sur les séries entières Exercices corrigés sur les séries etières Eocés Exercice Détermier le rayo de covergece des séries etières a z suivates : a l, a l, a, a e /3, a +!, a arcsi + π 4. Exercice Détermier le rayo de covergece

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

Suites de réels. Contents. 1 Retenez au moins ça 3

Suites de réels. Contents. 1 Retenez au moins ça 3 Suites de réels Cotets 1 Reteez au mois ça 3 Bore supérieure 3.1 Déitios.......................................... 3.1.1 Relatio d'ordre sur u esemble E....................... 3.1. Ordre total.....................................

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mp.cpgedupuydelome.fr] édité le 9 mai 07 Eocés Calcul de ites Exercice [ 054 ] [Correctio] Détermier la ite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = + + d u =

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

1. Après avoir décomposé la fraction rationnelle, décider, en utilisant la dénition de la. convergence d'une série numérique, si la série

1. Après avoir décomposé la fraction rationnelle, décider, en utilisant la dénition de la. convergence d'une série numérique, si la série Outils Mathématiques 3 PCSTM L) Aée 00/0 Uiversité de Rees UFR Mathématiques Chapitre : Séries umériques Exercice... Après avoir décomposé la fractio ratioelle, décider, e utilisat la déitio de la xx +

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Concours CCP, épreuve 1, filière PSI, 2007 PARTIE I : Les suites α et β

Concours CCP, épreuve 1, filière PSI, 2007 PARTIE I : Les suites α et β Cocours CCP, épreuve, filière PS, 27 PARTE : Les suites α et β.. Étude de la suite α... α = ; α = ; α 2 = ; α 3 = 2 ; α 4 = 9...2. Par récurrece immédiate, α est u etier relatif pour tout. Les ombres α

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

C.B. Analyse : solutions

C.B. Analyse : solutions l( ) ) La foctio f C.B. Aalyse : solutios Partie I : Etude de la foctio L a) Par théorème géérau, f est de classe C sur ], [ {}. E, o motre simultaémet les deu propriétés e obteat u D.L. de f e. O sait

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mpcpgedupuydelomefr] édité le 3 ovembre 07 Eocés Calcul de limites Exercice [ 054 ] [Correctio] Détermier la limite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = +

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

Convergence en loi. Théorème de la limite centrale.

Convergence en loi. Théorème de la limite centrale. Uiversité Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 10 (semaie du 2 au 6 décembre 2013 Covergece e loi. Théorème de la limite cetrale. Covergece e loi 1. Soiet (X N ue

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1 SOLUTIONS AUX EXERCICES DE LA FEUILLE. Exercice. Ue suite de réels positifs qui coverge vers 0 est décroissate à partir d u certai rag. C est faux. Pour costruire u cotre-exemple, o pourrait cosidérer

Plus en détail

Suites et séries de fonctions. Bachir Bekka, Cours L3 Rennes 2015/2016

Suites et séries de fonctions. Bachir Bekka, Cours L3 Rennes 2015/2016 Suites et séries de foctios Bachir Bekka, Cours L3 Rees 215/216 13 décembre 215 ii Notes Cours SSF-215/216-B.Bekka Table des matières 1 Itroductio 1 2 Suites et séries de foctios 3 2.1 Covergece simple........................

Plus en détail

= P (X k)p (Y k) = (1 α) k (1 β) k = [(1 α)(1 β)] k.

= P (X k)p (Y k) = (1 α) k (1 β) k = [(1 α)(1 β)] k. Aée 25/26 Semaie 2 Classe de PC*, lycée Louis le Grad Exercice Soiet (Ω, F, P ) u espace probabilisé, X et Y deux variables idépedates suivat des lois géométriques (à valeurs das N) de paramètre α et β

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 3

SOLUTIONS AUX EXERCICES DE LA FEUILLE 3 SOLUTIONS AUX EXERCICES DE LA FEUILLE 3. Exercice Soiet + =0 u et + =0 v deux séries. Le but de cet exercice est de motrer que deux propriétés qui étaiet vraies pour les séries à termes positifs e sot

Plus en détail

Produit de Cauchy de la série alternée par elle-même.

Produit de Cauchy de la série alternée par elle-même. CCP 8. Filière MP. Mathématiques. Corrigé pour serveur UPS par JL. Lamard (jea-louis.lamard@prepas.org I. Gééralités. Pour > la série défiissat F coverge absolumet, pour < elle coverge par le critère spécial

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

Corrigé feuille d exercices 4

Corrigé feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 008/009 MIME LM5-Suites et Itégrales Groupes Corrigé feuille d exercices Suites Covergece de suites Exercice Ue suite u N est pas croissate, si o N, u + u est vérifiée

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Chapitre 11. (Étude élémentaire des) Séries numériques

Chapitre 11. (Étude élémentaire des) Séries numériques ECE - Aée 05-06 Lycée fraçais de Viee Mathématiques - F. Gauard http://frederic.gauard.com Chapitre. (Étude élémetaire des) Séries umériques Ce chapitre présete la otio de série umérique aisi que les premiers

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 006 EPREUVE SPECIIQUE ILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot autorisées * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

Exercices sur les séries numériques. Exercice 1 (Nature de série) Déterminer la nature de la série de terme général u n : 12.

Exercices sur les séries numériques. Exercice 1 (Nature de série) Déterminer la nature de la série de terme général u n : 12. Araud de Sait Julie - MPSI Lycée La Merci 206-207 Exercices sur les séries umériques Pour démarrer Exercice Nature de série) Détermier la ature de la série de terme gééral :. = arcta5 ) 2 2. = 23 7 + 3.

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Calcul de rayon de convergence concret

Calcul de rayon de convergence concret [http://mp.cpgedupuydelome.fr] édité le 7 août 207 Eocés Calcul de rayo de covergece cocret Exercice [ 0097 ] [Correctio] Détermier le rayo de covergece des séries etières : (a 0 2 + 3 z (b 0 e 2 z Exercice

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA PREMIERE PARTIE

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA PREMIERE PARTIE SESSION 99 SAINT-CYR MATHEMATIQUES - Epreuve commue Optios M, P, T, TA PREMIERE PARTIE a Pour x R et N, u x Doc, N, u Comme la série de terme gééral coverge, la série de foctios de terme gééral u coverge

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Préparation au Capes de Mathématiques Probabilités - Problème sur les médianes - Correction

Préparation au Capes de Mathématiques Probabilités - Problème sur les médianes - Correction Préparatio au Capes de Mathématiques Probabilités - Problème sur les médiaes - Correctio Prélimiaires Soit X ue v.a.r. de type 1 et F sa f.d.r.. O pose, pour tout de Z, p = P (X = ) et P = k p. O a : Z

Plus en détail

Examen du 12 juin durée : 3h

Examen du 12 juin durée : 3h Master de Mathématiques Aalyse Foctioelle Exame du 1 jui 13 1 - durée : 3h Le seul documet autorisé est u résumé mauscrit du cours de trois pages maximum. Les téléphoes portables et les calculatrices e

Plus en détail

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1 Exercices 7 SUITES NUMÉRIQUES Récurrece O appelle factorielle et o écrit! le produit des etiers cosécutifs de à : Par covetio : 0! =.! = 3 ) Pour ue foctio f, o ote f ) sa dérivée - ième. Soit f défiie

Plus en détail

CORRIGÉ : MATH 1 ; MP ; Mines-ponts_2015

CORRIGÉ : MATH 1 ; MP ; Mines-ponts_2015 CORRIÉ : MATH 1 ; MP ; Mies-pots_15 A. Opérateur de Volterra 1) Soiet f, g E, c est clair que Vf et V f sot deux primitives de f. Vf, g / Vf xgx / Vf xv g x Vf xv gx / et Vf, g / fxv gx f, V g. Vf xv gx

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

Cours de mathématiques P.S.I.*

Cours de mathématiques P.S.I.* Cours de mathématiques PSI* D'après les cours de M Guillaumie Heriet Queti Séries umériques Das tout le chapitre, K désige le corps R ou C, et o désige par u ue suite de K Gééralités Vocabulaire Défiitio

Plus en détail

Planche n o 6. Séries numériques. Corrigé

Planche n o 6. Séries numériques. Corrigé Plache o 6 Séries umériques Corrigé Exercice o Pour, o pose u l ère solutio u l ++, u existe + + + l + +O +O O Comme la série de terme gééral,, coverge série de Riema d exposat α >, la série de terme gééral

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

Chapitre 12 : Continuité

Chapitre 12 : Continuité PCSI Préparatio des Khôlles 03-04 Eercice Chapitre : Cotiuité Soit :R + R borée et telle que (+) () l>0. Motrer que l0. : O sait que (+) () l, il eiste doc A >0tel que A (+) () l (il suit d écrire la déiitio

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions Suites et séries de foctios Pla du chapitre I - Suites de foctios....page 2 Covergece simple d ue suite de foctios..... page 2 2 Covergece uiforme d ue suite de foctios...page 5 2-a La orme de la covergece

Plus en détail

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ).

3. Développer en série entière au voisinage de 0 la fonction suivante. On précisera le rayon de convergence de la série obtenue. x ln(1 + x 2x 2 ). Colle PC Semaie 3 0-03 Séries Etières Voir : http://www.mimaths.et/img/pdf/s5.pdf http://www.mimaths.et/img/pdf/sem5.pdf EXERCICE :. Doer u exemple de série etière de rayo de covergece π.. Détermier le

Plus en détail

EXERCICES SUR LES SERIES

EXERCICES SUR LES SERIES EXERCICES SUR LES SERIES SERIES NUMERIQUES Calculer la somme des séries dot le terme gééral u est doé ci-dessous a) u = l +2) +) 2 ) b) u = d) u = l+x 2 ) < x < ) e) u = +)+2)+3) ) c) u = 3 2) 7 2 3 3+)3+4)

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1 [http://mp.cpgedupuydelome.fr] édité le 8 décembre 6 Eocés Séries umériques Nature de séries umériques Exercice [ ] [Correctio] Détermier la ature des séries dot les termes gééraux sot les suivats : a

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Exercice 8 [ ] [Correction] Soit α R. Quel est le rayon de convergence de n 1 cos(nα)

Exercice 8 [ ] [Correction] Soit α R. Quel est le rayon de convergence de n 1 cos(nα) [http://mp.cpgedupuydelome.fr] édité le 28 décembre 26 Eocés Séries etières Calcul de rayo de covergece cocret Exercice [ 97 ] [Correctio] Détermier le rayo de covergece des séries etières : Exercice 6

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Partie I. ² Sur [0;¼=2] la restriction de µ est C 1 et de dérivée 2x : µ décroît de ¼2

Partie I. ² Sur [0;¼=2] la restriction de µ est C 1 et de dérivée 2x : µ décroît de ¼2 Partie I Questio 1 1.1. La foctio µ est dé ie deux fois e = mais o véri e que les deux fois µ (=) =. L étude des graphes demade ue étude partielle des dérivées. La suite demade, pour les théorèmes de Dirichlet,

Plus en détail

Séries à termes positifs

Séries à termes positifs UFR SFA, Licece 2 e aée, MATH326 Séries à termes positifs Das ce chapitre, u Ø 0, pour tout, et o étudie q u. O a S S = u Ø 0 : (S ) est croissate!. Gééralités. Propositio. Soit (u ) Ø0 ue suite de réels

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Séries entières. Les séries entières ont donc une forme bien particulière : a. n!z n b. c. d. e.

Séries entières. Les séries entières ont donc une forme bien particulière : a. n!z n b. c. d. e. Séries etières Das tout ce chapitre, I est u itervalle de ou tout etier et K désige ou Séries etières et rayo de covergece Défiitios O appelle série etière (complee) toute série de foctios de terme gééral

Plus en détail

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques Cocours commu Mies-Pots Corrigé de la secode épreuve de mathématiques a Nous pouvos appliquer le critère de d Alembert : doc le rayo R est égal à /4 C+ + + + C = + 4, + b O sait que h est de classe C avec

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 3 ovembre 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition.

CHAPITRE II. - Séries à termes réels positifs ou nuls. III-Séries - à termes quelconques. Définition. CHAPITRE II Séries umériques I II - Défiitios et propriétés géérales - Séries à termes réels positifs ou uls III-Séries - à termes quelcoques I-Défiitios et propriétés géérales Défiitio. Soit (u N ue suite

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

Cours sur les suites numériques

Cours sur les suites numériques Suites umériques Cours sur les suites umériques M HARCHY TS 2 -Lycée Agora-205/206 Raisoemet par récurrece Théorème : Axiome de récurrece Soit P ue propriété portat sur les etiers aturels Si elle vérifie

Plus en détail

1 Définition et premiers exemples

1 Définition et premiers exemples Master Eseigemet Aalyse 1 2015-2016 Uiversité Paris 13 Devoir maiso d aalyse Le but de ce petit problème est d étudier les foctios covexes. À partir de la défiitio géométrique, o démotrera les propriétés

Plus en détail

Les suites récurrentes à convergence lente

Les suites récurrentes à convergence lente Les suites récurretes à covergece lete Daiel PERRIN 0. Itroductio. Je me propose d écrire ue sorte de bila sur la covergece des suites u + = f(u ), avec f de classe C au mois, vers u poit fixe α, das le

Plus en détail

Chapitre 2 Suites bornées, théorèmes d Ascoli et de Weierstrass

Chapitre 2 Suites bornées, théorèmes d Ascoli et de Weierstrass Uiversité de Bourgoge Départemet de Mathématiques Licece de Mathématiques Résumé du cours Complémets d Aalyse Chapitre 2 Suites borées, théorèmes d Ascoli et de Weierstrass. Suites simplemet borées de

Plus en détail

Devoir à rendre le 4 janvier 2017

Devoir à rendre le 4 janvier 2017 Uiversité Paris-Dauphie, L MIDO, groupe Aalyse (206-207) Devoir à redre le javier 207 Eercice Soit D u domaie o vide de R et f : D!R.. O souhaite démotrer la caractérisatio séquetielle de l uiforme cotiuité

Plus en détail

Concours Commun des Mines 1. MATHÉMATIQUES Première épreuve. Options M et P. ( 1) k ζ(k)x k k

Concours Commun des Mines 1. MATHÉMATIQUES Première épreuve. Options M et P. ( 1) k ζ(k)x k k Cocours Commu des Mies MATHÉMATIQUES Première épreuve. Optios M et P Objet du problème : Etude de la foctio F défiie par : Coaissaces requises : Séries umériques. Itégrales gééralisées. Séries de foctios,

Plus en détail