Espaces euclidiens. Endomorphismes symétriques et orthogonaux.

Dimension: px
Commencer à balayer dès la page:

Download "Espaces euclidiens. Endomorphismes symétriques et orthogonaux."

Transcription

1 Chapitre 5 Espaces euclidiens. Endomorphismes symétriques et orthogonaux. Dans ce chapitre, tous les espaces vectoriels sont des R-espaces vectoriels. 5.1 Produit scalaire et orthogonalité Définition, inégalité de Cauchy-Schwarz Rappelons la définition d un produit scalaire : Définition (produit scalaire) Un produit scalaire sur un R-espace vectoriel E est une application bilinéaire symétrique : E E R définie positive, i.e. vérifiant x E \ {0}, x x > 0. Exemple 1. Sur R n, l application (x, y) x y = n i=1 x iy i est un produit scalaire, appelé produit scalaire canonique sur R n. Exemple. Sur l espace M n,1 (R) des matrices colonne, l application (X, Y ) X Y = X T Y (où l on identifie la matrice X T Y M 1,1 (R) à son unique coefficient) est un produit scalaire, appelé produit scalaire canonique sur M n,1 (R). Exemple 3. Sur l espace E = R n [X], l application (P, Q) P Q = n k=0 p kq k, où p k (resp. q k ) est le coefficient de degré k du polynôme P (resp. Q), est un produit scalaire, appelé produit scalaire canonique sur R n [X]. On peut de la même façon définir un produit scalaire sur l espace R[X] de dimension infinie par P Q = k 0 p kq k (qui est une somme finie car les coefficients sont tous nuls à partir d un certain rang). Ce produit scalaire (sur R[X] cette fois-ci) est encore appelé canonique. Exemple 4. Sur l espace E = C ([a, b], R), l application (f, g) f g = b fg est un produit scalaire. a En effet, la seule chose non évidente à vérifier est le caractère défini positif. Pour cela, remarquons que, si f est une fonction continue sur le segment [a, b], alors la fonction f est positive ou nulle, donc f f 0. Si de plus f f = 0, alors la fonction f, positive et continue, est d intégrale nulle (sur [a, b]), donc c est la fonction nulle, donc f est aussi la fonction nulle. Par contraposition, si f n est pas la fonction nulle, alors f f > 0. 67

2 68 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. Définition (espace préhilbertien) Un espace préhilbertien est un R-espace vectoriel muni d un produit scalaire. Remarque 1. Si E est un espace préhilbertien, tout sous-espace F de E hérite, par restriction, d un produit scalaire, donc est lui aussi un espace préhilbertien. Dans toute la suite, E désigne un espace préhilbertien (réel). Définition (norme) Soit E un espace préhilbertien. La norme d un vecteur x est le réel x = x x. Pour tous vecteurs x, y E et tout réel λ, on a λx = λ x x 0, avec égalité si, et seulement si, x = 0 x + y = x + y + x y. Remarque. En pratique, pour montrer qu un vecteur est nul, on pourra chercher à montrer que sa norme est nulle. Théorème (inégalité de Cauchy-Schwarz) Pour tous vecteurs x, y E, on a x y x y x y, avec égalité à droite si, et seulement si, x et y sont colinéaires et de même sens (au sens large) gauche si, et seulement si, x et y sont colinéaires et de sens opposés (au sens large). La locution «au sens large» indique que le vecteur nul doit être considéré comme étant à la fois de même sens et de sens opposé à tout vecteur (en effet, le nombre 0 est à la fois positif et négatif). Démonstration. Commençons par examiner le cas y = 0, ce qui équivaut à y = 0 : la double inégalité est vérifiée. Ces deux inégalités sont même des égalités, et les vecteurs x et y sont bien colinéaires et de même sens, ainsi que colinéaires et de sens opposés. Supposons maintenant y 0. Considérons l application Pour tout réel t, on a f : R R + t x + ty. f(t) = x + t x y + t y donc la fonction f est polynomiale de degré (exactement car y 0). Comme elle est de signe constant, son discriminant est négatif ou nul, donc x y x y 0, ce qui est l inégalité cherchée. Supposons maintenant que l inégalité soit une égalité. Alors le discriminant est nul, donc la fonction f admet une racine (double) λ. La propriété f(λ) = 0 s écrit x + λy = 0, d où l on déduit que x = λy : les vecteurs sont colinéaires. Réciproquement, supposons que les vecteurs soient colinéaires. Notons t le réel tel que x = ty (ce qui est possible car on sait que y est non nul). On a alors x y = ty y = t y et x y = ty y = t y, donc si x et y sont de même sens (i.e. t 0), on a égalité à droite dans l inégalité de Cauchy-Schwarz

3 5.1. Produit scalaire et orthogonalité 69 si x et y sont de sens opposés (i.e. t 0), on a égalité à gauche dans l inégalité de Cauchy- Schwarz. Théorème (inégalités triangulaires) Soient x, y E. On a x y x + y x + y avec égalité à droite si, et seulement si, x et y sont colinéaires et de même sens (au sens large) gauche si, et seulement si, x et y sont colinéaires et de sens opposés. Démonstration. On a, grâce à l inégalité de Cauchy-Schwarz : x + y = x + y + x y x + y + x y = ( x + y ), d où l inégalité x + y x + y, avec égalité si, et seulement si, on est dans le cas d égalité à droite dans l inégalité de Cauchy-Schwarz, i.e. si, et seulement si, x et y sont colinéaires et de même sens. De même, on a ( x y ) = x + y x y x + y + x y = x + y, d où l autre inégalité, avec égalité si, et seulement si, x et y sont colinéaires et de sens opposés (au sens large) Orthogonalité Dans tout ce paragraphe, E désigne un espace préhilbertien. Définition (orthogonalité) Deux vecteurs x, y E sont dits orthogonaux si, et seulement si, x y = 0. On note x y. Remarque 1. Le vecteur nul est orthogonal à tous les vecteurs, et c est le seul à vérifier cette propriété (c est donc une façon de montrer qu un vecteur est nul : démontrer qu il est orthogonal à tout vecteur de E). Définition (familles orthogonales et orthonormées) Une famille (x i ) i I de vecteurs de E est dite orthogonale si, et seulement si, x i x j pour tous i, j I, i j orthonormée si, et seulement si : i, j I, x i x j = δ ij. Une famille orthonormée est donc une famille orthogonale dont les vecteurs sont tous unitaires. Exemple 1. La base canonique de R n, muni de son produit scalaire canonique, est une base orthonormée. Exemple. La base canonique de R[X], muni de son produit scalaire canonique, est une base orthonormée. Une famille orthogonale dont tous les vecteurs sont non nuls est libre. C est en particulier le cas d une famille orthonormée. Démonstration. Soit (x i ) i I une famille orthogonale dont aucun vecteur n est nul. Soit (λ i ) i I une famille à support fini de scalaires telle que i I λ ix i = 0. Soit j I : on a 0 = i I λ ix i x j = i I λ i x i x j = λ j x j. Le vecteur x j étant non nul, on en déduit que λ j = 0. Ceci étant vrai pour tout j I, la famille est libre.

4 70 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. Théorème (Pythagore) Soit x 1, x deux vecteurs de E. On a l équivalence suivante : x 1 x x 1 + x = x 1 + x. Démonstration. En effet, la différence x 1 + x ( x 1 + x ) = x 1 + x x 1 x x 1 x = x 1 x est nulle si, et seulement si, x 1 et x sont orthogonaux. Théorème (Pythagore) Soit (x 1,..., x n ) une famille orthogonale (n ). Alors x x n = x x n. La réciproque est fausse si n >. Démonstration. Procédons par récurrence sur n. Pour n =, la propriété est vraie. Soit n. Supposons la propriété vraie pour une famille de n vecteurs, démontrons-la pour une famille (x 1,..., x n+1 ) de n + 1 vecteurs. Pour cela, remarquons que le vecteur x n+1 est orthogonale à la somme x x n : x x n x n+1 = x 1 x n x n x n+1 = 0. On a donc, en appliquant successivement le cas n = et l hypothèse de récurrence : (x x n ) + x n+1 = x x n + x n+1 = x x n + x n+1 ce qui prouve la propriété au rang n + 1, donc pour tout entier pour récurrence. Définition (orthogonal d un sous-espace vectoriel) Soit F un sous-espace vectoriel de E. L orthogonal de F est l ensemble F des vecteurs orthogonaux à tous les vecteurs de F : F = {x E y F, x y}. L orthogonal d un sous-espace vectoriel F est encore un sous-espace vectoriel de E. Démonstration. Il est clair que le vecteur nul est orthogonal à tous les vecteurs de F si x 1 et x sont deux vecteurs orthogonaux à tous les vecteurs de F et λ un réel, alors, pour tout vecteur y F, on a x 1 + λx y = x 1 y + λ x y = 0 donc x 1 + λx appartient à F. Exemple 3. L orthogonal de l espace nul est l espace E ; l orthogonal de l espace E est l espace nul. Remarque. Si F et G sont deux sous-espaces vectoriels de E vérifiant F G, on a G F. Définition (sous-espaces orthogonaux) Deux sous-espaces vectoriels F et G sont dits orthogonaux si, et seulement si, pour tout x F et tout y G, on a x y. On note F G.

5 5.. Espaces euclidiens 71 Remarque 3. Il est équivalent de dire que F G, ou encore que G F. Soient F, G deux sous-espaces vectoriels orthogonaux. Alors F G = {0}. Démonstration. Soit x un vecteur de F G. Ce vecteur appartient à F, donc est orthogonal à tout vecteur de G, donc à lui-même. Donc x = 0. Si F et G sont deux sous-espaces vectoriels orthogonaux, la somme F + G est donc directe ; elle est notée F G et on parle de somme directe orthogonale. Soit F un sous-espace vectoriel de E. Si E = F F, alors F est le seul supplémentaire de F qui soit orthogonal à F. Démonstration. Supposons E = F F (donc E = F F ). Soit G un sous-espace vectoriel de E vérifiant E = F G. Alors F G, donc G F. Pour l autre inclusion, choisissons un vecteur x F. Écrivons sa décomposition x = x F + x G sur la somme directe E = F G. Comme G F, cette décomposition est aussi la décomposition de x sur la somme directe E = F F. Mais cette dernière est x = 0 + x. On en déduit donc que x = x G, donc que x appartient à G. Définition (supplémentaire orthogonal ; projecteur orthogonal) Si E = F F, l espace F est appelé le supplémentaire orthogonal de F. Le projecteur sur F parallèlement à F est appelé projecteur orthogonal sur F. Attention! En général, la relation E = F F est fausse ; seule l inclusion F F E est vraie. Si F est un sous-espace vectoriel quelconque de E, on ne peut donc en général pas parler du projecteur orthogonal sur F. Toute droite vectorielle admet un supplémentaire orthogonal. Si a est un vecteur unitaire de D, le projecteur orthogonal sur D est l application x p D (x) = a x a. Démonstration. Soit D une droite de E. Il s agit de démontrer que tout vecteur x E peut se décompose de façon unique sous la forme x = x D + x, où x D appartient à D et x est orthogonal à D. Pour cela, choisissons un vecteur a unitaire de D. Pour tout vecteur x E, posons x D = a x a et x = x x D. On a clairement x D D. De plus, a x = a x a x a = a x a x a = 0, ce qui prouve que x D. L unicité de la décomposition résulte de ce que D D = {0}. 5. Espaces euclidiens 5..1 Bases orthonormées Définition Un espace eucliden est un espace préhilbertien de dimension finie. Théorème Tout espace euclidien admet une base orthonormée.

6 7 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. Démonstration. Procédons par récurrence sur la dimension n de E. Pour n = 1, il suffit de choisir un vecteur non nul de E et de le diviser par sa norme pour obtenir une base orthonormée. Soit n 1. Supposons le résultat vrai pour tout espace euclidien de dimension n et considérons un espace euclidien E de dimension n + 1. Choisissons un vecteur e 1 unitaire de E et considérons le sousespace H = Vect(e 1 ) (toute droite admet un supplémentaire orthogonal) : il est de dimension n, donc admet une base orthonormée par hypothèse de récurrence. En ajoutant le vecteur e 1 à une telle base, on obtient une base orthonormée de E. Théorème (expression du produit scalaire et de la norme en base orthonormée) Soit B = (e 1,..., e n ) une base orthonormée de l espace euclidien E. Soient x = x 1 e x n e n et y = y 1 e y n e n E. Alors x y = x 1 y x n y n et x = x x n. Démonstration. Par bilinéarité et symétrie du produit scalaire, on a x y = n x i y j e i e j = x i y i. i,j L autre formule s en déduit immédiatement. Attention! Ces formules ne sont vraies que parce que les coordonnées sont exprimées dans une base orthonormée. Remarque 1. En notant X = mat B (x) et Y = mat B (y) (où B est toujours une base orthonormée), cette formule s écrit encore, via l identification d une matrice (1, 1) à son unique coefficient : Théorème (coordonnées en base orthonormée) x y = X T Y. Soit (e 1,..., e n ) une base orthonormée de E. Pour tout vecteur x E, on a x = i=1 n e k x e k. k=1 Démonstration. Écrivons x = x 1 e x n e n. En prenant le produit scalaire de cette égalité avec le vecteur e k, on trouve x k = e k x. 5.. Projecteurs orthogonaux, supplémentaire orthogonal Théorème (supplémentaire orthogonal d un sous-espace de dimension finie) Soit E un espace préhilbertien (pas nécessairement de dimension finie) et F un sous-espace vectoriel de dimension finie de E. Alors F admet un supplémentaire orthogonal. Si B = (e 1,..., e n ) est une base orthonormée de F, le projecteur orthogonal p F sur F est p F : x n e i x e i. i=1 Démonstration. Soit B = (e 1,..., e n ) une base orthonormée de F. Soit x un vecteur de E. Posons x F = n i=1 e i x e i et y = x x F. Le vecteur x F appartient à F. De plus, pour tout j [[1, n]], on a n e j y = e j x e i x e j e i = e j x e j x = 0, i=1 donc le vecteur y est orthogonal à tout vecteur de F, donc appartient à F. On a donc l égalité E = F + F, donc E = F F. Le projeté orthogonal de x sur F est x F.

7 5.. Espaces euclidiens 73 Remarque 1. Si la famille (e 1,..., e n ) est seulement une base orthogonale de F, le projecteur orthogonal p F est défini par n e i x p F : x p F (x) = e i e i. En effet, la famille ( e 1 e 1,..., e n e n ) est une base orthonormée de F. i=1 Soit E un espace euclidien. Pour tout sous-espace vectoriel F de E, on a dim(e) = dim(f ) + dim(f ) (F ) = F. Démonstration. La première formule résulte de ce que F est un supplémentaire de F ; la seconde est vraie car l égalité E = F F montre que F est un supplémentaire orthogonal de F, c est donc son supplémentaire orthogonal, i.e. (F ). Définition (distance à un sous-espace vectoriel) Soit x un vecteur d un espace préhilbertien E et F un sous-espace vectoriel de E. La distance de x à F est d(x, F ) = inf d(x, y) = inf x y. y F y F Théorème (distance à un sous-espace vectoriel de dimension finie) Soit F un sous-espace vectoriel de dimension finie de E et x un vecteur de E. Il existe un unique vecteur y F tel que d(x, F ) = d(x, y) : c est y = p F (x). Démonstration. Soit y un vecteur de E. On a, par le théorème de Pythagore : d(x, y) = x y = (x p F (x)) + (p F (x) y) = x p F (x) + p F (x) y x p F (x), avec égalité si, et seulement si, y = p F (x). Remarque. Avec les notations du théorème, on a donc x = p F (x) + d(x, F ). Théorème (orthonormalisation de Gram-Schmidt) Soit B = (e 1,..., e n ) une base de l espace euclidien E. Il existe une base orthonormée C = (ε 1,..., ε n ) telle que p [[1, n]], Vect(ε 1,..., ε p ) = Vect(e 1,..., e p ). La base C est l orthonormalisée de la base B. Démonstration. On construit les vecteurs par étapes. Le vecteur ε 1 = 1 e e 1 1 est unitaire et colinéaire à e 1. Soit p [[1, n 1]]. Supposons construite une base orthonormée (ε 1,..., ε p ) de Vect(e 1,..., e i ). Posons alors p f p+1 = e p+1 ε k e p+1 ε k et ε p+1 = 1 f p+1 f p+1. k=1 On vérifie immédiatement que le vecteur f p+1 est dans Vect(e 1,..., e p+1 ) et orthogonal à Vect(e 1,..., e p ) = Vect(ε 1,..., ε p ), donc que (ε 1,..., ε p+1 ) est une base orthonormée de Vect(e 1,..., e p+1 ). Remarque 3. Le vecteur f p+1 est le «redressé» du vecteur e p+1 orthogonalement à Vect(e 1,..., e p ) : on lui a retranché sa projection orthogonale sur Vect(e 1,..., e p ).

8 74 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. Remarque 4. On se contente parfois de calculer la famille orthogonale des vecteurs f k pour éviter de faire apparaître les racines carrées liées aux normes. Dans ce cas, le projeté orthogonal de e p+1 sur Vect(e 1,..., e p ) se calcule par la formule p k=1 (ne pas oublier que le vecteur f k n est pas unitaire!). f k e p+1 f k f k 5.3 Automorphismes orthogonaux ; matrices orthogonales Automorphismes orthogonaux (isométries) Dans tout ce paragraphe, E désigne un espace euclidien (donc de dimension finie). Définition Un endomorphisme f de E est dit orthogonal (on dit aussi que c est une isométrie) si, et seulement si, x, y E, f(x) f(y) = x y. On note O(E) l ensemble des endomorphismes orthogonaux. Autrement dit, c est une application linéaire qui «respecte le produit scalaire». Théorème Tout endomorphisme orthogonal de E est un automorphisme. De plus, l ensemble O(E) est un sousgroupe du groupe linéaire GL(E). Démonstration. Si x est un vecteur du noyau de f O(E), il vérifie x x = f(x) f(x) = 0, donc x = 0 : l endomorphisme f est injectif, donc bijectif (car E est de dimension finie). Il est ensuite clair que l application Id E est un automorphisme orthogonal, que la composée de deux automorphismes orthogonaux en est encore un, de même que la bijection réciproque d une automorphisme orthogonal. Théorème (caractérisation des automorphismes orthogonaux par la norme) Un endomorphisme f L(E) est un automorphisme orthogonal si, et seulement si, il vérifie x E, f(x) = x. Démonstration. Il est clair que si f est un automorphisme orthogonal, il conserve la norme des vecteurs. Réciproquement, supposons que f préserve la norme de tous les vecteurs. L identité de polarisation donne, pour tous vecteurs x, y E : x y = 1 ( x + y x y ) f(x) f(y) = 1 ( f(x) + f(y) f(x) f(y) ) = 1 ( f(x + y) x y ) ce qui prouve que f est un automorphisme orthogonal. = 1 ( x + y x y ) = x y, Remarque 1. Cette propriété justifie la terminologie isométrie : les automorphismes orthogonaux sont ceux qui conservent la norme (longueur) des vecteurs.

9 5.3. Automorphismes orthogonaux ; matrices orthogonales 75 Exemple 1. Soit F un sous-espace vectoriel de E et s la symétrie orthogonale par rapport à F (la symétrie par rapport à F parralèlement à F ). Alors s est une isométrie. En effet, soit x un vecteur de E et x = x F + x F sa décompositon sur la somme directe. On a d où (théorème de Pythagore) s(x) = x F x F, s(x) = x F x F = x F + x F = x F + x F = x. Dans le cas où l espace F est de dimension n 1 (où n = dim E), on dit que s est une réflexion. Ainsi, une réflexion plane est une symétrie orthogonale par rapport à une droite ; de l espace (de dimension 3) est une symétrie orthogonale par rapport à un plan. Théorème (caractérisation des automorphismes orthogonaux par l action sur les bases orthonormées) Soit f L(E). Les assertions suivantes sont équivalentes : 1. f O(E).. Il existe une base orthonormée (e 1,..., e n ) de E telle que ( f(e 1 ),..., f(e n ) ) soit une base orthonormée de E. 3. Pour toute base orthonormée (e 1,..., e n ) de E, ( f(e 1 ),..., f(e n ) ) est une base orthonormée de E. Démonstration. 1) = 3) : soit (e 1,..., e n ) une base orthonormée de E. Pour tous i, j [[1, n]], on a f(e i ) f(e j ) = e i e j = δ i,j donc ( f(e 1 ),..., f(e n ) ) est une base orthonormée. 3) = ) : évident. ) = 1) : soit (e 1,..., e n ) une telle base orthonormée. Pour tout x = n i=1 x ie i, on a donc f est orthogonal. f(x) = f( n i=1 x ie i ) = n i=1 x if(e i ) = n i=1 x i = x (espaces stables) Soit f un automorphisme orthogonal de E et F un sous-espace stable par f. Alors l espace F est stable par f. De plus, les endomorphismes induits par f sur F et F sont encore des automorphismes orthogonaux. Démonstration. Commençons par remarquer que l endomorphisme f F induit par f sur F est un isomorphisme : en effet, il est injectif (car f l est) et F est de dimension finie. Comme f conserve la norme des vecteurs, il en est de même de f F, donc c est un automorphisme orthogonal de F. Montrons maintenant que F est stable par f. Pour cela, soit x un vecteur de F : il s agit de démontrer que f(x) appartient encore à F, i.e. qu il est orthogonal à tout vecteur de F. Soit donc y un vecteur de F. Choisissons un vecteur t F tel que y = f(t) (l endomorphisme f F est bijectif). On a f(x) y = f(x) f(t) = x t = 0, donc f(x) F. Cet espace étant stable par f, l endomorphisme induit par f sur F est un automorphisme orthogonal.

10 76 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux Matrices orthogonales Théorème (caractérisation matricielle des automorphismes orthogonaux) Soit f L(E), B une base orthonormée et A = mat B (f). Les assertions suivantes sont équivalentes : 1. f O(E).. A T A = I n. 3. AA T = I n. Démonstration. Les deux assertions ) et 3) sont clairement équivalentes ; elles signifient que A est inversible, d inverse A T. Démontrons donc l équivalence de 1) et ). Notons (e 1,..., e n ) la base orthonormée B et C = A T A. La colonne C j (A) de A est mat B (f(e j )) ; le coefficient c i,j de la matrice C est égal à L i (A T )C j (A) = C T i (A)C j(a). Comme la base est orthonormée, ce nombre est le produit scalaire f(e i ) f(e j ). Par suite, la matrice A T A est égale à la matrice I n si, et seulement si, on a f(e i ) f(e j ) = δ i,j pour tous i, j, i.e. si, et seulement si, la famille ( f(e 1 ),..., f(e n ) ) est une base orthonormée, ce qui équivaut à f O(E). Définition (matrice orthogonale) Une matrice A M n (R) est dite orthogonale si, et seulement si, elle vérifie A T A = I n (ce qui équivaut à AA T = I n ). On note O n (R) l ensemble {A M n (R) A T A = I n } des matrices orthogonales. Un endomorphisme de E est donc un automorphisme orthogonal si, et seulement si, sa matrice dans une base orthonormée (donc dans toute base orthonormée) est orthogonale. Tout comme O(E) est un sous-groupe de GL(E), l ensemble O n (R) est un sous-groupe de GL n (R). Remarque 1. La matrice A T A est symétrique ; il n est donc pas nécessaire de calculer tous ses coefficients pour savoir si A T A = I n. Par ailleurs, le coefficient d indice (i, j) de cette matrice est le produit scalaire de la i ème colonne de A avec la j ème colonne. La matrice est donc orthogonale si, et seulement si, ses colonnes sont deux à deux orthogonales, et unitaires. Exemple 1. La matrice vérifie A = C 1 = 1, C = C 3 = = 1 et C 1 C = C 1 C 3 = 0, C C 3 = donc A est une matrice orthogonale = 0 Théorème (déterminant d une matrice orthogonale, d un automorphisme orthogonal) Soit A une matrice orthogonale. Alors det(a) = 1. Soit f un automorphisme orthogonal. Alors det(f) = 1. Démonstration. La matrice A vérifie A T A = I n, d où l on tire det(a T A) = det(i n ) = 1. Or det(a T A) = det(a T ) det(a) = det(a), donc det(a) = 1. Pour l automorphisme orthogonal f, il suffit d écrire sa matrice M dans une base orthonormée : c est une matrice orthogonale, donc son déterminant vérifie det(f) = det(m) = 1. Attention! Une matrice A vérifiant det(a) = ±1 n est en général pas une matrice orthogonale! Par exemple, la matrice A = [ ] a pour déterminant 1 mais n est pas orthogonale (les deux colonnes ne sont pas orthogonales).

11 5.3. Automorphismes orthogonaux ; matrices orthogonales 77 Définition (automorphismes orthogonaux directs et indirects) Un automorphisme orthogonal f est dit direct si, et seulement si, det(f) = 1. On dit encore que f est un automorphisme spécial orthogonal. On note SO(E) = O + (E) l ensemble des automorphismes orthogonaux directs. Dans le cas contraire (i.e. si det(f) = 1), l automorphisme orthogonal f est dit indirect. On note O (E) l ensemble des automorphismes orthogonaux indirects. Exemple. Une réflexion (symétrie orthogonale par rapport à un sous-espace de dimension n 1) est un automorphisme orthogonal indirect : dans une base adaptée, sa matrice est diagonale et comporte n 1 occurrences du coefficient 1 et une seule du coefficient 1. L ensemble SO(E) est un sous-groupe du groupe orthogonal O(E) de E, appelé groupe spécial orthogonal de E. Démonstration. L application Id E appartient à SO(E) ; les formules det(g f) = det(g) det(f) et det(f 1 ) = det(f) 1 montrent immédiatement que, f, g appartiennent à SO(E), il en est de même de g f et f 1. Attention! L ensemble O (E) n est pas un groupe! La composée de deux automorphismes orthogonaux indirects est un automorphisme orthogonal direct. Définition (matrices orthogonales directes et indirectes) Une matrice orthogonale A est dite directe si, et seulement si, det(a) = 1. On dit encore que A est une matrice spéciale orthogonale. On note SO n (R) = O + n (R) l ensemble des matrices orthogonales directes. Dans le cas contraire (i.e. si det(a) = 1), la matrice orthogonale A est dite indirecte. On note O n (R) l ensemble des matrices orthogonales indirectes. Un automorphisme orthogonal f de E est direct (resp. indirect) si, et seulement si, sa matrice A exprimée dans une base orthonormée directe de E est orthogonale directe (resp. indirecte). Plus précisément, si B est une base orthonormée directe de E, l isomorphisme de groupes O(E) O n (R) f mat B (f) envoie O + (E) sur O + n (R) et O (E) sur O n (R). L ensemble SO n (R) est un sous-groupe de O n (R), alors que O n (R) n en est pas un. (matrices de changement de base orthogonale) Soit B une base orthonormée de E et C une autre base. Notons P la matrice de passage de la base B à la base C. Alors C est une base orthonormée de E si, et seulement si, P est une matrice orthogonale. Si c est le cas, la base C est de même orientation que la base B si, et seulement si, la matrice P est spéciale orthogonale. Démonstration. Notons e i les vecteurs de la base B et ε i les vecteurs de la base C. La i ème colonne X i de la matrice P est la matrice mat B (ε i ). La base B étant orthonormée, on a, pour tous i, j : ε i ε j = X T i X j. Ainsi, la base C est orthonormée si, et seulement si, les colonnes de la matrice P sont deux à deux orthogonales et unitaires, i.e. si, et seulement si, la matrice P est orthogonale.

12 78 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. Ceci a une conséquence très intéressante sur le déterminant. Nous savons que le déterminant d une famille de vecteurs n est pas défini de façon intrinsèque : il dépend de la base utilisée pour calculer le déterminant. Ce problème disparaît lorsque l on se limite à certaines bases : Théorème (déterminant en base orthonormée directe) On suppose l espace E orienté de dimension n. Si B 1 et B sont deux bases orthonormées directes, alors, pour toute famille (x 1,..., x n ) de E, on a det B1 (x 1,..., x n ) = det B (x 1,..., x n ). Démonstration. En effet, en notant P la matrice de passage de la base B 1 à la base B, on a det B1 (x 1,..., x n ) = det(p ) det B (x 1,..., x n ), et la matrice P est spéciale orthogonale, donc de déterminant égale à Isométries planes Dans le cas où l espace euclidien E est un plan, il est facile de donner la description de toutes les isométries, directes comme indirectes. Pour ce faire, commençons par déterminer toutes les matrices orthogonales de taille, directes comme indirectes. Théorème Soit A M (R). Alors a b 1. A SO (R) si, et seulement si, il existe a, b R tels que a + b = 1 et A = ; b a a b. A O (R) \ SO (R) si, et seulement si, il existe a, b R tels que a + b = 1 et A =. b a a c Démonstration. Soit A = M b d (R). La première colonne est unitaire, donc a + b = 1. la b b seconde est orthogonale à la première, donc colinéaire à. Comme elle est unitaire, c est ±. a a a b a b Ainsi, toute matrice orthogonale est de la forme ou, où a b a b a + b = 1. Réciproquement, on vérifie immédiatement que ces matrices sont orthogonales pour tous réels a, b tels que a + b = 1, de déterminant 1 pour le premier type, 1 pour le second. Corollaire Soit A M (R). cos θ sin θ 1. Si A SO (R), il existe un réel θ, unique modulo π, tel que A =. sin θ cos θ cos θ sin θ. Si A O (R) \ SO (R), il existe un réel θ, unique modulo π, tel que A =. On sin θ cos θ a alors A = I. De cette description des matrices orthogonales, on déduit la description des automorphismes orthogonaux. Pour cela, plaçons-nous désormais dans un plan E euclidien orienté. Lemme Soit ϕ SO(E). Il[ existe un réel θ, ] unique modulo π, tel que pour toute base orthonormée directe B, cos θ sin θ on ait mat B (ϕ) =. sin θ cos θ

13 5.3. Automorphismes orthogonaux ; matrices orthogonales 79 Démonstration. Soit B 1 une base orthonormée directe et A = mat B1 (ϕ). Soit θ le réel, unique modulo π, tel que cos θ sin θ A =. sin θ cos θ Il s agit de montrer que, si B est une autre base orthonormée directe, on a encore cos θ sin θ mat B (ϕ) =. sin θ cos θ La matrice de passage P de B 1 à B étant spéciale orthogonale (B 1 et B sont deux bases orthonormées directes), elle est de la forme cos α sin α P =. sin α cos α On a alors 1 [ cos α sin α cos θ sin θ mat B (ϕ) = sin α cos α sin θ cos θ cos( α) sin( α) = sin( α) cos( α) cos θ sin θ = sin θ cos θ ] [ cos α ] sin α sin α cos α ] [ cos(θ + α) sin(θ + α) sin(θ + α) cos(θ + α) Définition (rotation) Soit θ R. [ L application] ϕ SO(E) telle que pour toute base orthonormée directe B, on ait cos θ sin θ mat B (ϕ) = est appelée rotation d angle θ ; on la note ρ sin θ cos θ θ. Le réel θ est une mesure de l angle de la rotation. On a donc le Théorème Les éléments de SO(E) sont les rotations. Pour tous θ 1, θ R, on a ρ θ1 ρ θ = ρ θ ρ θ1 = ρ θ1+θ et ρ 1 θ 1 = ρ θ1. La formule sur les compositions et l inverse résulte des calculs faits sur les matrices dans la démonstration du lemme. Deux rotations ρ θ1 et ρ θ sont égales si, et seulement si, θ θ 1 [π]. Expression complexe d une rotation Soit B = (e 1, e ) une base orthonormée directe de E. À tout vecteur u = xe 1 + ye, on associe son affixe z = x + iy. Le calcul matriciel cos θ sin θ x = sin θ cos θ y cos θx sin θy sin θx + cos θy montre que le vecteur ρ θ (u) a pour coordonnées (dans la base B) (cos θx sin θy, sin θx + cos θy). Mais ces coordonnées apparaissent aussi dans le calcul de z = e iθ z = (cos θ + i sin θ)(x + iy) = (cos θx sin θy) + i(sin θx + cos θy). Ce complexe z est donc l affixe du vecteur ρ θ (u). On dit que l écriture z = e iθ z est l écriture complexe de la rotation ρ θ.

14 80 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. Angle de deux vecteurs Lemme Soient u, v E deux vecteurs unitaires. Il existe une unique rotation ρ de E telle que ρ(u) = v. Démonstration. Soit e 1 = u et e l unique vecteur tel que B = (e 1, e ) soit une base orthonormée directe. On a u = e 1 et v = ae 1 + be, avec a + b = [ 1. On cherche ρ SO(E) tel que ρ(u) [ = v. ] Sa matrice A a a b dans la base B orthonormée doit donc avoir pour première colonne, donc A =. Ceci prouve b] b a l unicité d une telle rotation. Réciproquement, la rotation ρ définie par cette matrice dans la base B répond à la question. v = ρ θ ( u) θ 0 u Figure 5.1 angle de deux vecteurs Définition Soient U, V deux vecteurs non nuls de E et u = 1 U U, v = 1 V V. L angle orienté de U et V, noté (U, V ) est l angle de l unique rotation ρ vérifiant ρ(u) = v. Par abus, on appelera encore angle orienté de u et v toute mesure de cet angle (alors définie modulo π). Des résultats sur les rotations, on déduit le Théorème Soient U, V, W trois vecteurs non nuls de E. Alors 1. (U, W ) (U, V ) + (V, W ) [π] (relation de Chasles) ;. (V, U) (U, V ) [π] ; 3. (U, V ) (U, V ) + π [π]. 0 v θ θ u θ 1 + θ 0 v θ w θ 1 u Figure 5. opposé d un angle et somme de deux angles Démonstration. Il suffit de prouver ces trois assertions pour des vecteurs unitaires u, v et w. Notons θ 1 = (u, v), θ = (v, w) et θ 3 = (u, w) (i.e. des mesures de ces angles). Alors 1. ρ θ1+θ (u) = ρ θ1 (ρ θ (u)) = ρ θ1 (v) = w donc θ 3 θ 1 + θ [π] ;. ρ θ1 (v) = ρ θ1 (ρ θ1 (u)) = ρ θ1+θ 1 (u) = ρ 0 (u) = u donc (v, u) θ 1 [π] ; 3. ρ θ1+π(u) = ρ θ1 (u) = v donc (u, v) θ 1 [π].

15 5.3. Automorphismes orthogonaux ; matrices orthogonales 81 Détermination pratique (d une mesure) de l angle Soient U, V deux vecteurs non nuls. Connaître une mesure θ de l angle (U, V ) revient à connaître cos θ et sin θ. Pour cela, on a le Théorème Soit B une base orthonormée directe de E. On a les égalités U V = U V cos θ et det B (U, V ) = U V sin θ. Démonstration. Soient u = 1 U U et v = 1 V V. Soit e 1 = u et e tel que B = (e 1, e ) soit une base orthonormée directe. Soit enfin θ une mesure de l angle (U, V ) et ρ la rotation d angle θ. Celle-ci vérifie ρ(u) = v, donc v = ρ(u) = ρ(e 1 ) = cos θe 1 + sin θe. Comme on a u = e 1 et que B = (e 1, e ) est une base orthonormée directe, on a u v = cos θ et det B (u, v) = 1 cos θ 0 sin θ = sin θ, d où la formule souhaitée. En particulier, les vecteurs U et V sont orthogonaux si, et seulement si, (U, V ) π [π] colinéaires si, et seulement si, (U, V ) 0 [π] Corollaire Soit ρ la rotation d angle θ et B une base orthonormée directe de E. Pour tout vecteur unitaire u, on a De plus, on a cos θ = 1 Tr(ρ). cos θ = u ρ(u) et sin θ = det B ( u, ρ(u) ). Démonstration. En effet, ρ(u) est un vecteur[ unitaire qui vérifie cos θ sin θ de ρ dans une base orthonormée directe est sin θ cos θ (u, ρ(u)) θ [π]. Par ailleurs, la matrice ], d où la trace. Isométries planes indirectes Théorème Les isométries indirectes du plan E sont les réflexions. La composée de deux réflexions est une rotation. Démonstration. Soit f une isométrie indirecte et B une base orthonormée directe de E. La matrice A = mat B (f) vérifie A = I, donc f est une symétrie. Ce ne peut être ni Id E ni Id E (sinon, on aurait det(f) = 1) ; donc c est une symétrie par rapport à une droite D 1, parallèlement à une droite D. Notons u i un vecteur directeur de D i : la relation u 1 u = f(u 1 ) f(u ) = u 1 u = u 1 u montre que ces vecteurs sont orthogonaux : f est une symétrie orthogonale. Enfin, la composée de deux réflexions est une isométrie directe, donc une rotation.

16 8 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. 5.4 Endomorphismes symétriques Définition et premières propriétés Définition (endomorphisme symétrique) Un endomorphisme f d un espace euclidien est dit symétrique si, et seulement si, il vérifie : x, y E, f(x) y = x f(y). Exemple 1. symétrique. L application identité ; plus généralement, toute homothétie de E est un endomorphisme L ensemble des endomorphismes symétriques de E est un sous-espace vectoriel de L(E). Démonstration. C est immédiat. Théorème (caractérisation des projecteurs et symétries orthogonales) Soient p un projecteur et s une symétrie d un espace euclidien E. Alors p est un projecteur orthogonal si, et seulement si, il est symétrique s est une symétrie orthogonale si, et seulement si, elle est symétrique. Démonstration. Soit E = F G une décomposition de l espace E en somme directe, p le projecteur sur F parallèlement à G et s la symétrie par rapport à F parallèlement à G. Supposons que p est un endomorphisme symétrique. Soient x F F et x G G. On a x F x G = p(x F ) x G = x F p(x G ) = x F 0 = 0, ce qui prouve que l espace F est orthogonal à l espace G, donc que p est un projecteur orthogonal. Réciproquement, supposons que p est un projecteur orthogonal. Soient x, y deux vecteurs de E, de décompositions respectives x = x F + x G et y = y F + y G sur la somme directe E = F G. On a p(x) y = x F y F + y G = x F y F = x F + x G y F = x p(y), ce qui prouve que p est un endomorphisme symétrique. Traitons maintenant le cas de la symétrie s. Rappelons que l on a s = p Id E. Supposons que s est une symétrie orthogonale. Alors p est un projecteur orthogonal, donc symétrique, donc s l est aussi (car Id E est symétrique). Réciproquement, supposons s symétrique. Alors p = 1 (s + Id E) l est aussi, donc c est un projecteur orthogonal, donc la symétrie s est orthogonale. Matriciellement : Théorème (caractérisation matricielle des endomorphismes symétriques) Soit f un endomorphisme d un espace euclidien E, B une base orthonormée de E et A = mat B (f). Alors : f est symétrique A T = A. Autrement dit : les endomorphismes symétriques sont ceux dont la matrice dans une base orthonormée est symétrique. Il suffit qu il existe une base orthonormée dans laquelle la matrice soit symétrique pour que l endomorphisme soit symétrique, et que sa matrice dans toute base orthonormée soit symétrique. Lemme L unique matrice M M n (R) vérifiant : est la matrice nulle. X, Y M n,1 (R), X T MY = 0

17 5.4. Endomorphismes symétriques 83 Démonstration. En effet, si la matrice M n est pas nulle, on peut trouver une matrice colonne Y 0 telle que la matrice X 0 = MY 0 soit non nulle. On a alors X T 0 MY 0 = X T 0 X 0 = X 0 0. Démonstration du théorème. Pour tous vecteurs x, y de E, on a, en notant X et Y les matrices colonnes de x et y dans la base B : f(x) y = (AX) T Y et x f(y) = X T AY. On a donc les équivalences : f est symétrique x, y E, f(x) y = x f(y) X, Y M n,1 (R), (AX) T Y = X T AY X, Y M n,1 (R), X T A T Y X T AY = 0 X, Y M n,1 (R), X T (A T A)Y = 0 A T A = 0. Corollaire (caractérisation matricielle des symétries orthogonales) Soit s un endomorphisme d un espace euclidien, B une base orthonormée de E et A = mat B (s). Alors s est une symétrie orthogonale si, et seulement si, la matrice A est symétrique et orthogonale. Démonstration. En effet, la matrice d une symétrie orthogonale est symétrie et vérifie A = I n, donc également A T A = I n : elle est orthogonale. Réciproquement, si la matrice A vérifie A T = A et A T A = I n, alors elle vérifie aussi A = I n, donc s est une symétrie. Sa matrice dans une base orthonormée étant symétrique, c est une symétrie orthogonale Réduction des endomorphismes symétriques Soit f un endomorphisme symétrique d un espace euclidien E et F un sous-espace stable par f. Alors 1. l espace F est stable par f. les endomorphismes induits par f sur F et F sont symétriques. Démonstration. 1. Soit x un vecteur de F : il s agit de montrer que f(x) appartient encore à F, i.e. est orthogonal à tout vecteur de F. Pour tout vecteur y F, on a car f(y) appartient à F. f(x) y = x f(y) = 0. La propriété f(x) y = x f(y) étant vraie pour tous vecteurs x, y E, elle est a fortiori vraie pour tous vecteurs x, y F, donc l endomorphisme f F est symétrique ; il en est de même de l autre endomorphisme induit. Soit f un endomorphisme symétrique d un espace euclidien E. Son polynôme caractéristique est scindé. Démonstration. Notons n la dimension de E : il s agit de montrer que les n racines complexes (éventuellement confondues pour certaines) du polynôme caractéristique χ f sont en fait réelles, i.e. que chacune est égale à sa conjuguée. Pour cela, choisissons une base orthonormée B de E et écrivons la matrice A = mat B (f). C est une matrice à coefficients réels ; voyons-la provisoirement comme une matrice à coefficients complexes. Soit λ une valeur propre (complexe) de A et X un vecteur propre (complexe) associé : AX = λx. En conjuguant puis en transposant, on obtient X T A = λx T (car A est à coefficients

18 84 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. réels et symétrique). Multiplions à droite par X : on obtient X T AX = λx T X, soit λ X T X = λ X T X. Or, en notant x i les coefficients (complexes) de la matrice colonne X, on a On en déduit que λ = λ. X T X = x x n 0. Théorème (théorème «spectral» : diagonalisation des endomorphismes symétriques) Soit f un endomorphisme symétrique d un espace euclidien E. Alors f est diagonalisable en base orthonormée. Démonstration. Raisonnons par récurrence sur la dimension n de E. Pour n = 1, il n y a rien à démontrer. Soit n 1. Supposons le résultat vrai pour tout endomorphisme symétrique d un espace de dimension inférieure ou égale à n et démontrons-le lorsque dim(e) = n + 1. Commençons par considérer une valeur propre λ (réelle!) de f (le polynôme caractéristique de f est scindé) et l espace propre F associé. Cet espace est stable par f, donc F l est aussi, et de dimension inférieure ou égale à n. Notons g l endomorphisme induit par f sur F : c est un endomorphisme symétrique, donc il existe une base orthonormée de F formée de vecteurs propres de g (donc de f). En concaténant cette base orthonormée avec une base orthonormée de F, on obtient une base orthonormée de E, formée de vecteurs propres de f. La propriété est prouvée au rang n + 1, donc pour tout entier n par récurrence. Théorème (diagonalisation des matrices symétriques réelles) Soit A M n (R) une matrice symétrique réelle. Il existe une matrice orthogonale P O n (R) telle que la matrice D = P T AP = P 1 AP soit diagonale. Démonstration. C est la version matricielle du théorème précédent. Attention! Ce résultat est spécifique aux matrices symétriques réelles! Par exemple, la matrice symétrique complexe 1 i A = i 1 n est pas diagonalisable : son polynôme caractéristique est χ A = X, donc elle admet pour unique valeur propre λ = 0. Si elle était diagonalisable, elle serait semblable à la matrice nulle Endomorphismes symétriques positifs Le contenu de ce paragraphe n est pas au programme, mais fait régulièrement l objet de problèmes de concours. Il est donc bon de savoir à quoi s attendre. Définition (endomorphismes symétriques positifs) Un endomorphisme symétrique f d un espace euclidien E est dit positif si, et seulement si, pour tout x E, on a f(x) x 0 défini positif si, et seulement si, pour tout x E \ {0}, on a f(x) x > 0. Pour les matrices : Définition (matrices symétriques positives) Une matrice symétrique A M n (R) est dite positive si, et seulement si, pour tout X M n,1 (R), on a X T AX 0 définie positive si, et seulement si, pour tout X M n,1 (R) \ {0}, on a X T AX > 0. D où immédiatement :

19 5.4. Endomorphismes symétriques 85 Soit f un endomorphisme symétrique d un espace euclidien E, B une base orthonormée de E et A = mat B (f). L endomorphisme f est positif (resp. défini positif) si, et seulement si, la matrice A est positive (resp. définie positive). Il se trouve que, pour un endomorphisme symétrique, on sait encadrer le produit scalaire f(x) x en fonction de x : Soit f un endomorphisme symétrique d un espace euclidien E de dimension finie n. Soient λ 1 λ n les valeurs propres de f. Pour tout x E, on a λ 1 x f(x) x λ n x. Démonstration. Soit C = (ε 1,..., ε ) une base orthonormée de E, diagonale pour f, le vecteur propre ε i étant associé à la valeur propre λ i. Soit x = x 1 ε x n ε n un vecteur de E. On a d où f(x) = λ 1 x 1 ε λ n x n ε n, f(x) x = λ 1 x λ n x n. Or, pour tout i [[1, n]], on a λ 1 x i λ ix i λ nx i, d où, par somme : λ 1 x f(x) x λ n x. On en déduit immédiatement la version matricielle : Soit A M n (R) une matrice symétrique. Soient λ 1 λ n les valeurs propres de A. Pour tout X M n,1 (R), on a λ 1 X T X X T AX λ n X T X. Démonstration. Notons f l endomorphisme canoniquement associé à la matrice A : c est un endomorphisme symétrique, de valeurs propres λ 1 λ n, donc il vérifie λ 1 x f(x) x λ n x pour tout x R n, ce qui donne l encadrement souhaité. Exemple 1. Déterminer les extréma de la quantité x +xy x +y lorsque (x, y) parcourt R \ {0}. 1 1 En notant A =, on remarque que x xy = X T AX, où X = [ x y ]. Notons f l endomorphisme canoniquement associé à la matrice A. Le calcul donne pour valeurs propres λ 1 = 1 5 λ = Soit C = (ε 1, ε ) une base orthonormée de vecteurs propres associés à ces valeurs propres. Pour tout vecteur (x, y) R \ {0}, notons x 1, y 1 les coordonnées de ce vecteur dans la base C : on a d où f(x, y) = f(x 1 ε 1 + x ε ) = λ 1 x 1 ε 1 + λ x ε, x + xy = X T AX = f(x, y) (x, y) = λ 1 x 1 ε 1 + λ x ε x 1 ε 1 + x ε = λ 1 x 1 + λ x et x + y = (x, y) = x 1 ε 1 + x ε = x 1 + x, donc le quotient est compris entre λ 1 et λ. Ces valeurs sont d ailleurs atteints : pour (x, y) = ε 1 pour la valeur λ 1, et pour (x, y) = ε pour la valeur λ. On a donc x + xy min (x,y) (0,0) x + y = 1 5 x + xy et max (x,y) (0,0) x + y =

20 86 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. a b Remarque 1. De façon générale, la quantité ax +bxy +cy s écrit sous la forme X T AX, où A = b c x et X =. La situation se généralise immédiatement au cas de n variables. y Cet encadrement permet de caractériser les endomorphismes symétriques positifs : Corollaire Soit f un endomorphisme symétrique d un espace euclidien E. Cet endomorphisme est positif (resp. défini positif) si, et seulement si, ses valeurs propres sont toutes positives (resp. strictement positives). La version matricielle énonce qu une matrice symétrique A est positive (resp. définie positive) si, et seulement si, ses valeurs propres sont toutes positives (resp. strictement positives).

21 5.5. Test de compréhension du chapitre Test de compréhension du chapitre Questions 1. Soit E un espace préhilbertien, u, v deux vecteurs de E vérifiant u = v = 1 et u v = 1. Calculer u v.. Existe-t-il un produit scalaire sur R pour lequel e 1 = e = e 1 e (où (e 1, e ) est la base canonique de R )? 3. La norme sur R n est-elle issue d un produit scalaire? 4. Notons (e 1, e ) la base canonique de R et posons ε 1 = e 1, ε = e 1 + e. Existe-t-il un produit scalaire sur R pour lequel la base C = (ε 1, ε ) soit orthonormée? 5. Notons (e 1, e ) la base canonique de R. Trouver un produit scalaire sur R pour lequel e 1 =, e = 1 et e 1 e = 1. Trouver (pour ce produit scalaire) un vecteur e 3 orthogonal au vecteur e Soient u, v deux vecteurs d un espace préhilbertien E vérifiant u =, v = 1, u v = 1. Démontrer que la famille est libre. 7. Soient u, v deux vecteurs d un espace préhilbertien E. Démontrer l équivalence : u = v u v u + v. 8. Soit E un espace euclidien de dimension 3. Peut-on trouver deux droites orthogonales de E? Deux plans orthogonaux? 9. Soit F un sous-espace d un espace préhilbertien E. Parmi les assertions suivantes, lesquelles sont vraies? a) F admet toujours au moins un supplémentaire orthogonal. b) F admet toujours au plus un supplémentaire orthogonal. c) Si F admet un supplémentaire, c est un supplémentaire orthogonal. d) Si F admet un supplémentaire, il admet aussi un supplémentaire orthogonal. e) Si F est de dimension finie, il admet au moins un supplémentaire orthogonal. f) Si F admet un supplémentaire orthogonal, F admet un supplémentaire orthogonal. 10. On munit l espace E = C ([0, 1], R) du produit scalaire défini par f g = 1 fg. On considère le sousespace F formé par les fonctions constantes. 0 a) Quelle est la dimension de F? Quel est l orthogonal F de F? b) Est-il vrai que E = F F? Si c est le cas, donner la décomposition d une fonction f E quelconque sur cette somme directe orthogonale. 11. Soit E un espace euclidien de dimension 3 muni d une base orthonormée B. Quelle est la bonne façon de déterminer la matrice dans la base B d un projecteur orthogonal sur un plan? Quelles sont les propriétés faciles à tester que doit vérifier cette matrice? Traiter le cas où le plan a pour équation x + y z = Dans R muni de son produit scalaire canonique, on considère le vecteur u = (a, b) et la droite D d équation y = x. a) Déterminer la distance d(u, D). b) Minimiser la quantité (t a) + (t b) lorsque t parcourt R. 13. Quelle est l image des vecteurs (1, 0) et (0, 1) par la symétrie orthogonale par rapport à la droite D d équation x + y = 0? Quelle est la matrice (dans la base canonique) de cette symétrie? 14. Déterminer, sans aucun calcul, le carré des matrices cos θ sin θ cos θ sin θ A = et B =. sin θ cos θ sin θ cos θ 15. Quelle est la nature de la composée d une rotation et d une réflexion plane? 16. Les assertions suivantes sont-elles vraies? 1. Si f est une isométrie plane, elle conserve les aires.. si f est un endomorphisme du plan qui conserve les aires, c est une isométrie. 17. Soit f un endomorphisme d un espace préhilbertien E. Les assertions suivantes sont-elles vraies? a) Si f(x) f(y) = x y pour tous x, y E, alors f(x) = x pour tout x E. b) Si f(x) = x pour tout x E, alors f(x) f(y) = x y pour tous x, y E.

22 88 Chapitre 5. Espaces euclidiens. Endomorphismes symétriques et orthogonaux. 18. Soit B une base d un espace euclidien E, f un automorphisme orthogonal de E et A = mat B (f). La matrice A est-elle orthogonale? Quel est son déterminant? 19. Soit f un endomorphisme symétrique d un espace préhilbertien E, B une base de E et A = mat B (f). a) Si B est une base orthonormée, la matrice A est-elle symétrique? b) Si la matrice A est symétrique, la base B est-elle orthonormée? 0. Soit A une matrice symétrique de taille (n, n). Existe-t-il une matrice P O n (R) telle que P 1 AP soit diagonale? 1. Soit A une matrice symétrique réelle de taille (n, n). Existe-t-il une matrice P GL n (R) telle que P T AP soit diagonale?

23 5.5. Test de compréhension du chapitre Réponses 1. On a donc u v = 1. u v = u + v u v = 1. Non : si un tel produit scalaire existait, il vérifierait e 1 e = e 1 e, donc les vecteurs e 1 et e seraient colinéaires, ce qui n est pas. 3. Non, sinon l application (x, y) x+y x y serait bilinéaire (ce serait l application produit scalaire). Il est facile de vérifier qu elle ne l est pas. 4. Oui : il suffit de poser, pour tous vecteurs x, y R, x y = x 1 y 1 + x y, où x 1, x (resp. y 1, y ) sont les coordonnées de x (resp. y) dans la base C. Il est immédiat de vérifier que c est un produit scalaire pour lequel la base C est orthonormée. 5. Si un tel produit scalaire existe, pour tous vecteurs on doit avoir x = (x 1, x ) = x 1 e 1 + x e et y = (y 1, y ) = y 1 e 1 + y e, x y = x 1 y 1 e 1 + x 1 y e 1 e + x y e e 1 + x y e = 4x 1 y 1 + x 1 y + x y 1 + x y. Mais rien ne prouve a priori que ces formules définissent un produit scalaire sur R ; il faut vérifier tous les axiomes! Cette application est clairement bilinéaire symétrique. Pour tout x, on a x x = 4x 1 + x 1 x + x = 3x 1 + (x 1 + x ) 0, avec égalité si, et seulement si, x 1 = x 1 + x = 0, i.e. si, et seulement si, x = 0. C est donc un produit scalaire. Pour ce produit scalaire, le vecteur e 3 = (1, 4) est orthogonal au vecteur e 1 (le calcul donne e 1 e 3 = 0). 6. Si la famille était liée, on aurait u v = ± u lv. 7. On calcule u v u + v = u v + v u u v = u v. Ce produit scalaire est nul si, et seulement si, u = v. 8. Deux droites, oui (prendre les deux droites engendrées par deux vecteurs orthogonaux quelconques). Deux plans non, car deux sous-espaces orthogonaux F et G vérifient nécessairement F G = {0}. 9. a) Non. b) Oui : le seul supplémentaire orthogonal possible pour F est F. Mais ce n est en général pas un supplémentaire de F. c) Non. d) Non. e) Oui. Il admet même un unique supplémentaire orthogonal : F (donc il en admet bien au moins un). f) Oui : l espace F est un supplémentaire de F (car F est le supplémentaire orthogonal de F : hypothèse), et il lui est orthogonal. 10. a) En notant 1 la fonction constante égale à 1, les fonctions constantes sont toutes des multiples de cette fonctions, donc F est de dimension 1. Une fonction f appartient à F si, et seulement si, elle est orthogonale à cette fonction 1, i.e. si, et seulement si, 1 0 f 1 = 0, soit si, et seulement si, 1 0 f = 0. b) L espace F est de dimension 1 donc admet un supplémentaire orthogonal (qui est F ) : on a bien E = F F. La norme de la fonction 1 est 1 1 = 1 = 1, donc 1 est une base orthonormée de F. Le projeté orthogonal d une fonction f E sur F est donc ( 1 ) p(f) = f 1 1 = f

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1 [http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2 33 Corrigé Corrigé Problème Théorème de Motzkin-Taussky Partie I I-A : Le sens direct et le cas n= 2 1-a Stabilité des sous-espaces propres Soit λ une valeur propre de v et E λ (v) le sous-espace propre

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3

Déterminants. Marc SAGE 9 août 2008. 2 Inverses et polynômes 3 Déterminants Marc SAGE 9 août 28 Table des matières Quid des formes n-linéaires alternées? 2 2 Inverses et polynômes 3 3 Formule de Miller pour calculer un déterminant (ou comment illustrer une idée géniale)

Plus en détail

Mathématiques Algèbre et géométrie

Mathématiques Algèbre et géométrie Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

Cours arithmétique et groupes. Licence première année, premier semestre

Cours arithmétique et groupes. Licence première année, premier semestre Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

C1 : Fonctions de plusieurs variables

C1 : Fonctions de plusieurs variables 1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail