Synthèse de cours PanaMaths Fonctions dérivables convexes

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Synthèse de cours PanaMaths Fonctions dérivables convexes"

Transcription

1 Synthèse de cours PanaMaths Définitions et eemples fondamentau Définitions à un point Soit C sa courbe représentative dans un repère tel que l ae des ordonnées est orienté du bas vers le haut La fonction f est dite «convee sur l intervalle I» (respectivement «concave sur l intervalle I») si pour tout point M de C, la courbe représentative C de la fonction f est située au-dessus (respectivement en dessous) de la tangente passant par M Cas d une fonction convee : PanaMaths [1-7] Juillet 2012

2 wwwpanamathsnet Cas d une fonction concave Remarques : Etudier la conveité d une fonction sur un intervalle donné c est déterminer si la fonction considérée est convee ou concave sur l intervalle considéré Dans la mesure où elle peut n être ni convee, ni concave, on pourra être amené à préciser des sous-intervalles de l intervalle considéré sur lesquels la fonction est convee ou concave Par eemple, en étudiant la conveité de la fonction est : concave sur ; convee sur 3 sur, on conclut que celle-ci Les seules fonctions à la fois convees et concaves sur un intervalle donné sont les fonctions affines PanaMaths [2-7] Juillet 2012

3 Quelques eemples fondamentau wwwpanamathsnet Fonctions convees n Toute fonction de la forme où n est un entier naturel non nul est convee sur l intervalle (et même sur lorsque n est pair) La fonction inverse est convee sur l intervalle Plus généralement, toute fonction 1 de la forme n où n est un entier naturel non nul est convee sur l intervalle La fonction eponentielle est convee sur Fonctions concaves La fonction racine carrée est concave sur l intervalle La fonction inverse est concave sur l intervalle La fonction logarithme népérien est concave sur l intervalle Remarque : ce qui précède n est pas à apprendre par cœur! La connaissance des fonctions de référence, en particulier la forme de leurs courbes représentatives doit permettre de retrouver rapidement leur conveité sur tel ou tel intervalle Deu cas particuliers Avec la fonction eponentielle L équation réduite de la tangente à la courbe représentative de la fonction eponentielle au point d abscisse 0 est : y = 1 La fonction eponentielle étant convee sur, on en déduit l inégalité fondamentale :, e 1 Mais comme 1 >, on a :, e > Avec la fonction logarithme népérien L équation réduite de la tangente à la courbe représentative de la fonction logarithme népérien au point d abscisse 1 est : y = 1 La fonction logarithme népérien étant concave sur, on en déduit l inégalité fondamentale :,ln 1 Mais comme 1 <, on a :,ln< PanaMaths [3-7] Juillet 2012

4 wwwpanamathsnet Interprétation graphique Dans un repère dont l ae des ordonnées est orienté vers le haut, la courbe représentative de la fonction eponentielle est située au-dessus de la courbe représentative de la fonction identité ( ), elle-même située au-dessus de la courbe représentative de la fonction logarithme népérien : Caractérisations à l aide de la dérivée Théorème à un point La fonction f est convee (respectivement concave) sur l intervalle I si, et seulement si, la fonction f ' est croissante (respectivement décroissante) sur I PanaMaths [4-7] Juillet 2012

5 wwwpanamathsnet Cas où la fonction est deu fois dérivable Définition à un point On dit que «la fonction f est deu fois dérivable sur l intervalle I» si la fonction dérivée est dérivable sur I f ' Lorsqu elle eiste, la fonction dérivée de la fonction f ' est notée «f ''» ou «( 2) f» Théorème Soit f une fonction réelle de la variable réelle définie et deu fois dérivable sur un intervalle I non réduit à un point La fonction f est convee (respectivement concave) sur l intervalle I si, et seulement si, la fonction f '' est positive (respectivement négative) sur I Point d infleion Définition à un point Soit C sa courbe représentative dans un repère On dit que «la fonction f admet un point d infleion en un point M de C» si la courbe C traverse sa tangente en M Remarque : la conveité de la fonction s inverse au «passage par ce point» (cf la courbe ci-après) PanaMaths [5-7] Juillet 2012

6 wwwpanamathsnet Sur cet eemple, la fonction f est concave à gauche de M et convee à droite Eemple fondamental 3 La fonction admet un point d infleion à l origine Elle est concave sur et convee sur Caractérisations à l aide de la dérivée Théorème à un point La fonction f admet un point d infleion en M ( ; ( )) dérivée f ' de la fonction f admet un etremum pour = a a f a si, et seulement si, la fonction PanaMaths [6-7] Juillet 2012

7 wwwpanamathsnet Cas d une fonction deu fois dérivable Soit f une fonction réelle de la variable réelle définie et deu fois dérivable sur un intervalle I non réduit à un point La fonction f admet un point d infleion en M ( ; ( )) dérivée seconde a f a si, et seulement si, la fonction f '' de la fonction f s annule en changeant de signe pour = a PanaMaths [7-7] Juillet 2012

Convexité Convexité

Convexité Convexité Conveité 10.1. Conveité 1. Fonctions convees, fonctions concaves Définitions : f est une fonction dérivable sur un intervalle I et C sa courbe représentative dans un repère. Dire que f est convee sur I

Plus en détail

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013 Fonctions convexes Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Convexité Point d inflexion 2 1.1 Notion de convexité, de concavité.................................... 2 1.2 Point

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Prérequis Fonctions usuelles dérivation fonctions exponentielle et logarithme népérien tangentes à la courbe 1. Notions de convexité et de concavité 2. Dérivées premières, dérivées secondes 3. Point d

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

4.6 Application de la dérivée à l étude des fonctions

4.6 Application de la dérivée à l étude des fonctions 54 4.15. Théorème Règle de l Hôpital. f() Soit f et g deu fonctions telle que la limite lim est une forme indéterminée ( 0 0 ou f () 0 g() ). Alors si lim 0 g eiste (soit un nombre réel, soit + soit ()

Plus en détail

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015 NOM : Terminale ES Devoir n 9 Mardi 9 mai 5 Eercice. QCM sur 4 points Cet eercice est un questionnaire à choi multiples. Chaque question ci-après comporte quatre propositions de réponse. Pour chacune de

Plus en détail

Les fonctions exponentielles

Les fonctions exponentielles Les fonctions eponentielles I Les fonctions eponentielles de base q Dans toute cette partie q désigne un réel strictement positif. Définition, règles de calculs Définition La fonction q s appelle la fonction

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

Fonctions logarithmes

Fonctions logarithmes La fonction logarithme népérien. Définition et propriétés Fonctions logarithmes La fonction eponentielle est continue et strictement croissante sur R. Le corollaire du théorème des valeurs intermédiaires

Plus en détail

TERMINALE ES Fonctions 2/2 La convexité

TERMINALE ES Fonctions 2/2 La convexité * 1. Rappels sur la dérivation 1. Définition Soit f une fonction définie sur un intervalle I de R et a un réel de I. Soit h un nombre très petit et non nul. Alors Dire que f est dérivable en a de I signifie

Plus en détail

DÉRIVÉES FONCTIONS CONVEXES

DÉRIVÉES FONCTIONS CONVEXES DÉRIVÉES FONCTIONS CONVEXES I Dérivées - Rappels Définition ( voir animation ) Soit f une fonction définie sur un intervalle I, soit a I et soit h non nul tel que a + h I. On appelle tau d'accroissement

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien I Introduction du logarithme népérien Définitions Définition Pour tout réel a strictement positif, l équation e y = a, d inconnue y, admet une unique solution. Cette solution

Plus en détail

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2 Liban Juin 010 Série S Exercice Partie A Soit u la fonction définie sur 0; + par : ux ( ) = x + lnx 1 Etudier les variations de u sur 0; + et préciser ses limites en 0 et en + a Montrer que l équation

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY I DÉRIVÉES TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et sa courbe représentative dans un repère du plan. La droite

Plus en détail

La fonction Logarithme Népérien

La fonction Logarithme Népérien Terminale S, Cours La fonction Logarithme Népérien Eistence Théorème: (admis) Soit f une fonction dérivable sur un intervalle I de R, strictement monotone sur I à valeurs dans J. Alors il eiste une fonction

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Chapitre 2. Dérivation (rappels) Convexité. 2.1 Dérivation (rappels) Sommaire Fonctions affines. Tracés

Chapitre 2. Dérivation (rappels) Convexité. 2.1 Dérivation (rappels) Sommaire Fonctions affines. Tracés hapitre Dérivation (rappels) onveité Sommaire. Dérivation (rappels)..................................... 9.. Fonctions affines..................................... 9.. Nombre dérivé......................................

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Chapitre 2 : Dérivation et continuité T-ES2,

Chapitre 2 : Dérivation et continuité T-ES2, Chapitre 2 : Dérivation et continuité T-ES2, 206-207.Rappel sur la dérivation.. Règles de dérivation.. Dérivées des fonctions usuelles Fonction f f Fonction dérivée Domaine de validité f() = k (k R) f

Plus en détail

Chapitre 4. Fonction logarithme

Chapitre 4. Fonction logarithme Chapitre 4. Fonction logarithme I. Rappels de cours. Généralités (i) Théorème Définition Tout réel strictement positif possède un unique antécédent réel par la fonction ep. Cet antécédent est noté et se

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Eercices : Étude de fonctions Eercice : Calculer les limites suivantes : (. lim 3 2 +(ln) 3 ) 0 + 2. lim 3. lim ln(e +) ln 3 2 + 4. lim 5. lim 6. lim 7. lim e 2 3 2 e 3+ (ln) (e 4 3 ) + e2 ln+ ln+e 8.

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

3. Fonctions associées

3. Fonctions associées 3. Fonctions associées 1. Sens de variation fonction valeur absolue 1. Sens de variation Définition 1 : Soit f une fonction définie sur un intervalle I f est croissante sur I, lorsque pour tous réels a

Plus en détail

Continuité, dérivabilité et convexité

Continuité, dérivabilité et convexité Continuité, dérivabilité et conveité A) Fonction dérivée et sens de variation 1 Fonction dérivée Déinition : Soit une onction déinie sur un intervalle I et telle que, en toute valeur dérivée '( eiste La

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

5. Microéconomie et mathématiques

5. Microéconomie et mathématiques 5. Microéconomie et mathématiques Le «monde» de la concurrence parfaite qui sera le nôtre en première année, est facilement modélisable par des relations mathématiques. En effet, l absence de contraintes

Plus en détail

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Intégrale et aire On considère la fonction affine f dont la courbe ci-contre passe par les points A et B. ) Déterminer l epression de f(). ) En déduire une primitive F de f. ) a) Déterminer l intégrale

Plus en détail

La fonction logarithme népérien, f(x) = ln(x).

La fonction logarithme népérien, f(x) = ln(x). La fonction logarithme népérien, f() = ln() L étude des fonctions est une notion fondamentale du programme de Terminale STG A l heure actuelle, les fonctions rencontrées sont celles connues depuis la seconde

Plus en détail

Chapitre 2 - Continuité et convexité

Chapitre 2 - Continuité et convexité Chapitre 2 - Continuité et convexité I Rappels : sens de variation et dérivée Soit f une fonction définie et dérivable sur un intervalle I. Si la dérivée est strictement positive sur l intervalle I, alors

Plus en détail

Chapitre 5 : Fonctions de référence et fonctions associées

Chapitre 5 : Fonctions de référence et fonctions associées Chapitre 5 : Fonctions de référence et fonctions associées I) Sens de variation d une fonction Définition : Soit une fonction définie sur un intervalle I. Dire que : est croissante sur I signifie que pour

Plus en détail

Ch.8 Fonctions convexes

Ch.8 Fonctions convexes T le ES - programme 2012 mathématiques ch.8 cahier élève Page 1 sur 14 1 NOTIONS DE CONVEXITÉ, DE CONCAVITÉ 1.1 Introduction Ch.8 Fonctions convexes Considérons une fonction f croissante sur [a ; b], on

Plus en détail

FICHE METHODE sur la DERIVATION I) A quoi sert la «fonction dérivée» d une fonction?

FICHE METHODE sur la DERIVATION I) A quoi sert la «fonction dérivée» d une fonction? FICHE METHODE sur la DERIVATION I) A quoi sert la «fonction dérivée» d une fonction? a) Eemples :. Un solide se déplace sur un ae gradué ( en m ) et son abscisse en fonction du temps t ( en s ) est (t)

Plus en détail

La fonction exponentielle de base a Corrigés d exercices

La fonction exponentielle de base a Corrigés d exercices La onction eponentielle de base a Corrigés d eercices Les eercices du livre corrigés dans ce document sont les suivants : Page 7 : N 48, 49, 4, 6 Page 6 : N 7, 9 Page 6 : N 4 Page 64 : N Page 6 : N 7 N

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats suivants :

Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats suivants : Cours DERIATION 0 ACTIITE DERIATION et CALCUL FORMEL - Odyssée Le professeur de mathématiques a donné le «devoir maison» suivant : Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats

Plus en détail

La fonction puissance

La fonction puissance La fonction puissance Table des matières Fonction puissance. Définition.................................. Propriétés.................................. Eercices.................................. Etude de

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Table des matières La fonction réciproque de la fonction eponentielle 2. Définition......................................................... 2.2 Propriété.........................................................

Plus en détail

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel)

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 On considère la figure ci-dessous où cinq droites sont tracées.

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

Exercices : Intégration

Exercices : Intégration Eercices : Intégration Pour les eercices 4 à 43 il suffit de dériver F et de vérifier que F = f. Eercice 4 page 53 : Pour pouvoir dériver F il faut d abord développer ( 2) 3. F() = ( 2)( 2) 2 +2+ = ( 2)(

Plus en détail

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS Chapitre GÉNÉRALITÉS SUR LES FONCTIONS I. GÉNÉRALITÉS SUR LES FONCTIONS DE VARIABLE RÉELLE Sau indication particulière, pour simpliier, les onctions sont déinies sur un intervalle I de non réduit à un

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

Généralités sur les fonctions numériques à variables réelles

Généralités sur les fonctions numériques à variables réelles «I» : Définitions 1/ Fonction Généralités sur les fonctions numériques à variables réelles Une fonction numérique à variable réelle f est une «machine mathématique» qui associe à chaque réel, soit un unique

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

EXERCICE 3 (7 points )

EXERCICE 3 (7 points ) EXERCICE 3 (7 points ) Commun à tous les candidats La page annexe sera à compléter et à remettre avec la copie à la fin de l épreuve. PARTIE A On considère la fonction f définie sur l intervalle ]0; +

Plus en détail

TES A-B Devoir n 6 sujet 1 mardi 10 février 2015

TES A-B Devoir n 6 sujet 1 mardi 10 février 2015 TS A-B Devoir n 6 sujet 1 mardi 10 février 2015 NOM : Prénom :. ercice 1 : (3 points) Un opérateur de téléphonie mobile organise une campagne de démarchage par téléphone pour proposer la souscription d

Plus en détail

5.6 Application de la dérivée à l'étude des fonctions

5.6 Application de la dérivée à l'étude des fonctions 55 5.6 Application de la dérivée à l'étude des fonctions 5.6.1 Monotonie On a le résultat fondamental suivant : 5.15. Théorème Dérivée et monotonie. Soit I un intervalle de R et f une fonction numérique

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Etude de fonctions Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

CONCOURS BLANC PCSI MATHÉMATIQUES 1 - Correction

CONCOURS BLANC PCSI MATHÉMATIQUES 1 - Correction CONCOURS BLANC PCSI MATHÉMATIQUES - Correction Eercice. Calculs d intégrales Les trois questions sont indépendantes. t. Par I.P.P., arctan t dt = t arctan + t dt = t arctan t ln( + t + C.. Il faut se ramener

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Continuité d une fonction

Continuité d une fonction Continuité d une fonction Sur un intervalle Pour démontrer qu une fonction est continue sur un intervalle, il suffit de dire qu elle est composée de fonctions continues sur cet intervalle. Les fonctions

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5 FONCTION LOGARITHME I FONCTION RECIPROQUE La fonction carrée La fonction carrée est dérivable et strictement monotone sur [ 0 ; 2 ] D'après le corollaire du théorème des valeurs intermédiaire pour tout

Plus en détail

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln Eercice ) f ( ) = ln ; f () = ln + ) ln ln ln f ( ) = ; f () = = ² ² ) f ( ) = ( ln ) 4 ; f () = 4 ( ln ) 4) f ( ) = ; f () = = ln ln ² ln ² ) ( ln + ) ( ln ) ln f ( ) = ; f () = = ln + (ln + )² ( ln +

Plus en détail

Devoir surveillé n 5 19 janvier 2011

Devoir surveillé n 5 19 janvier 2011 Devoir surveillé n 5 19 janvier 2011 Term ES Eercice 1 : (4 points) Soit f une fonction définie et dérivable sur R. On a tracé ci-contre sa courbe représentative C dans un repère orthonormal. On note f

Plus en détail

Chapitre 2 CONTINUITE - CONVEXITE TES

Chapitre 2 CONTINUITE - CONVEXITE TES Chapitre 2 CONTINUITE - CONVEXITE TES I Quelques rappels Définition Soit a et (a + h) appartenant à I. Dire que f est dérivable en a signifie que le taux d'accroissement entre a et a + h, τ a,h, tend vers

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

Chapitre 7. Etudes de fonctions

Chapitre 7. Etudes de fonctions . Dérivée première et croissance.. Croissance et décroissance Chapitre 7. Etudes de fonctions Au début de ce cours d analyse, nous avons défini la croissance et la décroissance d une fonction. Pour rappel

Plus en détail

Les dérivées. 4.1 Introduction. Vitesse et accélération. g lim. lim

Les dérivées. 4.1 Introduction. Vitesse et accélération. g lim. lim 4. Introduction Les dérivées Vitesse et accélération Lorsque l on considère le mouvement rectiligne d un point matériel M, la distance d parcourue par ce point à partir d une position initiale est liée

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

Dérivées et applications

Dérivées et applications Dérivées et applications I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de la tangente

Plus en détail

PRIMITIVES. Introduction 1. Introduction 2

PRIMITIVES. Introduction 1. Introduction 2 PRIMITIVES Introduction Tracer dans le plan rapporté à un repère orthonormé d'unité 5cm la courbe représentative de la fonction pour [0 ; ]. Évaluer l'aire de la partie du plan limitée par la courbe, l'ae

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Annales Logarithme népérien

Annales Logarithme népérien Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier

Plus en détail

I. Equation et inéquation du second degré

I. Equation et inéquation du second degré I. Equation et inéquation du second degré Théorème : Soient a, b et c des nombres réels avec a non nul, on appelle discriminant et on note Δ le nombre b 2 4ac. L équation ax 2 + bx + c = 0, - admet deux

Plus en détail

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée.

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée. Terminales S BAC BLANC Mathématiques Corrigé Durée 4 heures. La calculatrice graphique est autorisée. Eercice (commun) A. Etude de f en ) On a : lim = et lim e = e =. Par composition, il vient alors :

Plus en détail

1 ère S 2004/2005. Ch.12. Applications de la dérivation. A P P L I C A T I O N S D E L A D É R I V A T I O N.

1 ère S 2004/2005. Ch.12. Applications de la dérivation. A P P L I C A T I O N S D E L A D É R I V A T I O N. 1 ère S 4/5 Ch1 Applications de la dérivation J TAUZIEDE A P P L I C A T I O N S D E L A D É R I V A T I O N I- DERIVEE ET SENS DE VARIATION D UNE FONCTION 1 ) Sens de variation et dérivées Théorème liant

Plus en détail

NOMBRE DÉRIVÉ ET TANGENTE

NOMBRE DÉRIVÉ ET TANGENTE CLSSE DE STG NOMBRE DÉRIVÉ ET TNGENTE NOMBRE DÉRIVÉ ET TNGENTE. Nombre dérivé.. Définition. Soit une fonction représentée par la courbe C On considère la tangente T, au point d abscisse Le coefficient

Plus en détail

La fonction logarithme

La fonction logarithme La fonction logarithme Table des matières La fonction logarithme népérien. Fonction réciproque d une fonction monotone............. Définition................................. 3.3 Représentation de la

Plus en détail

CORRECTION FX 4. 4a 2 b )

CORRECTION FX 4. 4a 2 b ) Lycée Thiers CORRECTION FX 4 Première Série Eercice. On considère f : R R, a + b + c, avec a, b, c) R 3 et a. Prouver que le graphe de f admet un ae de symétrie. Notons P la parabole d équation y = a +

Plus en détail

Fonctions Polynômes. Table des matières. Table des figures. Liste des tableaux. Christophe ROSSIGNOL. Année scolaire 2014/2015

Fonctions Polynômes. Table des matières. Table des figures. Liste des tableaux. Christophe ROSSIGNOL. Année scolaire 2014/2015 Fonctions Polynômes Christophe ROSSIGNOL Année scolaire 2014/2015 Table des matières 1 Dérivée d une fonction polynôme 2 1.1 Quelques rappels............................................. 2 1.2 Cas général................................................

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier..................................... Fonctions affines....................................... Fonction logarithme......................................4

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

Fonction logarithme népérien.

Fonction logarithme népérien. 1. Généralités... p2 2. Propriété fondamentale de ln... p5 3. Étude et représentation graphique de la fonction logarithme népérien... p10 Copyright meilleurenmaths.com. Tous droits réservés 1. Généralités

Plus en détail

Terminale ES. La fonction logarithme népérien

Terminale ES. La fonction logarithme népérien Terminale ES La fonction logarithme népérien 1 I Liens avec la fonction exponentielle Définition On sait que la fonction exponentielle est strictement croissante sur et à valeurs dans ]0;+ [. Ainsi, pour

Plus en détail

Exercices supplémentaires Dérivation

Exercices supplémentaires Dérivation Exercices supplémentaires Dérivation Partie A : Lecture graphique et tracé de tangente Exercice Lire graphiquement le coefficient directeur s il existe de chacune des droites représentées ci-dessous. -

Plus en détail

Exercices : étude de fonctions

Exercices : étude de fonctions Eercice 39 page 55 : Eercices : étude de fonctions a) fau, la fonction n est pas continue en 1. b) fau, f(1) = 1. c) vrai d) vrai, la courbe coupe trois fois la droite d équation y = 4. Eercice 42 page

Plus en détail

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli Chapitre 3 : Limites de fonctions -28-09-- Terminale ES 2, 20-202, Y. Angeli. Notion de ite : les différentes situations. Le plan est muni d un repère orthogonal (; ı, j). Dans ces illustrations, a et

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

Documents pour l étudiant : Chapitre III : continuité

Documents pour l étudiant : Chapitre III : continuité 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Gestion MATH101 : Pratique des Fonctions numériques Documents pour l étudiant : Chapitre III : continuité Notations

Plus en détail

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives Amerinsa - Ecole d été Limites : Eercices Eercice : Notions intuitives Dans la figure ci-contre, vers quoi tend f() lorsque tend vers : a) - b) + c) 0 d) -4 e) 4 Eercice : Notions intuitives Vers quelle

Plus en détail

Fonction exponentielle 1

Fonction exponentielle 1 Fonction eponentielle 1 Unicité de la solution de l équation différentielle Conséquences 1. Si f est une solution de l équation différentielle y = y, y(0) = 1, alors, pour tout réel, f( )f() = 1 et f()

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

FICHE METHODE sur les FONCTIONS USUELLES I) A quoi servent les fonctions usuelles?

FICHE METHODE sur les FONCTIONS USUELLES I) A quoi servent les fonctions usuelles? FICHE METHODE sur les FONCTIONS USUELLES I) A quoi servent les fonctions usuelles? a) Eemples : 1. Il a actuellement 30 euros d économies et en ajoute 5 par semaine! Comment varient ses économies E en

Plus en détail

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)).

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)). 1S1: doc 5 Dérivation 2015-2016 I Pour bien commencer I.1 Limite en 0 d une fonction Soit I un intervalle contenant 0, I = I\ {0} et f : I R D é f i n i t i o n : On dit que f admet une limite finie L

Plus en détail

FONCTION EXPONENTIELLE de BASE e : f(x) = e x

FONCTION EXPONENTIELLE de BASE e : f(x) = e x FONCTION EXPONENTIELLE de BASE e : f() = e I) DEFINITION. a) Définition 1 et notations : ( de la fonction eponentielle ) Quel que soit le nombre réel, l équation ln y = où y est inconnu admet une solution

Plus en détail

GENERALITES SUR LES FONCTIONS

GENERALITES SUR LES FONCTIONS GENERALITES SUR LES FNCTINS Rappels ) Vocabulaire Définir une fonction f, c est donner un procédé qui à chaque nombre associe au plus un nombre noté f(). n écrit : f : f() (on lit : «f est la fonction

Plus en détail

2 Généralités sur les fonctions

2 Généralités sur les fonctions Chapitre Généralités sur les fonctions. Fonctions usuelles.. Fonction racine carrée Définition. On appelle fonction racine carrée la fonction définie sur R + par x x. Théorème. La fonction racine carrée

Plus en détail

Fonction logarithme - Correction

Fonction logarithme - Correction Eercice 1 Fonction logarithme - Correction Déterminer l ensemble de définition des fonctions suivantes : 1. f() = ln + ln(2 ) On sait, d après le cours que la fonction ln est définie sur R +. Autrement

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 2016-2017 Analyse I PLANCHE 3 : DÉRIVATION - DÉVELOPPEMENTS LIMITÉS Dérivabilité, dérivée, Eercice 1 [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de

Plus en détail

Chapitre 6. Fonctions logarithmes

Chapitre 6. Fonctions logarithmes Chapitre 6 Fonctions logarithmes Les logarithmes (logos = rapport, arithmeticos = nombres sont apparus grâce au mathématicien Écossais John Napier (550-67 qui cherchait à simplifier les calculs astronomiques.

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

x)² 1439 Ces données sont-elles suffisantes pour déterminer la moyenne et l écart type de la série? Si oui, calculer ces paramètres.

x)² 1439 Ces données sont-elles suffisantes pour déterminer la moyenne et l écart type de la série? Si oui, calculer ces paramètres. S A-C DS 7 jeudi mars 206 n. sur 2.5 points Une association de consommateurs étudie statistiquement la durée de vie des disques durs proposés par deu fournisseurs. Les résultats pour la société Eastdigit

Plus en détail