(b). Calculons les dérivées partielles de f. Nous obtenons f x (x, y) = 2x(1 + x2 + y 2 ) 4x(x 2 + y 2 ) (1 + x 2 + y 2 ) 3 4x 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "(b). Calculons les dérivées partielles de f. Nous obtenons f x (x, y) = 2x(1 + x2 + y 2 ) 4x(x 2 + y 2 ) (1 + x 2 + y 2 ) 3 4x 2"

Transcription

1 CORRECTION DU MODÈLE D EXAMEN 2 Exercice 1 (). L fonction f est un quotient de deux fonctions polynomiles et le dénominteur ne s nnulle ps sur R 2, donc f est de clsse C et en prticulier de clsse C 2. (b). Clculons les dérivées prtielles de f. Nous obtenons f x (x, y) = 2x(1 + x2 + y 2 ) 4x(x 2 + y 2 ) = 2x(1 x2 y 2 ) (1 + x 2 + y 2 ) 3 (1 + x 2 + y 2 ). 3 L fonction f étnt symétrique en x et y, nous vons ussi f y (x, y) = 2y(1 x2 y 2 ) (1 + x 2 + y 2 ). 3 Un point (x, y) est critique pour f ssi les dérivées prtielles s nnulent simultnément en (x, y), Ce qui revient à chercher les solutions du système { 2x(1 x 2 y 2 ) =, 2y(1 x 2 y 2 ) =. Nous obtenons les points (, ) et l ensemble des points du cercle S = {(x, y), x 2 + y 2 = 1}. (c). Clculons les dérivées prtielles secondes de f. Nous vons x 2 (x, y) = 2 1 x2 y 2 (1 + x 2 + y 2 ) 3 4x 2 (1 + x 2 + y 2 ) 3 12x2 (1 x 2 y 2 ) (1 + x 2 + y 2 ) 4. En prticulier, 2 f (, ) = 2 tndis que si x 2 + y 2 = 1, lors 2 f (x, y) = x 2 x 2 x2. Pr symétrie, nous obtenons ussi 2 f (, ) = 2 et si x 2 + y 2 = 1, 2 y 2 (x, y) = y2. Il nous reste à clculer les dérivées prtielles croisées : y 2 2 x y (x, y) = 2 f 4xy (x, y) = y x (1 + x 2 + y 2 ) 12xy(1 x2 y 2 ), 3 (1 + x 2 + y 2 ) 4 donc 2 f (, ) = et si x y x2 + y 2 = 1, lors 2 f xy (x, y) =. x y 2 1

2 2 CORRECTION DU MODÈLE D EXAMEN 2 En (, ), nous obtenons 2 f x 2 (, ) > et x (, f 2 ) 2 (, ) y2 ( (, ) x y donc (, ) est un minimum locl. En (x, y) tel que x 2 + y 2 = 1, nous vons x (x, f 2 y) 2 (x, y) y2 donc nous ne pouvons ps conclure. ) 2 >, ( ) 2 2 f (x, y) =, x y (d). Nous vons f(, ) = et f(x, y) > si (x, y) (, ), donc (, ) est en fit un minimum globl strict. Si x 2 + y 2 = 1 et r >, nous vons f(rx, ry) = r2 que l on (1+r 2 ) 2 note g(r). L fonction g est de clsse C 1 et g (r) = 2r(1 r2 ), donc g est (1+r 2 ) 3 strictement croissnte sur ], 1[, strictement décroissnte sur ]1, + [ et tteint son mximum en r = 1. On en déduit que pour tout (x, y) R 2, x f(x, y) f( x2 + y, y 2 x2 + y ) = 1 2 4, et que f tteint un mximum globl en tout point du cercle S. Exercice 2 On remrque que l fonction S est une somme d une fonction exponentielle et de fonctions polynomiles, elle est donc de clsse C sur R 3. (). Les points critiques de S sont solutions du système x 1 (x 1, x 2, x 3 ) = 2x 1 =, x 2 (x 1, x 2, x 3 ) = 3x 2 2 =, x 3 (x 1, x 2, x 3 ) = (1 + x 3 )e x 3 =. (b). Ce système pour unique solution le triplet (,, 1) où S(,, 1) = e. Nous vons S(, x, 1) = x 3 e qui est une fonction strictement croissnte, donc (,, 1) ne peut ps être un extrémum sur R 3.

3 CORRECTION DU MODÈLE D EXAMEN 2 3 (c). Nous venons de voir que qu il n y ps de point critique sur {(x 1, x 2, x 3 ), x i > et 3 p i x i < R} donc si S un extrémum, il est sur le bord. Si nous vons un mximum en un point où un x i = et i p ix i < R, lors en ugmentnt un peu x i, nous vons encore i p ix i R et S qui ugmente, ce qui contredit le fit que nous vions un mximum. Finlement, nous obtenons i p ix i = R. (d). Cherchons un mximum de S sous l contrinte i p ix i = R. D près le cours, il existe un multiplicteur de Lgrnge λ tel qu en un mximum (x 1, x 2, x 3 ), nous yons x 1 (x 1, x 2, x 3 ) = 2x 1 = 2λ, x 1 (x 1, x 2, x 3 ) = 3x 2 2 = 3λ, x 1 (x 1, x 2, x 3 ) = (x 3 + 1)e x 3 = 2eλ, soit x 1 = (x 3 +1)e x 3 /(2e) et x 2 2 = (x 3 +1)e x 3 /(2e). Nous obtenons vec l contrinte i p ix i = R, 2 (x 3 + 1)e x 3 (x3 + 1)e + 3 x 3 + 2ex 3 = 5 + 2e. 2e 2e Nous vons l solution évidente x 3 = 1. Comme le terme de guche de cette éqution est une fonction strictement croissnte en x 3, nous en déduisons que x 3 = 1 est l unique solution et finlement que λ = 1, x 1 = 1 et x 2 = 1. Le mximum de S, si il est tteint, l est en (1, 1, 1). Remrque 1. Ce point est un vri mximum. Les hypothèses générles des économistes sur les fonctions de stisfction permettent d être sur d voir toujours un mximum, ce mximum étnt obtenu lorsque tous les revenus sont dépensés. Remrquez ussi qu un consommteur idél est cpble de fire de l optimistion sous contrinte ;) i=1 1. Exercice 3 On fit le chngement de vrible sphérique x = r cos θ sin φ y = r sin θ sin φ z = r cos φ

4 4 CORRECTION DU MODÈLE D EXAMEN 2 vec (r, θ, φ) dns D = {(r, θ, φ), r 1, φ π 2, θ π 2 }. Le lgrngien de ce chngement de vribles est r 2 sin φ, ce qui nous permet d obtenir x y z dx dy dz = r 5 sin 3 φ cos φ cos θ sin θdr dθ dφ = 1 D D 48 en remrqunt que sin 3 φ cos φ = 1 4 (sin4 φ) et cos θ sin θ = 1 2 (sin2 θ). 2. Exercice 4 L ensemble D est l intersection de deux ensembles de bord des ellipses. Les points d intersection de ces ellipses vérifient les équtions x 2 / 2 + y 2 /b 2 = 1 = x 2 /b 2 + y 2 / 2 ce qui donne ( b 2 )x2 = ( b 2 )y2, et comme et b sont distincts et positifs, nous obtenons x 2 = y 2 i.e. x = ±y = ± b 2 + b. 2 Sur un dessin, nous voyons que l ire A du domine D est 8 fois l intégrle b b q1 x2 2 +b 2 2 b dy dx = 2 +b 2 (b 1 x2 x)dx 2 x soit b A = 8b 2 +b 2 ( 1 x2 )dx 42 b b. 2 Nous posons x = sin θ dns l intégrle et choisissons α tel que α sin α = b et cos α = 2 + b2 A = 8b cos 2 θdθ 42 b b = 8b(α 2 2 soit près simplifiction, A = 4b rcsin b 2 + b b 2, sin 2α + ) 42 b b 2

5 CORRECTION DU MODÈLE D EXAMEN 2 5 Remrque 2. Si = b, l intersection est tout le disque de ryon et dns cette formule, nous obtenons ouf... A = π 2,

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral Clcul Intégrl christophe.profet@univ-evry.fr http://www.mths.univ-evry.fr/pges_perso/cprofet/ Amphi n 1 Jnvier 214 Objectifs du cours 1 donner une définition de l intégrle f (x)dx qui permet de comprendre

Plus en détail

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels Chpitre 6 Primitive et Intégrle 6. Primitive 6.. Rppels Définition 6... Si f est une fonction définie sur un intervlle I, une primitive de f sur I est une fonction F telle que pour tout x dns I, F (x)

Plus en détail

Etude de suites récurrentes

Etude de suites récurrentes [http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 1 Courbes prmétrées Outils Mthémtiques 4 Intégrtion résumé éfinition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont des fonctions continues sur

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail

Calcul intégral. 1 er décembre 2015

Calcul intégral. 1 er décembre 2015 Clcul intégrl 1 er décembre 15 Tble des mtières 1 Générlités. 1.1 Primitives.................................................. 1. Primitives d une fonction continue....................................

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Clcul d intégrles - Intégrtion pr prties Cours CHAPITRE 7 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Dns ce cours, nous disposons de trois techniques de clcul d intégrles : ) primitivtion pr lecture

Plus en détail

Atelier 7 : Calcul Intégral

Atelier 7 : Calcul Intégral Atelier 7 : Clcul Intégrl Wlid ZGHAL 11 jnvier 6 1 Intégrle indéfinie Définition 1.1 Une fonction F est ppelée primitive d une fonction f si F (x) = f(x). Exemple 1 F (x) = x + sec(x) + 1 est une primitive

Plus en détail

CHAPITRE 7. Rappel sur l intégrale simple.

CHAPITRE 7. Rappel sur l intégrale simple. CHPITRE 7 Rppel sur l intégrle simple. Les prochins chpitres triteront de l intégrtion. Dns un premier temps, nous rppellerons ce qu est l intégrle simple (l intégrtion pour les fonctions d une seule vrible

Plus en détail

Cours de remise à niveau Maths 2ème année. Intégrales simples

Cours de remise à niveau Maths 2ème année. Intégrales simples Cours de remise à niveu Mths 2ème nnée Intégrles simples C. Mugis-Rbusseu GMM Bureu 116 cthy.mugis@ins-toulouse.fr C. Mugis-Rbusseu (INSA) 1 / 47 Pln 1 Définitions 2 Propriétés des fonctions intégrbles

Plus en détail

APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE

APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE Définition. Soit I R un intervlle ouvert et soit f : I R une fonction. () Si f est continue, on dit que f est de clsse C 0. (2) Si f est

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane septembre 2011

Corrigé du baccalauréat S Antilles-Guyane septembre 2011 Corrigé du cclurét S Antilles-Guyne septemre 0 EXERCICE Commun à tous les cndidts Prtie A : Étude d une fonction points.. De lim x=+ et lim ln x=+, on conclut que lim x + x +. On sit que lim x ln x = 0,

Plus en détail

Exercices du chapitre 7 avec corrigé succinct

Exercices du chapitre 7 avec corrigé succinct Eercices du chpitre 7 vec corrigé succinct Eercice VII. Ch7-Eercice Montrer qu une fonction constnte sur [,b] est étgée. Si f est une fonction constnte sur [,b], lors il eiste bien une subdivision de [,b],

Plus en détail

Partie A : un arc de cercle apparent

Partie A : un arc de cercle apparent Correction de CCP nnée TSI. On do, Mθ)) = Prtie A : un rc de cercle pprent cos θ) + sin θ) = donc Mθ) pprtient u cercle C.. ) Comme ], + [, on ], [. Comme Arccos rélise une bijection continue et strictement

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C Chpitre 2 Les nombres complexes Certines équtions polynomiles à coefficients réels n ont ps de solution dns R ; c est le cs de l éqution du second degré x 2 +1 = 0 puisque tout crré de réel est positif.

Plus en détail

PRIMITIVES ET INTÉGRALES

PRIMITIVES ET INTÉGRALES Lurent Grcin MPSI Lycée Jen-Bptiste Corot PRIMITIVES ET INTÉGRALES Les fonctions de ce chpitre sont des fonctions d une vrible réelle à vleurs réelles ou complexes. Primitives. Définition Définition. Primitive

Plus en détail

EILCO : Analyse Numérique Chapitre 2 : Quadrature H. Sadok

EILCO : Analyse Numérique Chapitre 2 : Quadrature H. Sadok Introduction Construction de formules élémentires Formules Composites Méthode de Guss EILCO : Anlyse Numérique Chpitre : Qudrture H. Sdok Introduction Construction de formules élémentires Formules Composites

Plus en détail

Feuille d exercices 2 : Analyse Intégrale

Feuille d exercices 2 : Analyse Intégrale Université Denis Diderot Pris 7 (3-4) TD Mths, Agro www.mth.jussieu.fr/ merle Mthieu Merle : merle@mth.univ-pris-diderot.fr Feuille d eercices : Anlyse Intégrle Eercice Trouver une primitive de f : rccos()

Plus en détail

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications.

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications. LEÇON N 76 : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité de l moyenne. Applictions. Pré-requis : Si f est une fonction numérique dérivble sur

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

Cours Intégrales Primitives 1 / 7 A Chevalley

Cours Intégrales Primitives 1 / 7 A Chevalley A 17 Primitives Intégrles Aleth Chevlley 1. Intégrle d une fonction continue 1.1. Définition Soit C l coure représenttive de f dns un repère orthonorml. L intégrle de à de l fonction f est l ire du domine

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

Compléments d intégration

Compléments d intégration ISA BTP, nnée ANNÉE UNIVERSITAIRE - CONTRÔLE CONTINU Compléments d intégrtion Durée : h Les clcultrices sont utorisées. Tous les exercices sont indépendnts. Il ser tenu compte de l rédction et de l présenttion.

Plus en détail

Mathématiques Différentielle - Intégrale

Mathématiques Différentielle - Intégrale Mthémtiques Différentielle - Intégrle F. Richrd 1 1 Institut PPRIME - UPR 3346 CNRS Déprtement Fluides, Thermique, Combustion Frnce Institut des Risques Industriels Assurntiels et Finnciers IRIAF F. Richrd

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

Intégrales et primitives

Intégrales et primitives Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte

Plus en détail

Intégration Primitives

Intégration Primitives Intégrtion Primitives Christophe ROSSIGNOL Année scolire 2015/2016 Tble des mtières 1 Rppels et compléments 3 1.1 Rppels de dérivtion.......................................... 3 1.1.1 Dérivtion en un point......................................

Plus en détail

Chapitre 8 Le calcul intégral

Chapitre 8 Le calcul intégral Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Chpitre 8 Le clcul intégrl A) Intégrle d une fonction dérivle sur un intervlle 1) Définition Soit f une fonction dérivle sur un intervlle

Plus en détail

Chapitre IV Equation d Euler-Lagrange

Chapitre IV Equation d Euler-Lagrange 26 hpitre IV Eqution d Euler-Lgrnge On s intéresse dns cette prtie ux problèmes de l forme suivnte : Sur l ensemble des fonctions y 1 ([,b]) (muni de l norme 1 ) telles que y() = A et y(b) = B, trouver

Plus en détail

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées.

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées. Chpitre 7 Intégrtion Contenus Cpcités ttendues Commentires Intégrtion Définition de l intégrle d une fonction continue et positive sur [;] comme ire sous l coure. Nottion f(x) dx. Théorème : si f est une

Plus en détail

Limite d une fonction à l infini

Limite d une fonction à l infini CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L

Plus en détail

Intégrabilité d une fonction à valeurs réelles ou complexes

Intégrabilité d une fonction à valeurs réelles ou complexes Cours de Mthémtiques ntégrtion sur un intervlle quelconque Prtie : Fonctions intégrbles à vleurs complexes Fonctions intégrbles à vleurs complexes Dns ce prgrphe, est un intervlle de R, et K désigne R

Plus en détail

Quelques épreuves d évaluation

Quelques épreuves d évaluation UNIVERSITÉ DE VALENCIENNES MASTER 1 MATHÉMATIQUES Géométrie différentielle pr Aziz El Kcimi Quelques épreuves d évlution 0 Année universitire 00-004 Devoir surveillé Notes de cours et de TD utorisées On

Plus en détail

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur Chpitre 21 Clcul de primitives 21.1 Clcul prtique de primitives On note f(x une primitive de l fonction f sur l intervlle I. Cette nottion désigne une fonction, à ne ps confondre vec une intégrle définie

Plus en détail

Le Calcul de Primitives

Le Calcul de Primitives Le Clcul de Primitives MPSI Prytnée Ntionl Militire Pscl Delhye 25 octobre 27 ϕ(x) f(u) du = f(ϕ(t) )ϕ (t) }{{}}{{} u du Résultts préliminires Définition : Primitives Soit deux fonctions f et F définies

Plus en détail

Cours de Terminale S /Intégration. E. Dostal

Cours de Terminale S /Intégration. E. Dostal Cours de Terminle S /Intégrtion E. Dostl Février 26 Tble des mtières 9 Intégrtion 2 9. Intégrles............................................. 2 9.. Aire sous une courbe...................................

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Calcul des variations

Calcul des variations Chpitre 2 Clcul des vritions 2.1 Préliminire : Multiplicteurs de Lgrnge Pour comprendre l intérêt des multiplicteurs de Lgrnge, considérons une fonction f : f : U R (, ) f(, ) U est un ouvert de R 2. f

Plus en détail

Comparaison de fonctions, développements limités

Comparaison de fonctions, développements limités I Comprison de fonctions Définitions Comprison de fonctions, développements limités Négligeble Définition Soient f et g deu fonctions définies sur un même ensemble D et à vleurs dns R. Soit R tel que f

Plus en détail

Résumés de cours : Terminale S.

Résumés de cours : Terminale S. Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

TS 2, Correction Bac Blanc n o 2

TS 2, Correction Bac Blanc n o 2 TS, Correction Bc Blnc n o Exercice Nouvelle-Clédonie, mrs extrit) points Restitution Orgnisée de Connissnces On utiliser le résultt suivnt : les solutions de l éqution différentielle E ) y = y où R sont

Plus en détail

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2 Intégrle de Riemnn cours et exercices de Licence, L1, PC, S2 H. Le Ferrnd Jnury 29, 2010 Contents 1 Des premières méthodes 2 2 Sommes de Drboux 2 3 Fonction intégrble u sens de Riemnn 3 3.1 Qu est-ce qu

Plus en détail

Espaces euclidiens et optimisation - Licence 3e année Examen du 12/01/ Correction. b x 1. Bx x2 1. x 2 2. pxq x 1x 2.?

Espaces euclidiens et optimisation - Licence 3e année Examen du 12/01/ Correction. b x 1. Bx x2 1. x 2 2. pxq x 1x 2.? Université Pris Descrtes UFR de Mthémtiques et Informtique Espces euclidiens et optimistion - Licence 3e nnée Emen du /0/06 - Correction Eercice. fpq,. L fonction t ÞÑ? t est dérivle pour tout t 0, donc

Plus en détail

I.S.F.A. Université Lyon 1 Année Concours d Entrée

I.S.F.A. Université Lyon 1 Année Concours d Entrée I.S.F.A. Université Lyon 1 Année 29. Concours d Entrée Deuxième épreuve de mthémtiques Durée 4h. OPTION A Le sujet est composé d un problème comportnt 3 prties. Toutes les réponses doivent être soigneusement

Plus en détail

MAT 1720 A : Calcul différentiel et intégral I

MAT 1720 A : Calcul différentiel et intégral I MAT 1720 A : et intégrl I Pul-Eugène Prent Déprtement de mthémtiques et de sttistique Université d Ottw le 14 octobre 2015 Au menu ujourd hui 1 2 3 4 Le théorème de Stokes Voici le contenu d un peu plus

Plus en détail

11 Fonctions numériques - continuité

11 Fonctions numériques - continuité 11 Fonctions numériques - continuité 11.1 Ensemble des fonctions à vleurs réelles 11.1.1 Fonctions numériques Soit E un ensemble non vide. On note E l ensemble des pplictions de E dns. On définit les opértions

Plus en détail

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)} Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

Dérivation. Accroissements finis

Dérivation. Accroissements finis 19 Cours - Dérivtion. Accroissements finis.nb 1/5 Dérivtion. Accroissements finis nombre dérivé, fonction dérivée, f ' HL, f ', dérivée n ième, f HnL, fonction de clsse C n (C 0, C ), formule de Leibniz,

Plus en détail

L1MI - Mathématiques: Analyse

L1MI - Mathématiques: Analyse Université de Metz (UFR MIM) Année universitire - Déprtement de Mthémtiques Dérivtion et Dérivée Exercice Clculer l dérivée des fonctions suivntes (x) = x + ln(x + x + ), LMI - Mthémtiques: Anlyse b(x)

Plus en détail

Outils Mathématiques 3

Outils Mathématiques 3 Université de Rennes1 Année 2010/2011 Outils Mthémtiques 3 Chpitre 4: Intégrtion curviligne résumé 1 Courbes prmétrées Définition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont

Plus en détail

CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.

CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL. CHAPITRE : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.. Fonction népérien (logrithme d une fonction composée). Théorème Si u est une fonction strictement positive et dérivble sur un intervlle I ouvert,

Plus en détail

Variables aléatoires à densité

Variables aléatoires à densité Vribles létoires à densité Rppels : Une vrible létoire réelle (VAR) est une ppliction X : Ω R où (Ω,A,P) est un espce probbilisé. Lorsque X(Ω) est un ensemble discret on dit que X est une VAR discrète.

Plus en détail

Chapitre 9. Calcul intégral. 9.1 Intégrale d une fonction continue Définition, exemples et propriétés

Chapitre 9. Calcul intégral. 9.1 Intégrale d une fonction continue Définition, exemples et propriétés Chpitre 9 Clcul intégrl L notion de clcul intégrle est une notion ssez importnte dns bons nombres de domines de l science. Ce cours pour but d introduire ldite notion. On utilise le clcul intégrl :. pour

Plus en détail

Chapitre 11 : Calcul intégral

Chapitre 11 : Calcul intégral Cpitre 11 : Clcul intégrl I Intégrle d une fonction positive I.1 Définition Définition ( 1. Dns un repère ortogonl O; i ; ) j, on ppelle unité d ire l ire du rectngle de côtés [OI] et [OJ]. 2. Soient f

Plus en détail

Espaces de modules en géométrie algébrique

Espaces de modules en géométrie algébrique Espces de modules en géométrie lgébrique O. Sermn Thèse effectuée u JAD sous l direction d A. Beuville 1 Deux problèmes clssiques Triplets pythgoriciens : Trouver tous les tringles rectngles dont les trois

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable e x 2 x dx 6) (**) +

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable e x 2 x dx 6) (**) + Eo7 Intégrtion Eercices de Jen-Louis Rouget. Retrouver ussi cette fiche sur www.mths-frnce.fr * très fcile ** fcile *** difficulté moyenne **** difficile ***** très difficile I : Incontournble Eercice

Plus en détail

7. Applications du théorème des

7. Applications du théorème des 67 7. Applictions du théorème des résidus. Évlution d intégrles réelles impropres Une ppliction importnte de l théorie des résidus est l évlution de certins types d intégrles définies et d intégrles impropres

Plus en détail

Série n 6 : Interpolation et méthodes des moindres carrés

Série n 6 : Interpolation et méthodes des moindres carrés Université Clude Bernrd, Lyon I 43, boulevrd du 11 novembre 1918 696 Villeurbnne Cedex Licence Sciences & Technologies Spécilité Mthémtiques UE : Clcul Scientifique 009-010 Série n 6 : Interpoltion et

Plus en détail

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3 Licence de Mthémtiques Fondmentles Clcul Scientifique feuille de TD 3 Intégrtion numérique Soit f : [, b] R une fonction continue On cherche à clculer numériquement l intégrle f(x) dx Pour cel, on subdivise

Plus en détail

Nous admettrons et utiliserons souvent le théorème suivant:

Nous admettrons et utiliserons souvent le théorème suivant: < 20 Intégrtion: fonction réelle d une vrile réelle. Définition 2.5. (Intégrilité u sens de Riemnn) Une fonction réelle f: [, ] R est dite intégrle sur [,], si ǫ > 0, f 1, f 2 : [, ] R fonctions en escliers

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

1.1 Exercice 1: c) q 1 = q 2 = C et le sens du transfert est de q 2 q 1. b) q 1 = q 2 = C et le sens du transfert est de q 1 q 2.

1.1 Exercice 1: c) q 1 = q 2 = C et le sens du transfert est de q 2 q 1. b) q 1 = q 2 = C et le sens du transfert est de q 1 q 2. Niveu : MI, S : 435-3/4 Module : PHYS : Electricité & Mgnétisme TD : Série Electrosttique Solutions 8 Eercice 7: 5 9 Eercice 8: 7 Série Tble des mtières Série Eercice : Eercice : 3 Eercice 3: 4 Eercice

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

Chapitre 6 - Fonctions numériques - Généralités

Chapitre 6 - Fonctions numériques - Généralités PS hpitre 6 - Fonctions numériques - Générlités Fonctions d une vrile réelle à vleurs réelles. Définitions Une fonction à vleurs réelles est une ppliction de ou une prtie A de dns. On note f : A ; f ().

Plus en détail

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01 (voir réponses et correction)

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01 (voir réponses et correction) INTÉGRALES I Définition Définition Soit f une fonction continue et positive sur un intervlle [; ]. Soit (C) s coure représenttive dns un repère orthogonl (O; i, j). On ppelle intégrle de à de l fonction

Plus en détail

Calcul Intégral - Equations Différentielles M211-1

Calcul Intégral - Equations Différentielles M211-1 /46 Clcul Intégrl - Equtions Différentielles M11-1 Michel Fournié michel.fournie@iut-tlse3.fr http://www.mth.univ-toulouse.fr/ fournie/ /46 Introduction Tble des mtières 1 Introduction Préliminires, Rppels

Plus en détail

, f(x) est l image de l élément x de E par f.

, f(x) est l image de l élément x de E par f. I- Rppels : I- 1 Déinition d une onction : Soient E et F deu intervlles de R ou une réunion d intervlles de R Déinition 1: Une onction ssocint un élément de l ensemble E (ensemble de déprt dns l ensemble

Plus en détail

Rappels et compléments sur l intégrale de Riemann

Rappels et compléments sur l intégrale de Riemann Chpitre Rppels et compléments sur l intégrle de Riemnn Commençons pr un rppel. Théorème.. (Théorème fondmentl du clcul intégrl) Soit f :[, b]! R une fonction continue. Pour tout x 2 [, b], posons F (x)

Plus en détail

Intégration des fonctions continues par morceaux

Intégration des fonctions continues par morceaux Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f

Plus en détail

Comparaison des fonctions au voisinage d un point

Comparaison des fonctions au voisinage d un point DOCUMENT 29 Comprison des fonctions u voisinge d un point Pour tout 0 R on pose : V 0 = {] 0 η, 0 + η[ η > 0} si 0 R; V 0 = {], + [ R} si 0 = + et V 0 = {], [ R} si 0 =. Un élément de V 0 est ppelé un

Plus en détail

Exercices de révision

Exercices de révision Université de Cen Licence de Biologie Semestre 0 04 Mthémtiques TD Groupe 4 Exercices de révision Corrigé Nombres complexes Exercice. On pose A = + i et B = + i. Clculer A B, A + B, A B, B, A + B. Clculer

Plus en détail

LOIS DE PROBABILITE CONTINUES

LOIS DE PROBABILITE CONTINUES LOIS DE PROBABILITE CONTINUES I) LOI A DENSITE SUR UN INTERVALLE ( fire fiche '' vérifier les cquis'' ) 1) Introduction Qund l univers est un intervlle Jusqu à présent, chque expérience létoire conduisit

Plus en détail

3.3.3 Changement de variable

3.3.3 Changement de variable 3. Primitives: Techniques de clcul des rimitives 33 3.3.3 Chngement de vrible Si F est une rimitive de f et si g est une fonction, lors l formule de dérivtion diune fonction comosée donne quel dérivée

Plus en détail

Résumé de cours sur les intégrales dépendant d un paramètre

Résumé de cours sur les intégrales dépendant d un paramètre Résumé de cours sur les intégrles dépendnt d un prmètre On v considérer une fonction à deux vribles ' puis on étudier l existence, l continuité, dérivbilité,...de l fonction F dé nie pr x! F (x) = F est

Plus en détail

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité Chpitre 4 L loi normle 4.1 Introduction Dns le chpitre précédent, les probbilités rencontrées se rmenient à lister tous les cs possibles, leur ttribuer l même probbilité, et diviser le nombre de cs fvorbles

Plus en détail

Formule de Green Riemann

Formule de Green Riemann [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Formule de Green Riemann Exercice 1 [ 69 ] [correction] Soit Γ la courbe orientée dans le sens trigonométrique, constituée des deux portions

Plus en détail

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23 Clcul intégrl Ctherine Decyeux Ctherine Decyeux () Clcul intégrl 1 / 23 I-Introduction Le clcul intégrl s est développé u XVIIe siècle vec les trvux de Bonvntur Cvlieri, Isc Newton, Leibniz... mis les

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S BACCALAURÉAT GÉNÉRAL Session Pondichéry vril ) MATHÉMATIQUES obligtoire) Correction Série : S Durée de l épreuve : 4 heures Coefficient : 7 EXERCICE PARTIE A Soient et b deux réels tels que < b. Soient

Plus en détail

Ordre et comparaisons

Ordre et comparaisons Seconde 0 - Année 2004 2005 ORDRE ET COMPARAISONS Ordre et comprisons. ACTIVITÉ SUR L ORDRE.. nomres positifs et nomres négtifs. Les réels se représentent sur l droite réelle. Dire que x est positif(ou

Plus en détail

1. Notion d intégrale Interprétation graphique

1. Notion d intégrale Interprétation graphique Clcul intégrl TS 1. Notion d intégrle Interpréttion grphique Le pln étnt muni du repère orthogonl ( O,I, J ) l unité d ire ( u. ) est l ire du rectngle âti à prtir des points O, I, J. on ppelle domine

Plus en détail

EQUATIONS, INEQUATIONS

EQUATIONS, INEQUATIONS I. Résolution d équtions 1. Eqution-produit EQUATIONS, INEQUATIONS Définition : Toute éqution du type P() Q() = 0, où P() et Q() sont des epressions lgériques, est ppelée éqution-produit. Remrque : Nous

Plus en détail

Corrigé du TD 3 : Limites

Corrigé du TD 3 : Limites Corrigé du TD 3 : Limites Eercice : Fonction réciproque. Cs f() = + L fonction f est définie sur R et à vleurs dns I = [,+ [. Elle est pire donc en prticulier pour tout réel, on f( ) = f() et en prticulier

Plus en détail

Fiche Intégration MOSE Octobre 2014

Fiche Intégration MOSE Octobre 2014 Fiche Intégrtion MOSE 13 9 Octore 14 Tle des mtières Propriétés de l intégrle 1 Théorème fondmentl du clcul intégrl................................ Intégrle d une fonction de signe quelconque...............................

Plus en détail

Calcul des variations

Calcul des variations Clcul des vritions 0. Prérequis 0.1. Clcul différentiel et intégrl d une et plusieurs vribles 0.2. Intégrtion pr prties : f (x)g(x)dx = f (b)g(b) f ()g() f (x)g (x)dx 0.3. Règle de l chîne, pr exemple

Plus en détail

Polycopié pour le cours de MATH121b Analyse élémentaire. Chapitre 1 Étude pratique des fonctions d une variable réelle.

Polycopié pour le cours de MATH121b Analyse élémentaire. Chapitre 1 Étude pratique des fonctions d une variable réelle. Université de Svoie 0-03 L MASS-SFT-SV Polycopié pour le cours de MATHb Anlyse élémentire. Chpitre Étude prtique des fonctions d une vrible réelle. I Générlités Un peu de vocbulire On doit toujours présenter

Plus en détail

LES REGLES DU CALCUL LITTERAL

LES REGLES DU CALCUL LITTERAL Cours de Mr Jules v1.2 Clsse de Qutrième Contrt 6 pge 1 LES REGLES DU CALCUL LITTERAL «Les Mthémtiques sont des inventions très subtiles et qui peuvent beucoup servir, tnt à contenter les curieux qu'à

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail

Table des matières 1/7

Table des matières 1/7 Tle des mtières Introduction... 1- Anlyse vectoriel...3 - Potentiel sclire...4 3- Intégrle curviligne...5 - Définition :...5 - Propriétés...5 4- Formule de Green-Riemnn...6 1/7 Introduction Chmp outil

Plus en détail

Courbes paramétrées. pour l = ±? Mais ce n est pas très choquant, car de toute façon qu est-ce donc que l infini dans R 2? = 0, donc lima x(t) l x

Courbes paramétrées. pour l = ±? Mais ce n est pas très choquant, car de toute façon qu est-ce donc que l infini dans R 2? = 0, donc lima x(t) l x Courbes prmétrées Dns tout ce chpitre, I,J sont des intervlles de R On ppeller dhérence de I et on noter Ī l intervlle I ugmenté de ses bornes, qui éventuellement ne lui pprtiennent ps Pr exemple, [0,1[

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

Exercices sur le calcul algébrique. Petits problèmes

Exercices sur le calcul algébrique. Petits problèmes Exercices sur le clcul lgébrique Les exercices ou questions précédés d un stérisque pourront être trités vec profit à l ide d un logiciel de clcul formel, tel que Xcs, qui ser vu en Trvux Prtiques, ou

Plus en détail

«SUR LA LONGUEUR D UNE COURBE»

«SUR LA LONGUEUR D UNE COURBE» Université Pul Sbtier, Préprtion à l grégtion interne de mthémtiques. 27/8. «SUR LA LONGUEUR D UNE COURBE» PATRICE LASSÈRE Résumé. Voici quelques développements possibles pour l leçon d exercices sur ce

Plus en détail

NOTIONS DE CALCUL DIFFERENTIEL ET INTEGRAL EN PHYSIQUE

NOTIONS DE CALCUL DIFFERENTIEL ET INTEGRAL EN PHYSIQUE NOTIONS D CALCUL DIFFNTIL T INTGAL N PHYSIQU 1) Dérivée d une fonction Soit une fonction F : x F(x) D F(x + ) F(x ) ΔF x x + ( +Δ ) ( ) Δ F F x x F x Le tux de vrition = L limite de ce tux de vrition lorsque

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP vril 13 Avertissement : Il subsiste certinement quelques coquilles... Eercice 1 : une série de Fourier Correction CCP mths 1 MP 1. On note n (f et b n (f les coefficients de Fourier réels de f qui sont

Plus en détail