Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )"

Transcription

1 Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres réels O ote, le ombre complexe déf par = a b Questos Démotrer que, pour tous ombres complexes et ', ' = ' Démotrer que, pour tout eter aturel o ul, et tout ombre = complexe, ( ) Parte B O cosdère l équato ( ) : = où est u ombre complexe Motrer que s le ombre complexe est soluto de l équato ( ) alors les ombres complexes et sot auss solutos de l équato ( ) O cosdère le ombre complexe 0 = + a) crre le ombre complexe 0 sous forme expoetelle b) Vérfer que 0 est soluto de l équato ( ) Dédure des deux questos précédetes tros autres solutos de l équato ( ) PaaMaths [ - 8 ] Ju 00

2 Parte C Soet A, B, C et D les pots d affxes respectves : = + ; B = + ; C = et D = A Sot r la rotato du pla de cetre C et d agle de mesure O appelle l mage du pot B par r et F celle du pot D par r Détermer l écrture complexe de la rotato r a Démotrer que l affxe du pot, otée est égale à + b Détermer l affxe F du pot F c Démotrer que le quotet A est u ombre réel A F d Que peut-o e dédure pour les pots A, et F? PaaMaths [ - 8 ] Ju 00

3 Aalyse U exercce sur les complexes qu mélage algèbre (utlsato de la cojugaso das le cadre de la résoluto d ue équato du quatrème degré avec, pour commecer, u récurrece permettat de redémotrer u résultat du cours) et géométre (les solutos de l équato sot les affxes des sommets d u carré et o trodut ue rotato pour obter, fe u algemet) Ue fos ecore, pas de dffcultés surmotables mas de ombreux thèmes de cours abordés Résoluto Questo Parte A Resttuto orgasée de coassaces Posos = a+ b et ' = a' + b' O a mmédatemet : = a b et ' = a' b' O a : ' ( a b) ( a ' b' ) a a ' a b' b a ' b b' ( aa ' bb' ) ( ab' a ' b) D où : ' = ( aa ' bb' ) ( ab' + a ' b) = + + = = + + Par alleurs, o a : ' = a b a ' b ' = a a ' a b' b a ' + b b' = aa ' bb' ab' + a ' b ( ) ( ) ( ) ( ) Les calculs c-dessus état valables pour tous réels a, b, Pour tous complexes et ' : ' = ' a ' et b ', o e dédut falemet : Questo Le résultat s établt à l ade d u récurrece e cosdérat les proprétés tout eter aturel o ul par : P : «= ( )» Italsato Pour =, o a : Hérédté = = et ( ) ( ) = = As, la proprété P est vrae Sot u eter aturel o ul quelcoque fxé Supposos que la proprété téressos-ous à la proprété P + P défes, pour P sot vrae et PaaMaths [ - 8 ] Ju 00

4 + = = = = + ( d'après la questo ) ( d'après l'hypothèse de récurrece) As, la proprété P + est vrae déftve, pour tout eter aturel o ul, la proprété P est vrae Pour tout eter aturel o ul, o a : ( ) = Parte B Questo Sot u complexe soluto de l équato ( ) : = O a alors : ( ) = ( ) = ( ) = Le complexe est doc égalemet soluto de l équato ( ) Par alleurs, e utlsat le résultat de la questo de la parte A : ( ) As, le complexe est égalemet soluto de l équato ( ) = = = S le complexe est soluto de l équato ( ) : = alors et sot égalemet des solutos de l équato ( ) les complexes Questo a O a faclemet : 0 = + = + = cos + s = e = e 0 PaaMaths [ - 8 ] Ju 00

5 Questo b utlsat la forme expoetelle obteue à la questo précédete, l vet : 0 = e = e = e = e = Le complexe 0 = + est be soluto de l équato ( ) Questo D après la questo, s o dspose d u complexe soluto de l équato ( ), alors l opposé et le cojugué de ce complexe sot égalemet des solutos de l équato ( ) As, 0 = et 0 = sot des solutos de ( ) Mas comme 0 est soluto de ( ), l e va de même pour 0 = + déftve, o dspose de tros autres solutos : 0 =, 0 = et 0 = + Les complexes 0 =, 0 = et 0 = + sot tros autres solutos de ( ) Remarque : le théorème fodametal de l algèbre précse qu ue équato de degré das admet exactemet races (certaes état évetuellemet cofodues) Ic, ous avos e fat trouvé quatre races d ue équato de degré et l e exste doc pas d autres Parte C Questo De faço géérale, l expresso complexe de la rotato de cetre le pot d affxe ω et d agle de mesure θ est : Ic, o a : ω = C = et θ ( ) = ω + ( ω) r e PaaMaths [ 5-8 ] Ju 00

6 D où : ( ) = + ( + + ) r e = + cos + s + + = + ( ) + + = + ( )( + + ) ( ) Cette expresso de r( ) est utle pour la sute (calculs des affxes des pots et F) au regard des valeurs des affxes des pots B et D O peut cepedat poursuvre le calcul : r( ) = + ( )( + + ) = ( ) + ( + ) + = ( ) ( + )( + ) = ( ) + ( + ) L écrture complexe de la rotato de cetre C et d agle de mesure est : ( ) = + ( )( + + ) = ( ) + ( + ) r Questo a Le pot état l mage du pot B par r, o a : r( ) questo précédete : O a be : ( ) = r B = Sot, e utlsat le résultat de la ( )( B ) ( )( ) ( ) ( ) = = = + = + = + + = + = + B PaaMaths [ 6-8 ] Ju 00

7 Questo b O procède comme à la questo précédete O a c : r( ) Sot : F = D F = r D = + D + + ( ) ( )( ) ( )( ) ( ) ( ) ( ) = = + = + = + = + ( ) F = + Questo c A l ade des résultats obteus aux deux questos précédetes, l vet : + ( + ) + ( + ) ( ) ( + ) ( + ) + ( + ) ( + ) ( ) ( ) ( )( ) + ( + ) A + = = A F + + = = [ ] + + = = = + A Le quotet A F est u ombre réel PaaMaths [ 7-8 ] Ju 00

8 Questo d A D après la questo précédete, o a : arg = k où k est u eter A F A Or, arg = ( FA, A) A F O e dédut mmédatemet que les vecteurs FA et A sot coléares, c'est-à-dre que les pots A, et F sot algés Les pots A, et F sot algés A ttre de complémet, ous fourssos ue fgure fasat apparaître les pots A, B, C, D, et F as que la drote passat par les pots A, et F PaaMaths [ 8-8 ] Ju 00

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

Nombres complexes Sessions antérieures

Nombres complexes Sessions antérieures ème aée Maths Nombres complexes Sessos atéreures Aée scolare 9 - A LAATAOUI Exercce N (SP) Das le pla complexe P rapporté à u repère orthoormé ( Ouv ; ; ) o cosdère les pots A et B d affxes respectves

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

Les nombres complexes

Les nombres complexes haptre 6 termale S Les ombres complexes 1 hstorque et créato : N Z ID Q R es esembles ot été costruts au fl de l hstore grâce à u même problème : certaes équatos ot des solutos das u esemble doé mas d

Plus en détail

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1:

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1: LSMarsa Elradh 1) Esemble des ombres complexes : Actvté 1: Résoudre das IN pus das Z l équato 5+x=1 ; résoudre das Z pus das Q l équato 3x=2 ; résoudre das Q pus das IR l équato : x²=2 Résoudre das IR

Plus en détail

NOMBRES COMPLEXES EXERCICES CORRIGES

NOMBRES COMPLEXES EXERCICES CORRIGES Cours et exercces de mathématques NOMRES COMPLEXES EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; Exercce. Calculer, et = ; = ; = ; 5 006 009 E dédure

Plus en détail

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1.

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1. NOMBRES COMPLEXES - EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; = ; = ; = ; 5 = Exercce. Calculer, et E dédure la valeur de 006 et de 009, pus les

Plus en détail

Série 4 Proposer par / Mantadher Ben Marzouk

Série 4 Proposer par / Mantadher Ben Marzouk eme T Révso 0 Thèmes / Calcul tégrale Sutes réelles - Foctos epoetelles -Géométre das l espace Eercce N Cocher la répose eacte, avec justfcato. Sére Proposer par / Matadher Be Marzouk ) La forme epoetelle

Plus en détail

N O M B R E S C O M P L E X E S.

N O M B R E S C O M P L E X E S. T le S 00/005 Ch9 Nombres complexes J TAUZIEDE N O M B R E S C O M P L E X E S I- L ENSEMBLE C DES NOMBRES COMPLEXES Ecrture algébrque des ombres complexes Comme o a motré l suffsace de l esemble Q par

Plus en détail

Niveau 7C 05 février Solution. L x y z ( utilisation du théorème de. (x y z) x y z 2xy 2xz 2yz

Niveau 7C 05 février Solution. L x y z ( utilisation du théorème de. (x y z) x y z 2xy 2xz 2yz Olympades Natoales de Mathématques 07 Sélectos régoales er tour Nveau 7C 05 févrer 07 Durée 3 h Exercce (4 pots) ) Vérfer que, pour tous réels x, y, z o a : (x y z) x y z xy xz yz. Soluto ) La somme des

Plus en détail

EXERCICES SUR LES NOMBRES COMPLEXES

EXERCICES SUR LES NOMBRES COMPLEXES EXERCICES SUR LES NOMBRES COMPLEXES Exercce ) O doe : f ( z) = z z( z + ) Ecrre sous forme algébrque les ombres suvats : f ( ) et f ( + ) ) Ecrre sous forme algébrque : ( + ) + ( ) ) Résoudre das l esemble

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

MPSI du lycée Rabelais semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n

MPSI du lycée Rabelais  semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n MPSI du lycée Rabelas http://mps.satbreuc.free.fr semae du septembre 5 CALCULS ALGÉBRIQUES Sommes et produts fs Exercce : Parm les formules suvates, lesquelles sot vraes?.. 3. α+a α+ a +b αa α a + a a

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES. et z 2 = e. Z i ( Z = 0 ou arg(z) = π 2 [π] ) Z imaginaire pur Z + Z = 0

EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES. et z 2 = e. Z i ( Z = 0 ou arg(z) = π 2 [π] ) Z imaginaire pur Z + Z = 0 EXERCICES RÉDIGÉS SUR LES NOMRES COMPLEXES Exercce 1 Valeur exacte du us et du sus de /1 O dère les deux ombres complexes suvats : 1. Écrre z 1 et z sous forme algébrque. z 1 = e 3 et z = e. Détermer les

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

.Il existe dans C un nombre non réel, noté i, vérifiant i 1

.Il existe dans C un nombre non réel, noté i, vérifiant i 1 Esemble C des ombres complexes 4 ème mth HHmmoud Feth )Forme lgébrque d u ombre complexe : Il exste u esemble oté C, de ombres ppelés ombre complexe, tel que : C cotet IR ; C est mu d ue ddto et d ue multplcto

Plus en détail

Les calculatrices sont autorisées

Les calculatrices sont autorisées Les calculatrces sot autorsées NB : S u caddat est ameé à repérer ce u peut lu sembler être ue erreur d éocé, l le sgalera sur sa cope et devra poursuvre sa composto e expluat les rasos des tatves u l

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MAHEMAIQUES 1 Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la plus grade mportace à la clarté, à la précso et à la cocso de la

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2

Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2 Vecteurs de varables aléatores réelles Gééralsato des proprétés de l espérace de la varace Das tout le cours désge u eter aturel a) Lo d u vecteur aléatore à valeurs das ) Défto La lo d u -uplet ou d u

Plus en détail

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ CHAPITRE Les carrés das (Z/Z Das ce chatre o s téresse à l esemble des carrés das le cors Z/Z, mas auss das certas aeaux Z/Z avec o remer O todut le symbole de Legedre qu caractérse les carrés O trodut

Plus en détail

A) Forme algèbrique d un nombre complexe.

A) Forme algèbrique d un nombre complexe. A) Forme algèbrique d u ombre complexe. Théorème Il existe u esemble, oté,de ombres appelés ombres complexes, tel que : cotiet ; est mui d ue additio et d ue multiplicatio pour lesquelles les règles de

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES Sesso févrer 009 BREVET DE TECHNICIEN SUPERIEUR «COMPTABILITE ET GESTION DES ORGANISATIONS» EPREUVE DE MATHEMATIQUES Durée : heures Coeffcet : Matérel et documets autorsés : L usage des strumets de calcul

Plus en détail

CORRIGÉ ESSEC 2008 Scientifique

CORRIGÉ ESSEC 2008 Scientifique CORRIGÉ ESSEC 28 Scetfque Premère parte 1. a) O vérfe asémet que est be ue applcato de das (pour tout polyôme P, (P) est be u polyôme) et qu elle est léare ( (P,Q) 2, λ, (λp+q)=λ (P)+ (Q)). Doc : est u

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 005 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto

Plus en détail

B(z B ) A(z A ) Les nombres complexes

B(z B ) A(z A ) Les nombres complexes 1 Les ombres complexes I) Forme algébrique d u ombre complexe. Théorème Il existe u esemble, oté c,de ombres appelés ombres complexes, tel que : ccotiet r ; c est mui d ue additio et d ue multiplicatio

Plus en détail

Séries de Fourier 12-1

Séries de Fourier 12-1 Séres de Fourer 1-1 Sommare 1. Applcato de classe C 1 par morceaux 1 1.1. Applcato de classe C 1 par morceaux 1 1.. Applcato -pérodque C 1 par mcx. 1 1.3. pérato sur les applcatos C 1 par mcx 1. Sére de

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

Correction des exercices du TD2

Correction des exercices du TD2 orrecto des exercces du TD Rael : des ades vous sot foures sur le ste «www.utc.fr /~mt/» à la f des fchers acrés aux chatre de cours. N héste as à les ulter our refare les exercces avat de regarder la

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

N B : les exercices sont extraits des bacs internationaux

N B : les exercices sont extraits des bacs internationaux SERIE DE MTHEMTIQUES N CLSSE :QUTRIEME SECONDIRE SECTION : SCIENCES EXPERIMENTLES THEME : NOMRES COMPLEXES LYCEE D INDEPENDNCE OUED ELLIL NNEE SCOLIRE :009-00 Prof : ellssoued mohmed Exercce QCM N : les

Plus en détail

PROBABILITES. A. Espaces probabilisables. 1) Définition d une tribu :

PROBABILITES. A. Espaces probabilisables. 1) Définition d une tribu : . Espaces probablsables Défto d ue trbu : PROBBILITES chaque expérece aléatore o assoce u esemble oté, appelé uvers, dot les élémets représetet les dfféretes ssues possbles de l expérece aléatore : est

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

CHAPITRE VI. THÉORÈME DU CHANGEMENT DE VARIABLE. pour tout borélien B U. En particulier, on a λ (A) = µ ( φ 1 (A)) pour tout borélien A V, soit V U

CHAPITRE VI. THÉORÈME DU CHANGEMENT DE VARIABLE. pour tout borélien B U. En particulier, on a λ (A) = µ ( φ 1 (A)) pour tout borélien A V, soit V U CHAPITE I. THÉOÈME D CHANGEMENT DE AIABLE.. Itégrato par chagemet de varable... Itroducto. Soet, deux ouverts de et φ : u homéomorphsme de sur. Notos x (resp. y ) la varable de (resp. de ) et λ = dy la

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé Suite des polyômes de Tchebychev (Exercice 7 page 87) a E utilisat la relatio de récurrece avec =, o obtiet : Puis, pour = : Efi, pour = 4 : O a bie : f x x f x f x x x x = = = f x = x f x f x = x x x=

Plus en détail

XVII. Les nombres complexes.

XVII. Les nombres complexes. XVII. Les ombres complexes.. Itroducto Progressvemet, ous avos agrad les esembles de ombres e passat de N à Z pus à Q et ef à R. Ces agradssemets ot doé la possblté de résoudre de plus e plus d'équatos.

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

Programmation linéaire en nombres entiers

Programmation linéaire en nombres entiers Programmato léare e ombres eters Itroducto Problème de programmato léare e ombres eters (P) M Suet à = = c a = b =,, m 0, eter =,, Eemple M z = Suet à, + 0 5 0 0, eter F(P) = domae réalsable de P Itroducto

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

Concours général 2014 pb 3 : chiffres et lettres

Concours général 2014 pb 3 : chiffres et lettres Cocours gééral 014 pb 3 : chffres et lettres 1 Le sujet U mot de logueur est ue sute de lettres choses parm les l0 lettres A, B, C, D, E, F, G, H, I, J Par exemple, BEC, IJCD, AFFICHAGE, ABCDEFGHIJ sot

Plus en détail

EXERCICES DE. Serveur d'exercices 1/25

EXERCICES DE. Serveur d'exercices 1/25 Sceces.ch lgèbre Léare EXERCICES DE LGÈBRE LINÉIRE Serveur d'exercces /5 Sceces.ch lgèbre Léare EXERCICE. Nveau : Deuxème Cycle uteur : Rube Rcchuto (3..4) Mots Clés : Matrces à coeffcets das u aeau Éocé

Plus en détail

FONCTIONS REELLES DEFINIES SUR Premières notions

FONCTIONS REELLES DEFINIES SUR Premières notions FONCTIONS REELLES DEFINIES SUR Premères otos A. Premères déftos Sot u eter aturel supéreur ou égal à ) Graphe d ue focto à varables Sot ue focto f défe sur D à valeurs das O appelle graphe de la focto

Plus en détail

Synthèse de cours PanaMaths Tribus

Synthèse de cours PanaMaths Tribus Sythèse de cours PaaMaths Tribus Das ce documet, pour tout esemble E et toute partie A de E, ous oteros A le complémetaire de A das E. Défiitios et premières propriétés Défiitios Soit E u esemble. E Soit

Plus en détail

SESSION 2004 France Métropolitaine BAC PROFESSIONNEL : TCVA Conduite et gestion de l élevage canin et félin EPREUVE N 4 MATHEMATIQUES

SESSION 2004 France Métropolitaine BAC PROFESSIONNEL : TCVA Conduite et gestion de l élevage canin et félin EPREUVE N 4 MATHEMATIQUES SESSION 004 BAC PROFESSIONNEL : TCVA Codute et gesto de l élevage ca et fél EPREUVE N 4 MATHEMATIQUES (Coeffcet : - Durée : heures) Matérel autorsé : calculatrce Rappel : Au cours de l épreuve, la calculatrce

Plus en détail

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1 LGL Cours de Mathématques 26 Exemples de sutes das le domae des faces 1) Itérêts composés O place 1. à térêts composés au taux de 4,5 % par a. Détermer le captal dspoble à la f de chaque aée et ce pedat

Plus en détail

CALCUL BARYCENTRIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako

CALCUL BARYCENTRIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako CLCUL RYCENTRIQUE Ste athstice de dama Traoré Lycée Techque amao I Focto vectorelle de Lebz: Das ce chaptre désgos par ue drote, u pla, ou u espace, et l esemble des vecteurs ppelos pot podéré le couple

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1.

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1. Nombres complexes TS 1. Nombre complexe Représetatio Défiitio u ombre complexe est u ombre de la forme x + i y, où x et y sot deux ombres réels et i est u ombre imagiaire vérifiat i = 1. L esemble des

Plus en détail

(respectivement M n,1 ( )) l espace vectoriel réel

(respectivement M n,1 ( )) l espace vectoriel réel Les calculatrces sot autorsées **** NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto S u caddat est ameé à reérer ce qu eut lu sembler être ue erreur d'éocé,

Plus en détail

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances Frace métropolitaie Jui 200 Série S Exercice Restitutio orgaisée de coaissaces Démotrer, à l aide de la défiitio et des deux propriétés cidessous que si ( u ) et ( v ) sot deux suites adjacetes, alors

Plus en détail

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n 1 Notes de cours de l'isima, premère aée http://wwwsmafr/ leborge Méthode des modres carrés : melleure approxmato léare Glles Leborge 31 ma 2005 Table des matères 1 Rappel de dérvato 1 2 Cas 1-D 2 21 Les

Plus en détail

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres Ift 4 Chaptre 7 Itroducto au valeurs propres et au vecteurs propres Ift4 Chaptre 7 Défto : S A est ue matrce de, alors u vecteur o ul est dt vecteur propre de A s A est appelé valeur propre de A, et vecteur

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications.

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications. DOCUMENT 14 Racies -ièmes d u ombre complexe. Racies de l uité. Applicatios. Das u documet précédet, o a itroduit le corps des ombres complexes afi que tout ombre réel ait ue racie carrée. O va voir ici

Plus en détail

EXERCICES DE. Serveur d'exercices 1/22

EXERCICES DE. Serveur d'exercices 1/22 Sceces.ch EXERCICES DE TOPOLOGIE Serveur d'exercces /22 Sceces.ch EXERCICE.. Auteur : Rube Rcchuto (09.08.04, rube@sceces.ch) Mots Clés :Théorème de Bare et cardal de Éocé : Doer ue preuve topologque du

Plus en détail

TS Les nombres complexes (1)

TS Les nombres complexes (1) TS Les omres complexes () Chptre d lgère I Itroducto ) ref hstorque Nomres mpossles omres mgres (Descrtes) omres complexes ) Esemles de omres x 7 0 x 7 0 x 0 L équto x ps de soluto ds ( x ou x ) x chque

Plus en détail

Arithmétique. Divisibilité. PGCD et PPCM. Division euclidienne. [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1

Arithmétique. Divisibilité. PGCD et PPCM. Division euclidienne. [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1 [http://mp.cpgedupuydelome.fr] édté le 24 septembre 206 Eocés Arthmétque Exercce 7 [ 025 ] [Correcto] O cosdère la sute (ϕ ) N défe par Dvsblté Exercce [ 087 ] [Correcto] Résoudre das Z les équatos suvates

Plus en détail

Synthèse de cours PanaMaths Introduction au calcul matriciel

Synthèse de cours PanaMaths Introduction au calcul matriciel Sythèse de cours PaaMaths Itroductio au calcul matriciel Défiitios Notio de matrice O appelle «matrice de dimesio p» ou «de type (, p )» u tableau de ombres réels comportat liges et p coloes ( et p sot

Plus en détail

Espaces vectoriels (et affines).

Espaces vectoriels (et affines). Esaces vectorels (et affes) Cha 04 : cours comlet Esaces vectorels réels ou comlexes (Su) Défto : K-esace vectorel Défto 2 : K-algèbre Théorème : exemles Défto 3 : combaso léare de vecteurs Défto 4 : sous-esace

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES EXAMEN PROBATOIRE D ADMISSION DES ETRANGERS DANS LES ECOLES DE FORMATION D OFFICIERS EPREUVE DE MATHEMATIQUES DUREE DE L EPREUVE : 4 Heures Matériel autorisé : Calculatrice Circulaire 9986 du 6 ovembre

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9.

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9. Liba 13 v 0 = 1 O cosidère la suite umérique ( v ) défiie pour tout etier aturel par 9 v +1 = 6 v Partie A 1 O souhaite écrire u algorithme affichat, pour u etier aturel doé, tous les termes de la suite,

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Correction concours général maths 2015

Correction concours général maths 2015 Correctio cocours gééral maths 2015 Problème I Petits poids 1) a) 3 = 3, 3 + 5 = 8, 3 + 5 6 = 2, 3 + 5 6 8 = 6, 3 + 5 6 8 + 2 = 4 doc poids(3,5, 6, 8,2) = 8 b) poids(1,2,3,,2015, 2015, 2014,.., 1) = 1

Plus en détail

EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES

EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES EXERCICES RÉDIGÉS SUR LES NOMRES COMPLEXES Exercce 1 Valeur exacte du cosus et du sus de /1 O cosdère les deux ombres comlexes suvats : 1. Écrre z 1 et z sous forme algébrque. z 1 e 3 et z - e. Détermer

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance Parte I : Gesto de portefeulles actos Chaptre 3 Gesto de Portefeulle Moyee-arace Gesto de Portefeulle D. Msae edemet d ue acto Cette parte est cosacrée à u apport mportat de la théore facère modere qu

Plus en détail

CORRECTION DU BAC 2007

CORRECTION DU BAC 2007 ORRTION U B 7 Trmal S mérqu du Nord rcc Sot (P l pla dot u équato st : + y z + = lors, d coordoés ( ; ;, st u vctur ormal d (P omm H st l projté orthogoal d sur (P, alors H t sot coléars Il st H = k H

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

2 Propriétés élémentaires des probabilités

2 Propriétés élémentaires des probabilités Uiversité de Reims Champage Ardee UFR Scieces Exactes et Naturelles Aée uiversitaire 2013-2014 MA 0804 - Master 1 CM1 Espaces probabilisés 1 Déitio Pour déir u espace probabilisé, o a besoi d'u esemble

Plus en détail

. L'ensemble des diviseurs communs à a 1. est fini et admet donc un plus grand élément.

. L'ensemble des diviseurs communs à a 1. est fini et admet donc un plus grand élément. PGCD, PPCM ds Z Théorème de Bézout - Applctos PGCD, PPCM DANS Z THEOREME DE BEZOUT APPLICATIONS PGCD Proposto Soet,,, L'esemble des dvseurs commus à,, est f et dmet doc u plus grd élémet Démostrto Soet,,,

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS 3- LES TIRAGES PROBABILISTES D'EHATILLOS Das de ombreuses alcatos ratques du calcul des robabltés, o retrouve u ou luseurs des schémas de trages robablstes d'échatllos que ous allos exoser. Le cadre gééral

Plus en détail

Nouvelle Calédonie. Novembre Enseignement de spécialité. Corrigé

Nouvelle Calédonie. Novembre Enseignement de spécialité. Corrigé Nouvelle Calédoie Novembre 5 Eseigemet de spécialité Corrigé EXERCICE Partie A Représetos la situatio par u arbre de probabilité,7,7 A,83,3 B,,9 pa = pa p A =,7,7 =,9 pa =,9 D après la formule des probabilités

Plus en détail

ESPACES VECTORIELS FAMILLES DE VECTEURS

ESPACES VECTORIELS FAMILLES DE VECTEURS ESPACES VECTORIELS FAMILLES DE VECTEURS A. ESPACES VECTORIELS 1) Défto O aelle esace vectorel sr o esace vectorel o esace vectorel réel tot esemble E m : 1) D e lo de comosto tere, aelée addto et otée

Plus en détail

Exercices type Bac Nombres complexes

Exercices type Bac Nombres complexes Exercces type Bac Nombres complexes Exercce 1 : Pour chaque queston, une seule réponse est exacte. Chaque réponse juste rapporte 1 pont. Une absence de réponse n est pas sanctonnée. Il sera retré 0,5 pont

Plus en détail

EXERCICES CORRIGES. Partie 1 : Suites numériques = 4

EXERCICES CORRIGES. Partie 1 : Suites numériques = 4 EXERIES ORRIGES Parte : Sutes umérques Exercce : Ue sute arthmétque est telle que la somme de ses premers termes est égale à 8 et la somme de ses 6 premers termes est égale à 7 68. alculer le 5 ème terme

Plus en détail

n n ) d où dega= degb F = X. ω =. X ω ω = donne k= 0. En posant bl= Montrer qu il n existe pas de fraction rationnelle F telle que

n n ) d où dega= degb F = X. ω =. X ω ω = donne k= 0. En posant bl= Montrer qu il n existe pas de fraction rationnelle F telle que Les fractos ratoelles Exercce Motrer qu l exste as de fracto ratoelle F telle que F S F est soluto alors degf degf avec degf Z C est mossble Exercce Détermer u sulémetare de K [ ] das K ( Sot V { F K (

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

Corrigé de l'épreuve de maths 2 - e3a - MP

Corrigé de l'épreuve de maths 2 - e3a - MP Corrigé de l'épreuve de maths 2 - e3a - MP - 207 Partie I L'applicatio ϕ est liéaire et P R [X], ϕ(p R [X] doc ϕ iduit sur R [X] u edomorphisme 2 ϕ( = et i, ϕ(x i = X i ix i O e déduit la matrice de ϕ

Plus en détail

REDUCTION DES ENDOMORPHISMES Et des matrices carrées

REDUCTION DES ENDOMORPHISMES Et des matrices carrées RDUCTION DS NDOMORPHISMS t des atrces carrées A. Vecteurs et valeurs propres d u edoorphse Sot f u edoorphse d u espace vectorel sur K ) Déftos O dt qu u vecteur x de est u vecteur propre de f s : a) x

Plus en détail

Fiche 6 : Nombres complexes

Fiche 6 : Nombres complexes Nº : 3006 Fiche 6 : Nombres complexes Pla de la fiche I - Esemble des ombres complexes II - Nombre complexe cojugué III - Module et argumet IV - Les différetes écritures d u ombre complexe o ul V - Equatio

Plus en détail