LIMITES ET CONTINUITÉ (Partie 1)

Dimension: px
Commencer à balayer dès la page:

Download "LIMITES ET CONTINUITÉ (Partie 1)"

Transcription

1 LIMITES ET CONTINUITÉ (Partie ) I. Limite d'une fonction à l'infini ) Limite finie à l'infini Intuitivement : On dit que la fonction f admet pr ite L en + si f (x) est aussi proche de L que l on veut prvu que x soit suffisamment grand. Exemple : La fonction définie par f (x) = 2 + x a pr ite 2 lorsque x tend vers +. En effet, les valeurs de la fonction se resserrent autr de 2 dès que x est suffisamment grand. La distance MN tend vers 0. Si on prend un intervalle vert quelconque contenant 2, ttes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand. Définition : On dit que la fonction f admet pr ite L en + si tt intervalle vert contenant L contient ttes les valeurs de f (x) dès que x est suffisamment grand et on note : f (x) = L. Définitions : - La droite d'équation y = L est asymptote à la crbe représentative de la fonction f en + si f (x) = L. - La droite d'équation y = L est asymptote à la crbe représentative de la fonction f en si f (x) = L.

2 2 Remarque : Lorsque x tend vers +, la crbe de la fonction "se rapproche" de son asymptote. La distance MN tend vers 0. 2) Limite infinie à l'infini Intuitivement : On dit que la fonction f admet pr ite + en + si f (x) est aussi grand que l on veut prvu que x soit suffisamment grand. Exemple : La fonction définie par f (x) = x 2 a pr ite + lorsque x tend vers +. En effet, les valeurs de la fonction deviennent aussi grandes que l'on shaite dès que x est suffisamment grand. Si on prend un réel a quelconque, l'intervalle a;+ contient ttes les valeurs de la fonction dès que x est suffisamment grand. Définitions : - On dit que la fonction f admet pr ite + en + si tt intervalle a;+, a réel, contient ttes les valeurs de f (x) dès que x est suffisamment grand et on note : f (x) = + - On dit que la fonction f admet pr ite en + si tt intervalle ;b, b réel, contient ttes les valeurs de f (x) dès que x est suffisamment grand et on note : f (x) = Remarques : - Une fonction qui tend vers + lorsque x tend vers + n'est pas nécessairement croissante.

3 3 - Il existe des fonctions qui ne possèdent pas de ite infinie. C'est le cas des fonctions sinusoïdales. 3) Limites des fonctions usuelles Propriétés : - x 2 = +, x 2 = + - x 3 = +, x 3 = - x = + - x = 0, x = 0 II. Limite d'une fonction en un réel A Intuitivement : On dit que la fonction f admet pr ite + en A si f (x) est aussi grand que l on veut prvu que x soit suffisamment proche de A. Exemple : La fonction représentée ci-desss a pr ite + lorsque x tend vers A.

4 4 En effet, les valeurs de la fonction deviennent aussi grandes que l'on shaite dès que x est suffisamment proche de A. Si on prend un réel a quelconque, l'intervalle a;+ contient ttes les valeurs de la fonction dès que x est suffisamment proche de A. Définitions : - On dit que la fonction f admet pr ite + en A si tt intervalle a;+, a réel, contient ttes les valeurs de f (x) dès que x est suffisamment proche de A et on note : f (x) = + x A - On dit que la fonction f admet pr ite en A si tt intervalle ;b, b réel, contient ttes les valeurs de f (x) dès que x est suffisamment proche de A et on note : f (x) = x A Définition : La droite d'équation x = A est asymptote à la crbe représentative de la fonction f si f (x) = + f (x) =. x A x A Remarque : Certaines fonctions admettent des ites différentes en un réel A selon x > A x < A. Considérons la fonction inverse définie sur! * par f (x) = x. - Si x < 0, alors f (x) tend vers et on note : x 0 x<0 - Si x > 0, alors f (x) tend vers + et on note : x 0 x>0 f (x) =. f (x) = +.

5 5 On parle de ite à gauche de 0 et de ite à droite de 0. Déterminer graphiquement des ites d'une fonction : Vidéo III. Opérations sur les ites Vidéo α peut désigner +, un nombre réel. ) Limite d'une somme x α f (x) = L L L + + g(x) = x α L' + + ( f (x) + g(x) ) = L + L' + + F.I. x α 2) Limite d'un produit f (x) = L L > 0 L < 0 L > 0 L < x α x α g(x) = L' x α + ( f (x)g(x)) = L L' F.I.

6 6 3) Limite d'un quotient x α f (x) = L L x α g(x) = L' 0 f (x) x α g(x) = L L' + L > 0 + L < 0 0 avec 0 avec g(x) > 0 g(x) > 0 L > 0 + L < avec 0 avec g( x) < 0 g( x) < 0 0 L' > 0 L' < 0 L' > 0 L' < F.I. + + F.I. + + Exemple : ( )? ( ) = + ( ) 3+ x 2 ( ) = et 3+ x 2 D'après la règle sur la ite d'un produit : ( ) 3+ x 2 ( ) = Remarque : Comme pr les suites, on rappelle que les quatre formes indéterminées sont, par abus d'écriture : " ", " 0 ", " " et " 0 0 ". Méthode : Lever une forme indéterminée sur les fonctions polynômes et rationnelles Vidéo Vidéo Vidéo 2x Calculer : ) 3x 3 + 2x 2 6x + ( ) 2 5x + 2) 6x 2 5 3) 3x x ) Il s'agit d'une forme indéterminée du type " +( + )+( )" Levons l'indétermination : 3x 3 + 2x 2 6x += x x 6 x + 2 x 3 2 Or x = 6 x 2 = x 3 = 0.

7 7 Donc par somme de ites 3+ 2 x 6 x + 2 x 3 = 3 Comme x3 = +, on a par produit de ites Donc 3x 3 + 2x 2 6x + ( ) =. x x 6 x + 2 x 3 =. 2) En appliquant la méthode de la question ) pr le numérateur et le dénominateur de la fonction rationnelle, cela ns conduit à une forme indéterminée du type " ". Levons l'indétermination : 2x 2 5x + = x2 6x Or x = x x + x = x 2 x 2 = 5 x 2 = x + x x 2 Donc par somme de ites 2 5 x + x 2 = 2 et 6 5 x 2 = Donc comme quotient de ites x + x = 2 6 = 3 x 2 et donc 2x 2 5x + = 6x ) Il s'agit d'une forme indéterminée du type " ". Levons l'indétermination : 2 3x x = x2 x x 2 4 = x x 2 4 x x. 2 Or x = 2 x = 0. Donc par somme de ites 3+ 2 x 2 = 3 et 4 x = Donc comme quotient de ites x 2 4 x = Or x =, donc comme produit de ites x x 2 4 x 3x Et donc 4x =. =

8 8 Méthode : Lever une forme indéterminée sur les fonctions avec des radicaux Vidéo Vidéo x 2 Calculer : ) x + x ( ) 2) x 5 ) Il s'agit d'une forme indéterminée du type " " Levons l'indétermination à l'aide de l'expression conjuguée : ( x + x )( x + + x ) x + x x + x = = x + + x x + + x = x + + x. Or x + = x = + ( ) = +. Donc par somme de ites x + + x Et donc par quotient de ites x + + x = 0. ( ) = 0. D'où x + x On peut vérifier la pertinence du résultat en traçant la crbe représentative de la fonction f (x) = x + x. ( ) = 5 2 = 0 et 2) x 5 x 2 ( ) = 5 5 = 0. x 5 Il s'agit d'une forme indéterminée du type " 0 0 ". Levons l'indétermination à l'aide de l'expression conjuguée : x 2 ( x 2) ( x + 2) x 4 = = ( ) ( ) x + 2 ( ) = ( )( x + 2) = ( ) x + 2 Or x = 5 = 2 donc par somme de ites x + 2 = = 4. x 5 x 5 Donc par quotient de ites, on a x 5 x + 2 = 4. x 2 Et donc = x 5 4. x + 2

9 9 En traçant à l'aide de la calculatrice la fonction f (x) = x 2, il est possible de vérifier la pertinence de la solution trvée en plaçant un point sur la crbe. Attention cependant, la calculatrice ne fait pas apparaître que la fonction f n'est pas définie en 5. Méthode : Déterminer une asymptote Vidéo Vidéo 3x + ) Soit f la fonction définie sur! \ { 2} par f (x) = 2 x. Démontrer que la droite d'équation y = 3 est asymptote horizontale à la crbe représentative de f en +. Il faut donc démontrer que 3x + 2 x = 3 : 3x + 2 x = x 3+ x x 2 x 3+ = x 2 x Or x = 2 = 0 donc x 3+ 2 x = 3 et x =. 3+ Et donc par quotient de ites x = 3 2 x = 3 Et donc f (x) = 3. 2) Soit g la fonction définie sur! \ 4 { } par g(x) = 2x x 4.

10 Démontrer que la droite d'équation x = 4 est asymptote verticale à la crbe représentative de g. 0 Il faut donc démontrer que la ite la fonction g possède une ite infinie en 4. - ( x 4) = 0 et 2x = 8. x 4 x 4 x<4 2x Donc = car x 4 < 0. x 4 x 4 x<4 - ( x 4) = 0 et 2x = 8. x 4 x 4 x>4 2x Donc = + car x 4 > 0. x 4 x 4 x>4 On en déduit que la droite d'équation x = 4 est asymptote verticale à la crbe représentative de g. Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 22-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Développements limités

Développements limités Université Joseph Fourier, Grenoble Maths en Ligne Développements limités Bernard Ycart Les développements limités sont l outil principal d approximation locale des fonctions. L objectif de ce chapitre

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

WebStamp easy Simple et personnel. Mon timbre-poste.

WebStamp easy Simple et personnel. Mon timbre-poste. WebStamp easy Simple et personnel. Mon timbre-poste. Manuel d utilisation Créer un timbre-poste Créer une étiquette pr colis Conseils d utilisation Directives Page Page Page 6 Page 7 www.poste.ch/webstamp-easy

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

FONCTIONS À CROISSANCE RÉGULIÈRE

FONCTIONS À CROISSANCE RÉGULIÈRE P. LEVY (Paris - Francia) FONCTIONS À CROISSANCE RÉGULIÈRE ET ITÉRATION D'ORDRE FRACTIONNAIRE 1. - Une fonction teue que ^c+e~ x sin log x, malgré la lenteur et la petitesse de ses osciuations, nous apparaît

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

Analyse des Systèmes Asservis

Analyse des Systèmes Asservis Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! gaelle.buffet@ac-montpellier.fr

Plus en détail

Merci de compléter, dater et signer le dossier d ouverture de compte

Merci de compléter, dater et signer le dossier d ouverture de compte Merci de compléter, dater et signer le dossier d verture de compte Joignez les documents justificatifs demandés Envoyez votre dossier complet à l adresse suivante : Registre Français des Quotas et Crédits

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Du Premier au Second Degré

Du Premier au Second Degré Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Méthode : On raisonnera tjs graphiquement avec 2 biens.

Méthode : On raisonnera tjs graphiquement avec 2 biens. Chapiittrre 1 : L uttiilliitté ((lles ménages)) Définitions > Utilité : Mesure le plaisir / la satisfaction d un individu compte tenu de ses goûts. (On s intéresse uniquement à un consommateur rationnel

Plus en détail

TRANSFERT DIRECT SELON LE PARAGRAPHE 146.3(14.1) OU L'ALINÉA 146(16)a) OU 146.3(2)e)

TRANSFERT DIRECT SELON LE PARAGRAPHE 146.3(14.1) OU L'ALINÉA 146(16)a) OU 146.3(2)e) et initiales Section A Transfert provenant d'un REER d'un FERR Section C Identification du REER, du FERR du RPA auquel les fonds sont transférés, de l'administrateur du RPA 1. Ns acceptons le transfert

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

gros L abonnement L abonnement qui peut rapporter gros J aide un organisme et je m abonne à la chance! POSSIBILITÉ DE PAIEMENT DIFFÉRÉ

gros L abonnement L abonnement qui peut rapporter gros J aide un organisme et je m abonne à la chance! POSSIBILITÉ DE PAIEMENT DIFFÉRÉ J aide un organisme et je m abonne à la chance! NOUVEAU : On peut sscrire renveler un abonnement individuel par téléphone au MATIQUE - Participation automatique aux tirages. Sélection de vos numéros mise-éclair.

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

T-TOUCH II Mode d emploi

T-TOUCH II Mode d emploi T-TOUCH II Mode d emploi Remerciements Ns vs remercions d avoir choisi une montre TISSOT, une marque suisse parmi les plus réputées au monde. Votre montre T-TOUCH bénéficie des innovations techniques les

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

MANUEL F A C T U R E S R É C A P I T U L A T I V E S

MANUEL F A C T U R E S R É C A P I T U L A T I V E S MANUEL F A C T U R E S R É C A P I T U L A T I V E S 1 Généralités sur le fonctionnement Si certains de vos clients font régulièrement des achats chez vs, il peut être utile de regrper ttes les livraisons

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Table des matières. Télécharger MetaTrader 4. Première connexion à MetaTrader 4. Se connecter à MetaTrader 4. Modifier la langue

Table des matières. Télécharger MetaTrader 4. Première connexion à MetaTrader 4. Se connecter à MetaTrader 4. Modifier la langue Guide METATRADER 4 Table des matières Télécharger MetaTrader 4 Première connexion à MetaTrader 4 Se connecter à MetaTrader 4 Modifier la langue Modifier votre mot de passe Mot de passe oublié Trader avec

Plus en détail

Glossaire des nombres

Glossaire des nombres Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour

Plus en détail

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse page 8 AGREGATIN de MATHEMATIQUES: 1991 1/5 externeanalyse concours externe de recrutement de professeurs agreg6s composition d analyse NTATINS ET DGFINITINS Dans tout le problème, R+ désigne l intervalle

Plus en détail

Seconde et première Exercices de révision sur les probabilités Corrigé

Seconde et première Exercices de révision sur les probabilités Corrigé I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

1. DOCUMENTS JUSTIFICATIFS RELATIFS A LA PERSONNE MORALE ET À SES REPRÉSENTANTS LÉGAUX/ TITULAIRE(S) DE COMPTE(S)

1. DOCUMENTS JUSTIFICATIFS RELATIFS A LA PERSONNE MORALE ET À SES REPRÉSENTANTS LÉGAUX/ TITULAIRE(S) DE COMPTE(S) 1. DUMENTS JUSTIFIATIFS RELATIFS A LA PERSNNE MRALE ET À SES REPRÉSENTANTS LÉGAUX/ TITULAIRE(S) DE MPTE(S) Réf. # 1 # 2 Désignation : finalité, nature, forme Anglais Identité personne physique NI, passeports

Plus en détail

CFCL EDHEC 1 SEMINAIRE ACCESS2000

CFCL EDHEC 1 SEMINAIRE ACCESS2000 CFCL EDHEC 1 SEMINAIRE ACCESS2000 SOMMAIRE INTRODUCTION...5 LES OBJETS...5 LES GROUPES...6 TECHNIQUES DE BASE...7 OUVRIR UNE BASE DE DONNEES...7 CONSULTER UNE TABLE OU UNE REQUETE...8 CONSULTER DES DONNEES

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Présentation de la centrale VIGIK DGM1

Présentation de la centrale VIGIK DGM1 G0301FR0354V01 Notice de présentation et d'utilisation du programmateur PCV123 et de la centrale VIGIK DGM1 N homologation : PS 200306-01 MS 200306-02 Référence Centrale VIGIK : DGM1 > Version 6.0.2 Référence

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Instructions pour l inscription au répertoire des fournisseurs de services linguistiques du Bureau de la traduction

Instructions pour l inscription au répertoire des fournisseurs de services linguistiques du Bureau de la traduction Instructions pr l inscription au répertoire des frnisseurs de services linguistiques du Bureau de la traduction Centre d approvisionnement - 2015-06-04 Also available in English Renseignements généraux

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail