I. Qu est-ce qu une variable aléatoire?

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "I. Qu est-ce qu une variable aléatoire?"

Transcription

1 I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est ue focto, ommée X, qu à tout élémet de Ω assoce u réel. Voc ce qu o peut trouver sur wkpeda à ce sujet : Ue oto mportate e probablté est celle de varable aléatore. Les varables aléatores furet trodutes à l'orge pour représeter u ga. Par exemple effectuos l'expérece suvate, laços ue pèce de moae et suvat que le résultat est ple ous gagos dx euros, ou face ous perdos u euro. O cosdère alors X, la varable aléatore qu pred la valeur 0 lorsque ous obteos ple et la valeur - lorsque ous obteos face. X représete le ga à l'ssue d'u lacer de la pèce. De faço plus géérale ue varable aléatore est ue certae focto, qu déped du résultat d'ue expérece aléatore par exemple das ce cas le résultat du ple ou face. Cette focto assoce ue certae valeur au résultat d'ue expérece. Das otre exemple plus haut la varable aléatore assoce 0 à "ple" et - à "face". Cela permet d'assocer des ombres à des résultats d'expéreces qu e sot pas umérques. Le terme de varable aléatore peut parfos être trompeur, e effet, ce 'est pas la valeur qu'elle pred ue fos que l'o coat le résultat de l'expérece qu est aléatore, mas la valeur qu'elle va predre avat d'avor effectué l'expérece. Ue fos que l'o coat le résultat du ple ou face o coat la valeur de X, otre ga, avec certtude et celle c e déped pas du hasard. Par cotre, avat de jeter la pèce o e sat pas quelle valeur va predre X car o e sat pas ecore s l'o va obter ple ou face.. Lo de probablté d ue varable aléatore : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω, coteat évéemet(s élémetare(s. Sot X la varable aléatore assocée à cette expérece aléatore preat les valeurs x, x,..., x. Page sur 5

2 La probablté que X = x est otée p (o ote égalemet p = p( X = x La probablté que X = x est otée p (o ote égalemet p = p( X = x La probablté que X = x est otée p (o ote égalemet p = p( X = x La lo de probablté de la varable X est l esemble des couples ( x; p, ( x; p,, ( x; p O a k = p k = Preos u exemple smple et cocret : O lace ue pèce. S le résultat est ple, ous gagos 0 et s le résultat est face, ous perdos. La lo de probablté peut être représetée as : Lacer de pèce ple face probablté Valeur de X 0 - La lo de probablté est les deux couples suvats : 0;, ; II. Espérace, varace et écart-type d ue varable aléatore Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω, coteat évéemet(s élémetare(s. Sot X la varable aléatore assocée à cette expérece aléatore preat les valeurs x, x,..., x.. Espérace : L espérace de X représete la moyee. Page sur 5

3 L espérace est otée E( X et est calculée as : E( X = x. p( X = x + x. p( X = x x. p( X = x Sot E( X = x. p( X = x =. Varace : O ote la varace V ( X et o la calcule as : V ( X = ( x E( X p( X = x + ( x E( X p( X = x ( x E( X p( X = x Sot ( = ( ( ( = = V X x E X p X x 3. Ecart-type : O ote l écart-type σ ( X et o le calcule as : σ ( X = V ( X III. Exercces sur les varables aléatores Eocé U jeu cosste à trer au hasard ue carte das u jeu de 5 cartes. O mse ue somme avat de trer la carte. - S le joueur tre u as, l gage 4 fos sa mse, - s le joueur tre u ro, l gage fos sa mse, - s le joueur tre ue dame, l gage sa mse, - s le joueur tre u valet, l gage sa mse, - s le joueur tre ue autre carte, l perd sa mse. Page 3 sur 5

4 O cosdère que chaque carte a la même probablté d être trée. Sot X la varable aléatore égale au ga du joueur. X représete doc combe de fos le joueur gage sa mse. X est postf s le joueur gage et égatf s le joueur perd.. Détermer la lo de probablté de X.. Détermer l espérace, la varace et l écart-type de X. 3. Le jeu est-l équtable? Soluto Lo de probablté de X : La varable X pred les valeurs 4,, et -. Il y a 5 cartes, la probablté de trer ue carte doée est doc de 5 - Il y a 4 as das le jeu, la probablté de trer u as est de u as, l gage 4 fos sa mse, doc varable aléatore X pree la valeur 4 est de 3. 4 =. Lorsque le joueur tre 5 3 p( X = 4 = (cela sgfe que la probablté que la 3 - Il y a 4 ros das le jeu, la probablté de trer u ro est de 4 =, doc p( X = = Il y a 4 dames et 4 valets das le jeu, la probablté de trer ue dame ou u valet est de 8 =, doc p( X = = Lorsque le joueur tre ue autre carte, l perd sa mse doc X pred la valeur -. Il y a 36 autres cartes, doc la probablté d e trer ue est de =, doc p( X = = La lo de probablté de la varable aléatore X est doc la suvate : x - 4 p( X = x Pesez à vérfer que la somme des probabltés vaut, so l y a ue erreur quelque part! Ic, o a be = Page 4 sur 5

5 Espérace, varace et écart-type de X. O ote E( X l espérace de X et o a : E( X = x. p( X = x + x. p( X = x x. p( X = x 9 E( X = = O ote V ( X la varace de X et o a : V ( X = ( x E( X p( X = x + ( x E( X p( X = x ( x E( X p( X = x 9 V ( X = ( ( + ( ( + ( ( + (4 ( V ( X = = =, O ote σ ( X l écart-type de X et o a : σ ( X = V ( X σ ( X = =, Le jeu est-l équtable? La varable X représete le ga du joueur. O vot que l espérace de X est égatve, doc le ga du joueur est e moyee égatf. E moyee, le joueur perd de l arget, le jeu est doc pas équtable. Page 5 sur 5

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble E des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS 3- LES TIRAGES PROBABILISTES D'EHATILLOS Das de ombreuses alcatos ratques du calcul des robabltés, o retrouve u ou luseurs des schémas de trages robablstes d'échatllos que ous allos exoser. Le cadre gééral

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

PROBABILITES. A. Espaces probabilisables. 1) Définition d une tribu :

PROBABILITES. A. Espaces probabilisables. 1) Définition d une tribu : . Espaces probablsables Défto d ue trbu : PROBBILITES chaque expérece aléatore o assoce u esemble oté, appelé uvers, dot les élémets représetet les dfféretes ssues possbles de l expérece aléatore : est

Plus en détail

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie Los de probabltés lées aux trages de boules das ue ure Approche sodage : échatlloage et estmato das ue populato fe Das le ouveau programme de secode, retrée 2009, sot scrtes les otos d'tervalle de fluctuato

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction : Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

1 ère S Les variables aléatoires

1 ère S Les variables aléatoires ère S Les varables aléatores I Eemple troductf ) Epérece aléatore cosdérée O lace u dé cubque o truqué O ote le uméro de la face supéreure Pla du chaptre : I Eemple troductf II Défto Vocabulare Coséquece

Plus en détail

Ch.6ÊPROBABILITÉS _ partie 1

Ch.6ÊPROBABILITÉS _ partie 1 LFA / remère S COURS Gesto de doées Mme MAINGUY I Raels / Lo de robablté Ch6ÊPROBABILITÉS _ arte ere S défto O aelle exérece aléatore toute exérece ayat luseurs ssues (ou évetualtés) ossbles et dot o e

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

2 Propriétés élémentaires des probabilités

2 Propriétés élémentaires des probabilités Uiversité de Reims Champage Ardee UFR Scieces Exactes et Naturelles Aée uiversitaire 2013-2014 MA 0804 - Master 1 CM1 Espaces probabilisés 1 Déitio Pour déir u espace probabilisé, o a besoi d'u esemble

Plus en détail

PRINCIPES DES STATISTIQUES INFERENTIELLES

PRINCIPES DES STATISTIQUES INFERENTIELLES Chaptre 3 PRINCIPES DES STATISTIQUES INFERENTIELLES Bases de la statstque féretelle PLPSTA0 0 Chaptre 3 1. Problématque. Objectfs des statstques féretelles.1 Estmato poctuelle. Estmato par tervalles.3

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables.

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables. COUPLE DE VARIABLES ALEATOIRES O cosdère deux varables aléatores et. O amerat coatre s l y a fluece etre ces deux varables. I Coule de varables dscrètes : 1) Lo ote : Soet et deux varables dscrètes, à

Plus en détail

Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2

Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2 Vecteurs de varables aléatores réelles Gééralsato des proprétés de l espérace de la varace Das tout le cours désge u eter aturel a) Lo d u vecteur aléatore à valeurs das ) Défto La lo d u -uplet ou d u

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance Parte I : Gesto de portefeulles actos Chaptre 3 Gesto de Portefeulle Moyee-arace Gesto de Portefeulle D. Msae edemet d ue acto Cette parte est cosacrée à u apport mportat de la théore facère modere qu

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

SCHEMA DE BERNOULLI ET LOI BINOMIALE. EXEMPLES

SCHEMA DE BERNOULLI ET LOI BINOMIALE. EXEMPLES SCHEMA DE BERNOULLI ET LOI BINOMIALE EXEMPLES Nveau : termale Pré-requs : Espace probablsé Varable aléatore réelle sur u espace probablsé f Lo de probablté de X Espérace mathématque Varace O se place das

Plus en détail

Expérience aléatoire - modélisation - langage des probabilités

Expérience aléatoire - modélisation - langage des probabilités T.S Probabilités coditioelles L 5 I Expériece aléatoire - modélisatio - lagage des probabilités Ue expériece aléatoire est ue expériece liée au hasard. Les mathématiques itervieet pour apporter u modèle

Plus en détail

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!.

PROBABILITÉS. Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans!. PROBABILITÉS E 654, Blaise Pascal (63 ; 66) etretiet avec Pierre de Fermat (60 ; 665) des correspodaces sur le thème des jeux de hasard et d'espérace de gai qui les mèet à exposer ue théorie ouvelle :

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako I Itroductio : NOTION DE PROBABILITÉ Site MathsTIE de Adama Traoré Lycée Techique Bamako ) Exemple : O lace fois e l air u dé o pipé (ormal), x et y fot u pari Si 66 apparaît alors x gage 600Frs Si ou

Plus en détail

LOI NORMALE ET LOIS DERIVEES

LOI NORMALE ET LOIS DERIVEES Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b Correcto Exercces du MODULE : MExo4b Dstrbuto statstque à u caractère Exercce Mexo4 b Objectf : Cet exercce trate du calcul

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

Éléments de correction de la feuille d exercices # 3

Éléments de correction de la feuille d exercices # 3 Uiversité de Rees L SVE Probabilités et statistiques aée 25-26 Élémets de correctio de la feuille d exercices # 3 Exercice Exemple de loi discrète Soit X ue variable aléatoire discrète preat les valeurs

Plus en détail

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins.

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins. Résumé statstque.6 Le coeffcet de corrélato Corrélato etre deux composats: pod/talle d'u dvdu. r = å å =1 x - xy - y å x - x y - y =1 =1 La valeur se stuera etre -1 corrélato égatve/versée et 1corrélato

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

I. Probabilités : petit bilan de 2 nde

I. Probabilités : petit bilan de 2 nde ère S FICHE Variables aléatoires I. Probabilités : petit bila de de EXECICE TYPE (voir évaluatio diagostique d etrée e ère S) Eocé O fait tourer ue roue équilibrée comme ci-dessous séparées e 8 secteurs

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

Fractions rationnelles

Fractions rationnelles Fractos ratoelles 1. Gééraltés 1.1. Rappels K R ou C U polyôme s écrt sous la forme : pour u ombre f de k et P(X) K [X] k k avec a k 0 sauf k 0 P( X ) a. X 1.. Défto d ue fracto ratoelle O appelle fracto

Plus en détail

Probabilités élémentaires

Probabilités élémentaires 1. Exemple... p2 4. Lois de probabilité... p7 2. Vocabulaire... p4 5. Variables aléatoires... p8 3. Espaces probabilisés fiis... p4 Copyright meilleuremaths.com. Tous droits réservés 1. Exemple Probabilités

Plus en détail

PROBABILITÉS - VARIABLES ALÉATOIRES

PROBABILITÉS - VARIABLES ALÉATOIRES PROBABILITÉS - VARIABLES ALÉATOIRES Itroducto Das le cours sur les probabltés ous avos trodut la oto d uvers U et lu avos attacé ue focto probablté P. Das beaucoup d applcatos pratques la oto d uvers,

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

Correction partielle du TD n 19

Correction partielle du TD n 19 Correctio partielle du TD Correctio L uivers des possibles de X est [,5 ]. O a X = lorsqu o obtiet pile à au mois deux lacers. O a cas favorables le cas où l o obtiet pile aux trois lacers et cas où l

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

1. Test d indépendance du KHI-2

1. Test d indépendance du KHI-2 1. Test d dépedace du HI- Ecrre ue focto qu réalse le test d dépedace du kh-. Etrée : x et y, deux vecteurs, de type factor Sorte : statstque de test, degrés de lberté, p-value Idcatos : Vous devez vérfer

Plus en détail

Estimation de paramètres

Estimation de paramètres CHAPITRE 8 Estimatio de paramètres 1. Distributio des moyees des échatillos Das ce chapitre, ous étudieros commet est distribué la moyee de tous les échatillos de taille possibles d ue certaie populatio.

Plus en détail

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18 1 U commerçat a relevé le motat des dépeses e euros de chaque clet au cours d ue semae. Motat des dépeses Clets [0 ; 50[ 72 x x - x ) - x )² -x ) ² [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200

Plus en détail

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses 6- Tests statstques - Chaptre 6 : Tests d hypothèses 6. Costructo d u test et règle de décso... 6. ussace d u test...3 6.3 Quelques tests d hypothèses...4 6.3. Test sur la moyee d ue dstrbuto ormale de

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

Programmation linéaire en nombres entiers

Programmation linéaire en nombres entiers Programmato léare e ombres eters Itroducto Problème de programmato léare e ombres eters (P) M Suet à = = c a = b =,, m 0, eter =,, Eemple M z = Suet à, + 0 5 0 0, eter F(P) = domae réalsable de P Itroducto

Plus en détail

III GRANDEURS MOLAIRES

III GRANDEURS MOLAIRES Chaptre III GRNDEURS MOLIRES Gradeurs molares - Gradeur molare d u corps pur ou d u age de corps purs Sot u système thermodyamque costtué de moles d u même composé, o assoce à ue gradeur extesve de ce

Plus en détail

Synthèse de cours PanaMaths Tribus

Synthèse de cours PanaMaths Tribus Sythèse de cours PaaMaths Tribus Das ce documet, pour tout esemble E et toute partie A de E, ous oteros A le complémetaire de A das E. Défiitios et premières propriétés Défiitios Soit E u esemble. E Soit

Plus en détail

FONCTIONS REELLES DEFINIES SUR Premières notions

FONCTIONS REELLES DEFINIES SUR Premières notions FONCTIONS REELLES DEFINIES SUR Premères otos A. Premères déftos Sot u eter aturel supéreur ou égal à ) Graphe d ue focto à varables Sot ue focto f défe sur D à valeurs das O appelle graphe de la focto

Plus en détail

Une nouvelle approche du sondage aléatoire simple

Une nouvelle approche du sondage aléatoire simple Résumé Ue ouvelle approche du sodage aléatore smple Mart Körg mkorg@waadoofr Ue approche bayésee du sodage aléatore smple offre des solutos smples, pratques et relatvemet facles à exploter umérquemet l

Plus en détail

POLYNESIE Série S Juin 2001 Exercice

POLYNESIE Série S Juin 2001 Exercice OLYNESIE Série S Jui 00 Exercice gros rouges et 3 petits rouges Ue boîte cotiet 8 cubes : gros verts et petit vert petit jaue U efat choisit au hasard et simultaémet 3 cubes de la boîte (o admettra que

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

Correction de l exercice 1

Correction de l exercice 1 IUT Orsa Iformatique S3 Correctio de l exercice. Ω est l esemble des résultats possibles de l experiece aléatoire lacer u dé à faces : Ω {,, 3,,, }, et Ω.. Si k Ω sort, le gai du jeu est k euros. Doc la

Plus en détail

Espérance et variance d une variable aléatoire. x Total p(x=x) 1/4 2/4 1/4 1

Espérance et variance d une variable aléatoire. x Total p(x=x) 1/4 2/4 1/4 1 Espérace et variace d ue variable aléatoire Variable aléatoire Ue variable aléatoire X est ue correspodace etre u esemble de valeurs xi (e.g., le ombre de garços das des familles de efats) et la probabilité

Plus en détail

Les calculatrices sont autorisées

Les calculatrices sont autorisées Les calculatrces sot autorsées NB : S u caddat est ameé à repérer ce u peut lu sembler être ue erreur d éocé, l le sgalera sur sa cope et devra poursuvre sa composto e expluat les rasos des tatves u l

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber Résumé : Niveau : Bac Scieces de l iformatique Réalisé par : Prof. Bejeddou Saber Tableau récapitulatif sur le déombremet: Type du tirage : Simultaé Successif sas remise Successif avec remise U tirage

Plus en détail

Convergence en loi. Théorème de la limite centrale.

Convergence en loi. Théorème de la limite centrale. Uiversité Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 10 (semaie du 2 au 6 décembre 2013 Covergece e loi. Théorème de la limite cetrale. Covergece e loi 1. Soiet (X N ue

Plus en détail

Chapitre 5 : Modèles probabilistes pour la recherche d information. - Modèle tri probabiliste (BIR et BM25) - Modèle de Langue

Chapitre 5 : Modèles probabilistes pour la recherche d information. - Modèle tri probabiliste (BIR et BM25) - Modèle de Langue Chaptre 5 : Modèles probablstes pour la recherche d formato - Modèle tr probablste BI et BM25 - Modèle de Lague Itroducto ourquo les probabltés? La I est u processus certa et mprécs Imprécso das l expresso

Plus en détail

Chapitre III : Les caractéristiques de dispersion

Chapitre III : Les caractéristiques de dispersion Chaptre III : Les caractérstques de dsperso Les caractérstques de tedace cetrale e sot pas toujours suffsates pour caractérser ue sére statstque, car séres peuvet avor Mo= Me = x alors qu elles sot dstrbuées

Plus en détail

Séries de Fourier 12-1

Séries de Fourier 12-1 Séres de Fourer 1-1 Sommare 1. Applcato de classe C 1 par morceaux 1 1.1. Applcato de classe C 1 par morceaux 1 1.. Applcato -pérodque C 1 par mcx. 1 1.3. pérato sur les applcatos C 1 par mcx 1. Sére de

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Série d exercices n 1 - Corrigé

Série d exercices n 1 - Corrigé Uiversité Pierre et Marie Curie Aée 2014-2015 Probabilités LM90 Série d exercices 1 - Corrigé Rappel : C = ( :=!!(! est le ombre de choix o ordoés de élémets disticts pris parmi. A :=! (! est le ombre

Plus en détail

Éléments de probabilités

Éléments de probabilités Chapitre 1 Élémets de probabilités 1.1 Notio d expériece aléatoire Défiitio 1 Ue expériece, dot o coait les issues possibles, est appelé expériece aléatoire s il est impossible de savoir à l avace quelle

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

Statistique à 2 variables

Statistique à 2 variables Statstque à varables. Exemples Nous sommes souvet cofrotés à des doées etre lesquelles ous essayos d'établr des les telles que : La talle et le pods d'u groupe d'dvdus. le budget vacaces et les reveus

Plus en détail

Variables aléatoires discrètes : loi binomiale

Variables aléatoires discrètes : loi binomiale hapitre 1 Variables aléatoires discrètes : loi biomiale Activité 1 Bie réussir u QM TE Dolorès s est iscrite à u cocours pour etrer e école d igéieur. elui-ci se présete sous la forme d u QM où, pour chaque

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

INÉGALITÉS DE MARKOV ET DE CHEBISHEV LOI FAIBLE DES GRANDS NOMBRES

INÉGALITÉS DE MARKOV ET DE CHEBISHEV LOI FAIBLE DES GRANDS NOMBRES Iégalités de Markov et de Chebishev - Loi faible des grads ombres versio du 11 avril 2014 35 8 INÉGALITÉS DE MARKOV ET DE CHEBISHEV LOI FAIBLE DES GRANDS NOMBRES 1 Iégalité de Markov. 8.1 Iégalité de Markov.

Plus en détail

Séries chronologiques

Séries chronologiques Séres chroologques Rappel : Détermato de l équato d ue drote passat par pots. ( so équato peut se mettre sous la forme y ax + b ) ex : Détermato de l équato de la drote passat par les pots : A ( - ; -5

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Loi normale Échantillonnage et estimation

Loi normale Échantillonnage et estimation Loi ormale Échatilloage et estimatio Christophe ROSSIGNOL Aée scolaire 2014/2015 Table des matières 1 Rappels sur la loi biomiale 2 1.1 Épreuve de Beroulli......................................... 2 1.2

Plus en détail

CONVERGENCE ET APPROXIMATION

CONVERGENCE ET APPROXIMATION 11-2- 2010 J.F.C. Cov. p. 1 CONVERGENCE ET APPROXIMATION I CONVERGENCE EN PROBABILITÉ 1. Défiitio 2. Ue coditio suffisate de covergece e probabilité 3. La loi faible des grads ombres 4. Ue coséquece de

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

Estimation par intervalle de confiance

Estimation par intervalle de confiance 62 CHAPITRE 12 Estimatio par itervalle de cofiace 1. Estimatio de la moyee par itervalle de cofiace 1.1. Calcul de la marge d erreur. O veut maiteat faire ue estimatio par itervalle de cofiace de la moyee

Plus en détail

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1 LGL Cours de Mathématques 26 Exemples de sutes das le domae des faces 1) Itérêts composés O place 1. à térêts composés au taux de 4,5 % par a. Détermer le captal dspoble à la f de chaque aée et ce pedat

Plus en détail

Chapitre 4 Fonction de transfert

Chapitre 4 Fonction de transfert Chatre 4 Focto de trasfert Chatre 4 Focto de trasfert 4.. Exresso de la focto de trasfert Pour u système léare cotu et varat, ous avos vu que la relato etre la sorte s( et l etrée e( est doée ar ue équato

Plus en détail

1/7 Notes de cours en calcul des probabilités (JJ Bellanger) I : Espaces Probabilisés

1/7 Notes de cours en calcul des probabilités (JJ Bellanger) I : Espaces Probabilisés /7 otes de cours e calcul des probabltés (JJ Bellager I : spaces Probablsés I : SPACS PROBABILISS I.-xpérece aléatore Itutvemet ue expérece aléatore est ue expérece dot o e peut pas prévor le résultat

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

i la moyenne empirique de X n n v =

i la moyenne empirique de X n n v = Corrigé Statistiques iféretielle par par Pierre Veuillez Itervalle de cofiace. Exercice Détermier ue valeur approchée de la loi de la moyee empirique : E X E X, V X V X doc X N E X, V X Exercices. Variace

Plus en détail

COURS N 6 : Estimations

COURS N 6 : Estimations COURS N 6 : Estimatios O peut rappeler que les biostatistiques ot pour objectif de predre e compte la variabilité iteridividuelle, de résumer et décrire des doées et de comparer des échatillos. Nous avos

Plus en détail

Les nombres complexes

Les nombres complexes haptre 6 termale S Les ombres complexes 1 hstorque et créato : N Z ID Q R es esembles ot été costruts au fl de l hstore grâce à u même problème : certaes équatos ot des solutos das u esemble doé mas d

Plus en détail

TD 4 : Variables aléatoires discrètes

TD 4 : Variables aléatoires discrètes MA40 : Probabilités TD 4 : Variables aléatoires discrètes Exercice Soit N u etier aturel supérieur ou égal à.. Motrer les égalités suivates : N k k N N + ) N k k N N + ) N + ). Ue ure cotiet ue boule blache

Plus en détail