La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie."

Transcription

1 NOM Tle S-A/B/C DS - Mathématiqes - Ldi 26 septembre 206 La présetatio, le soi et la riger des résltats etrerot por e part importate das l évalatio de la copie Exercice : sr 8 poits Cet exercice est costité de 4 qestios idépedates ROC : a) Ecrire ci-dessos ( sr cette feille) l éocé de l'iégalité de Berolli : (o e demade pas la démostratio) b) Démotrer le résltat d cors : " la limite d'e site géométriqe de type (q ) avec q > est pls l'ifii " 2 O cosidère les dex sites ( ), ( v ) défiies por tot etier atrel o l par : 5 3 ² Détermier la limite de chace de ces sites ; v = 2 3 0,4 0,4 3 Soit la site (c ) défiie por tot N, par c 2cos( ) 3 5 a) Motrer qe por tot etier atrel, c b) E dédire la limite de la site (c ) Variables : U, I, M 4 La site est défiie par 0 N, 4 6 U pred la valer Por I allat de 0 à M L' algorithme ci-cotre, demade etier atrel m, pis calcle et affiche tos les termes de la site, de 0 à m O pose S i0 i Modifier sr cette feille cet algorithme afi qe, por etier m etré par l tilisater, il calcle assi la somme S m et l'affiche e sortie Fi por U pred la valer U+ 4I + 6

2 Exercice 2 : sr 2 poits Por chaqe propositio dire e jstifiat si elle est vraie o fasse : La site ( ) défiie por tot par = ( ) est borée 2 Tote site (v ) à termes strictemet positifs et décroissate coverge vers 0 Exercice 3 : sr 3 poits d'après Bac Asie ji 206 Ue société prodit des bactéries por l'idstrie E laboratoire, il a été mesré qe, das milie tritif approprié, la masse de ces bactéries, mesrée e grammes, agmete de 20% e jor La société met e place le dispositif idstriel sivat Das e cve de milie trifif, o itrodit iitialemet kg de bactéries Esite, chaqe jor, à here fixe, o remplace le milie tritif cote das la cve Drat cette opératio, 00g de bactéries sot perds L'etreprise se fixe por objectif de prodire 30kg de bactérieso modélise l'évoltio de la poplatio de bactéries das la cve par la site ( ) défiie de la faço sivate : 0 =000 et, por tot, =,2 00 L'etreprise sohaite savoir a bot de combie de jors la masse de bactéries dépassera 30 kg A l'aide de la calclatrice, doer la répose à ce problème 2 O pet égalemet tiliser l'algorithme ci-cotre por répodre a problème posé das la qestio précédete Compléter cet algorithme ( sr cette feille ) 3 Démotrer qe, por tot etier atrel, 000 Exercice 4 : 7 poits extrait Bac Métropole ji 203 Soit la site mériqe ( ) défiie sr par et 3 3 a) Calcler, 2, 3 et 4 O porra e doer des valers approchées à 0-2 près b) Formler e cojectre sr le ses de variatio de la site ( ) 2 a) Démotrer par récrrece qe por tot etier atrel, + 3 b) Démotrer qe por tot etier atrel, ( 3 ) 3 c) E dédire e validatio de la cojectre précédete 3 O désige par (v ) la site défiie sr par v = a) Démotrer qe la site ( v ) est e site géométriqe de raiso 2 3 b) E dédire qe por tot etier atrel, c) Détermier la limite de la site ( ) Por tot etier atrel o l o pose : S k 0 Exprimer S e foctio de k 0

3 Corrigé Exercice : Voir cors a) ² O trasforme doc l'écritre de ; Le calcl de la limite mèe à e forme idétermiée ( 5 ) ( 5 ) ( 5 ) Por tot etier 0, 2 ( ) ( ) ( ) lim ( 5 ) doc lim 5 lim ( ) 2 2 lim 0 par prodit,o dédit qe lim 0 b v = 2 3 0,4 0,4 lim 04 0 ( type q avec q ) doc lim Doc, par qotiet, lim v 2 lim 04 3) a), cos( ) d'où e mltipliat par 2 et ajotat 3o a : 2cos( )+3 5 Or + > 0 por tot etier, doc o e modifie pas les iégalités e mltipliat tos les termes par O a doc : b) 2cos( ) lim 0 et lim 0, doc d après le théorème des gedarmes, o pet coclre qe lim c 0 d Il sffit de rajoter la variable S,l'iitialiser pis calcler esite S das la bocle et de la faire afficher e sortie de bocle U pred la valer S pred la valer 0 Por I allat de 0 à M S pred la valer S+U U pred la valer U+ 4I + 6 Fi por Mais attetio les algorithmes ci-dessos e covieet pas : si o iitialise avec S pred la valer, et selo l'ordre das la bocle : U pred la valer S pred la valer Por I allat de 0 à M U pred la valer U+ 4I + 6 S pred la valer S+U Fi por Cet algorithme va calcler m+ ( il y a terme de trop) U pred la valer S pred la valer Por I allat de 0 à M S pred la valer S+U U pred la valer U+ 4I + 6 Fi por Cet algorithme va calcler m ( le terme 0 est comptabilisé dex fois das la somme )

4 Exercice 2 : Propositio vraie car por tot, ( ) 2 Propositio fasse Doos cotre exemple : O cosidère la site (w ) défiie por tot etier o l par w Cette site est décroissate, ( immédiat, la site de terme gééral ( /) est e site isse de la foctio iverse coe depis la classe de secode), à termes strictemet positifs et a por limite Exercice 3 : Attetio ax ités! Comme 3 kg = g, à l'aide de la calclatrice o cherche le premier etier atrel tel qe dépasse : O a et doc la poplatio de bactéries dépassera les 3kg a bot de 23 jors remarqe : bie doer le derier terme trové à la calclatrice iférier à et le premier qi est spérier 2 O pet compléter l'algorithme avec TANT QUE pred la valer 2 00 Afficher remarqe : bie respecter la sytaxe proposée das l'algorithme, ici ( et o 3 Motrer qe tos les termes de la site sot pls grads qe 000 : Ue méthode : ( d'après le site de l'apmep) Démotrer directemet qe la site ( ) est miorée par 000 par récrrece ) Ue atre méthode : O pet démotrer par récrrece qe la site ( ) est croissate et e dédire q'elle est miorée par so premier terme 000 Remarqe : la «croissace» de la site pet sembler atrelle ve l aspect cocret de l exercice mais il fat la démotrer Motros par récrrece qe la propriété : " "est vraie por tot etier atrel Iitialisatio : 0=000 et = =00 O a doc 0 La propriété est doc vraie por =0 Hérédité : Spposos qe la propriété est vraie por etier atrel k c'est à dire qe k k+ Motros qe, sos cette hypothèse, elle est vraie por k+, c'est à dire qe k+ k+2 Par hypothèse de récrrece o a k k+ d'où e mltipliat par,2 et e elevat 00 o dédit qe,2 k 00,2 k+ 00 c'est à dire k+ k+2 La propriété est doc héréditaire Coclsio : par pricipe de récrrece, o pet dédire qe la propriété est vraie por tot etier atrel La site est croissate Elle est doc miorée par so premier terme 0 qi est égal à 000 et doc o a 000 por tot etier atrel

5 exercice 4 : corrigé proposé sr le site de l'apmep

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999 TS DS Ldi /0/07 Exercice : sr 6 poits O cosidère la site défiie par 0 0 et por tot, 3.. Démotrer, par récrrece, qe por tot,.. Etdier le ses de variatio de la site 3. Détermier la limite de la site 4. Recopier

Plus en détail

,=LESfSUITESfAUfBACf2013e

,=LESfSUITESfAUfBACf2013e ,=LESfSUITESfAUfBACf0e Frace métropolitaie septembre 0 5 poits L objet de cet exercice est d étdier la site ( ) défiie sr par 7 0 = et por tot etier atrel, () O porra tiliser sas démostratio le fait qe

Plus en détail

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR SUITES I Calcls de termes Exercice : O cosidère la site ( ) défiie por tot etier atrel par : a) Calcler,, b) Calcler,, c) Calcler les trois premiers termes de la site 5 Exercice : O cosidère la site (

Plus en détail

Premières S A et S C : pour s entraîner pour le devoir n 8

Premières S A et S C : pour s entraîner pour le devoir n 8 Premières S A et S C : por s etraîer por le devoir 8 Savoirs et savoir faire (oveax depis le DS7) : Barycetres das l espace : Démotrer qe des poits sot coplaaires à l aide de barycetres Savoir détermier

Plus en détail

arlesrsuitesraurbacr2013r==corriges=z

arlesrsuitesraurbacr2013r==corriges=z arlesrsuitesraurbacrr==corriges=z Frace métropolitaie septembre 5 poits 7 La foctio x x, ratioelle, est dérivable sr tot itervalle cote das so esemble x de défiitio * doc f est dérivable sr ] ; + [ et,

Plus en détail

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose :

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose : T Exercices sr les limites de sites () Por tot etier atrel, o pose : O cosidère la site ( ) défiie sr N par so premier terme récrrece ( ) = + por tot etier atrel ) Démotrer par récrrece qe, por tot etier

Plus en détail

SUITES RECURRENTES - EXERCICES CORRIGES

SUITES RECURRENTES - EXERCICES CORRIGES Exercice. SUITES RECURRENTES - EXERCICES CORRIGES O cosidère la site ( ) défiie par ) Etdier la mootoie de la site ( ) ) a) Démotrer qe, por tot etier atrel, b) Qelle est la limite de la site ( )? = por

Plus en détail

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n 4 ème aée Maths Sites réelles Septembre 9 A LAATAOUI Exercice : O cosidère la site ( ) défiie par : a) Motrer qe por tot de IN, < 4 b) Motrer qe ( ) est strictemet croissate c) E dédire qe ( ) + 4+, por

Plus en détail

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib Les sites réelles Copyright Dhaoadi Nejib 009 00 http://wwwsigmathscocc Dhaoadi Nejib http://wwwsigmathscocc Page : Sites Réelles Das ce chapitre I désige l esemble des etiers 0 ( 0 N ) I Rappels et complémets

Plus en détail

gts Exercices sur les limites de suites (2)

gts Exercices sur les limites de suites (2) gts Exercices sr les limites de sites () Soit e site défiie sr Tradire sos la forme d e phrase qatifiée la propriété «coverge vers» O cosidère e site défiie sr Tradire e termes de limites lorsqe c est

Plus en détail

BAC BLANC de MATHEMATIQUES TS

BAC BLANC de MATHEMATIQUES TS BAC BLANC de MATHEMATIQUES TS Décembre 205 Lycée Jea Calvi - Noyo Exercice Das cet exercice, les probabilités serot arrodies a cetième. Partie A U grossiste achète d soja chez dex forissers. Il achète

Plus en détail

Contrôle du samedi 1 er octobre 2016 (2 heures) TS1. III. (4 points : 1 ) 2 points ; 2 ) 2 points)

Contrôle du samedi 1 er octobre 2016 (2 heures) TS1. III. (4 points : 1 ) 2 points ; 2 ) 2 points) TS Cotrôle d samedi er octobre 6 ( heres) Préom et om : Note : / I ( poits : ) poit ; ) poit) O cosidère le polyôme 4 P 6 9 6 89 avec ) Démotrer qe por tot ombre complexe o a : P 6 89 III (4 poits : )

Plus en détail

II. (1 point) u est. On considère la suite u définie sur par ses deux premiers termes u0 1 et u1 4 ainsi que par la relation de récurrence u

II. (1 point) u est. On considère la suite u définie sur par ses deux premiers termes u0 1 et u1 4 ainsi que par la relation de récurrence u TS Cotrôle d vedredi septembre (5 mites) Préom et om : Note : / II ( poit) 5 À l aide de la calclatrice, détermier la valer arrodie a cetième de S La valer arrodie a cetième de S est égale à I ( poits

Plus en détail

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u Sites gééralités A Sites mériqes Notio de site Défiitio : Ue site ( qe : : a La site se ote o avec des parethèses ( est e foctio qi à tot etier atrel associe ombre réel, oté tel Le terme iitial de la site

Plus en détail

NOM : Terminale S Devoir n 2 12/10/2015. Le sujet est à rendre avec la copie

NOM : Terminale S Devoir n 2 12/10/2015. Le sujet est à rendre avec la copie NOM : Termiale S Devoir 2 2/0/20 Le sjet est à redre avec la copie. sr poits Résodre das C les éqatios sivates d icoe z : a) z i iz b) i z 2z c) z² 2z 0 d) z 0 2. sr. poit O se place das le pla complexe

Plus en détail

1 ère S Exercices sur les suites (3)

1 ère S Exercices sur les suites (3) ère S Exercices sr les sites () (Sites arithmétiqes - sites géométriqes) Soit la site arithmétiqe de premier terme 0 et de raiso r Exprimer e foctio de Soit la site arithmétiqe de premier terme 0 et de

Plus en détail

Cours et exercices de mathématiques SUITES NUMERIQUES EXERCICES CORRIGES

Cours et exercices de mathématiques SUITES NUMERIQUES EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES NUMERIQUES EXERCICES CORRIGES Exercice. Les sites sot défiies par f (. ( Doer la foctio mériqe f correspodate, idiqer le terme iitial de la site, pis calcler les

Plus en détail

Les suites numériques

Les suites numériques Les sites mériqes Objectifs : - Maîtriser la otio de covergece; cas particliers de la covergece mootoe; - Maîtriser les sites récrretes + = f( avec f mootoe; cas particlier des sites géométriqes; 3- Voir

Plus en détail

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière Mise à ivea licece de mathématiqes Les foctios racie carrée, valer absole o partie etière Eercice Détermier la limite de + + qad ted vers Eercice Vérifier qe ( 5) 6 5 A-t-o l'égalité 6 5 5? Eercice O sohaite

Plus en détail

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures)

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures) S : DEVOIR SURVEILLÉ N 8 ( heres) Exercice ( poits) Calcler les sommes sivates : S + + 3 +... + + et S + + 3 +... + 8 +. Exercice (3 poits) La site ( ) est arithmétiqe de raiso r. O sait qe 5 46 et 86..

Plus en détail

On considère qu une suite admet une limite l, ou converge vers l, lorsque :

On considère qu une suite admet une limite l, ou converge vers l, lorsque : I. Gééralités sr les limites de sites. Site covergete O cosidère q e site admet e limite l, o coverge vers l, lorsqe : tot itervalle overt coteat l cotiet tos les termes de la site à partir d certai rag.

Plus en détail

Le raisonnement par récurrence, un outil puissant de démonstration

Le raisonnement par récurrence, un outil puissant de démonstration TS I Itérêt ) Exemple est la site défiie par (site récrrete ; site «arithmético-géométriqe» ; o e coaît pas l expressio d terme gééral e foctio de ) Calclos les premiers termes de cette site Le raisoemet

Plus en détail

Algorithmes type BAC sur les suites

Algorithmes type BAC sur les suites Algorithmes type BAC sr les sites 1. Algorithme permettat de détermier rag à partir dqel e site croissate de limite ifiie est spériere à ombre réel A O cosidère la site ( ) défiie par 0 = et por tot etier,

Plus en détail

LFA / 1ère ES mathématiques-cours Mme MAINGUY Chapitre 7. v n

LFA / 1ère ES mathématiques-cours Mme MAINGUY Chapitre 7. v n LFA / ère ES mathématiqes-cors Mme MAINGUY Chapitre 7 Ch7 COURS Gééralités sr les sites I Défiitio Exemples exemple O cosidère la site défiie por par la relatio Calclos ; ; ; ; exemple O cosidère la site

Plus en détail

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Exercice O cosidère la site défiie par O pose Motrer qe ( est e site géométriqe Exprimer

Plus en détail

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ).

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ). Cors de Mathématiqe S CHAPITRE N Partie : Algebre & Aalyse SUITES - Cors D abord qelqes petits rappels : a = a = a m m a a = a + ( )( ) a m = m a a = b b a + a a = a si a, alors a a a a = + a m = a m Notio

Plus en détail

1 ère S Exercices sur les suites géométriques (1)

1 ère S Exercices sur les suites géométriques (1) ère S Exercices sr les sites géométriqes ( Rappel sr la calclatrice : Por le calcl des pissaces sr calclatrice, o tilise la toche ^ Les ombres ; ; 7, ; 8, ;,8 formet-ils das cet ordre e site géométriqe?

Plus en détail

Centres étrangers juin n + 2.

Centres étrangers juin n + 2. Cetres étragers ji 3 EXERCICE poits Comm à tos les cadidats O défiit, por tot etier atrel >, la site ( ) de ombres réels strictemet positifs par = Por tot etier atrel >, o pose v = a Motrer qe v = b Motrer

Plus en détail

SUITES AFFINES - EXERCICES CORRIGES. ), définie à partir de la suite ( u. 1. On pose vn

SUITES AFFINES - EXERCICES CORRIGES. ), définie à partir de la suite ( u. 1. On pose vn Exercice SUITES AFFINES - EXERCICES CORRIGES Das chaqe cas, motrer qe la site ( v, défiie à partir de la site ( v pis de e foctio de = = Exercice = et v = = 4 O cosidère e site ( défiie sr N par : a Motrer

Plus en détail

LES SUITES NUMERIQUES

LES SUITES NUMERIQUES LES SUITES NUMERIQUES I. Défiitio - Vocablaire - Notatios O appelle site mériqe tote foctio d'e partie P o ide de, das est le terme d'idice de la site. C'est l'image par de (o arait p la oter () mais est

Plus en détail

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n).

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n). SUITES ET SERIES SUITES 1.Défiitio O appelle site esemble de ombres 1, 2,... défiis das l ordre croissat et vérifiat certaies règles de défiitio. Chaqe ombre de la site s appelle terme, est par exemple

Plus en détail

ESG MANAGEMENT SCHOOL

ESG MANAGEMENT SCHOOL ESG MANAGEMENT SCHOOL ETABLISSEMENT D ENSEIGNEMENT SUPERIEUR TECHNIQUE PRIVE RECONNU PAR L ETAT DIPLÔME VISÉ PAR LE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE/ GRADE MASTER MEMBRE DE LA CONFERENCE

Plus en détail

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un I-Défiitios, vocablaire I- : Notio de site : Défiitio : e site d élémets d esemble A est e foctio de N vers R dot l esemble de défiitio est d type A R Si AR, o dit alors qe cette site est e site réelle

Plus en détail

TS Exercices sur les suites (2) 10 Soit u n

TS Exercices sur les suites (2) 10 Soit u n TS Exercices sr les sites () Soit la site défiie sr * par Soit e site défiie sr Tradire sos la forme d e phrase qatifiée la propriété «coverge vers» O cosidère e site défiie sr Tradire e termes de limites

Plus en détail

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k *

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k * SUITES NUMERIQUES Le pricipe de récrrece Soit e propositio P dépedat d etier atrel. Por démotrer qe P est raie por tot etier 0, il sffit de motrer qe : La propositio est raie a rag 0 ; por etier qelcoqe

Plus en détail

Session de Juin 2014 Section : Économie et gestion Épreuve : Mathématiques

Session de Juin 2014 Section : Économie et gestion Épreuve : Mathématiques Eame d baccalaréat Sessio de Ji 04 Sectio : Écoomie et gestio Épreve : Mathématiqes Sessio de cotrôle Eercice I) )a) La corbe de f passe par les poits O0,0 et B, e, d où f 0 0 et f e b) La tagete e O à

Plus en détail

a. Une suite numérique est une liste de nombres (les termes) repérés par un numéro d ordre (l indice), cette liste peut être infinie.

a. Une suite numérique est une liste de nombres (les termes) repérés par un numéro d ordre (l indice), cette liste peut être infinie. Stg Les sites I. Notios sr les sites a. Ue site mériqe est e liste de ombres (les termes) repérés par méro d ordre (l idice), cette liste pet être ifiie. Exemple. La site des ombres impairs :,,... Exemple.

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

Convergence et limite de suites numériques

Convergence et limite de suites numériques Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques ites arithméties et géométries A) ites arithméties Défiitio et formles Défiitio : forme récrsive Ue site est arithmétie lorse, à partir d terme iitial, l o passe d' terme de la site a terme sivat e ajotat

Plus en détail

TS Exercices sur les limites de suites (3)

TS Exercices sur les limites de suites (3) TS Exercices sr les limites de sites () O cosidère la site défiie sr par so premier terme récrrece por tot etier atrel ) Démotrer par récrrece qe, por tot etier atrel, o a : ) Détermier le ses de variatio

Plus en détail

Fiche 1 : les suites

Fiche 1 : les suites Fiche Cors Nº : 3 Fiche : les sites Pla de la fiche I - Défiir e site II - Comortemet global d e site III - Comortemet asymtotiqe d e site IV - Oératios et limites V - Théorèmes de comaraiso VI - Comortemet

Plus en détail

SUITES. u n est notée u. est appelé terme général de la suite

SUITES. u n est notée u. est appelé terme général de la suite SUITES A. Défiitio O appelle site réelle tote applicatio d e partie D de das. Notatios : a) Si D, l image de par c est à dire b) O ote la site o simplemet. D c) Le terme est appelé terme gééral de la site

Plus en détail

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ;

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ; Les sites Rappel : désige l esemble des etiers atrels, ;;;; UNE SUITE DE NOMBRES REELS EST UNE LISTE ORDONNEE DE NOMBRES REELS, FINIE OU INFINIE I ) Gééralités Notio de site Défiitio : Ue site est e foctio

Plus en détail

Dans la suite de l exercice on s intéresse seulement aux puces livrées aux clients.

Dans la suite de l exercice on s intéresse seulement aux puces livrées aux clients. Exercice Ue etreprise fabriqe des pces électroiqes qi sot tilisées por des matériels assi différets qe des téléphoes portables, des lave-lige o des atomobiles. À la sortie de fabricatio, % d etre elles

Plus en détail

Amérique du Nord Mai 2011 Série S Exercice Partie A : Restitution organisée des connaissances

Amérique du Nord Mai 2011 Série S Exercice Partie A : Restitution organisée des connaissances Amériqe d Nord Mai 0 Série S Exercice Partie A : Restittio orgaisée des coaissaces Démotrer le théorème de Gass e tilisat le théorème de Bézot Partie B O rappelle la propriété coe sos le om de petit théorème

Plus en détail

» car lim 3n 2 8=+ et lim 2 n 2 +5=+

» car lim 3n 2 8=+ et lim 2 n 2 +5=+ TS. 2014/2015. Lycée Prévert. Corrigé du devoir commu du premier trimestre. Durée : heures. Vedredi 14/11/2014 Exercice 1 : ( 7 pts). A ) Étudier les limites suivates : a) lim 2 8 2 2 +5. Il s'agit d'ue

Plus en détail

Suites. tel que : :. La suite se note u ou avec des parenthèses Le terme initial de la suite est u

Suites. tel que : :. La suite se note u ou avec des parenthèses Le terme initial de la suite est u Sites A) Sites mériqes Notio de site Défiitio : Ue site est e foctio qi à tot etier atrel associe ombre réel, oté tel qe : : La site se ote o avec des parethèses Le terme iitial de la site est o p qad

Plus en détail

Les suites réelles. Comportement global d une suite : Suite croissante Suite décroissante Suite majorée Suite minorée. 1. Des suites Arithmétiques.

Les suites réelles. Comportement global d une suite : Suite croissante Suite décroissante Suite majorée Suite minorée. 1. Des suites Arithmétiques. Les sites réelles Cote discipliaire 2A Scieces 3A Scieces expérimetales 4AScieces expérimetales Sites arithmétiqes. Sites géométriqes. Comportemet global d e site : Site croissate Site décroissate Site

Plus en détail

Asie juin 2013 EXERCICE 1 5 points Commun à tous les candidats Partie A a. Partie B Partie C EXERCICE 2 6 points Commun à tous les candidats

Asie juin 2013 EXERCICE 1 5 points Commun à tous les candidats Partie A a. Partie B Partie C EXERCICE 2 6 points Commun à tous les candidats Asie ji 03 Das l esemble d sjet, et por chaqe qestio, tote trace de recherche même icomplète, o d iitiative même o frctese, sera prise e compte das l évalatio EXERCICE 5 poits Comm à tos les cadidats Das

Plus en détail

TS Limites de suites (2)

TS Limites de suites (2) TS Limites de sites () bjectifs : mettre e place et tiliser des défiitios rigoreses des ites de sites I pproche de la défiitio d e site divergeat vers + ) pproche graphie a représeté graphiemet ci-dessos

Plus en détail

u est une suite arithmétique

u est une suite arithmétique wwwmathseligecom SUITES ARITHMETIQUES EXERCICES A EXERCICE A O cosidère la site défiie por tot etier atrel par = a Calcler ; et b Exprimer e foctio de c Démotrer qe dot o précisera le premier terme EXERCICE

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques Sites arithméties et géométries A Sites arithméties Défiitio et formles Défiitio : forme récrsive Ue site est arithmétie lorse, à partir d terme iitial, l o passe d' terme de la site a terme sivat e ajotat

Plus en détail

Suites. . La suite se note u ou avec des parenthèses ( u. Notations et vocabulaire : est le terme général de la suite : c est le terme de rang n.

Suites. . La suite se note u ou avec des parenthèses ( u. Notations et vocabulaire : est le terme général de la suite : c est le terme de rang n. Sites A Sites mériqes Notio de site Défiitio : Ue site est e foctio qi à tot etier atrel associe ombre réel, oté ( o tel qe : : a La site se ote o avec des parethèses ( Le terme iitial de la site est o

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

3 Compléter la phrase suivante : «Chaque terme est obtenu en multipliant le précédent par. puis en ajoutant» Calculer alors u

3 Compléter la phrase suivante : «Chaque terme est obtenu en multipliant le précédent par. puis en ajoutant» Calculer alors u Chaitre : Sites (Termiales ES sécialité) Activités réaratoires Activité. :. Voici les remiers termes d e site ( ) ; 4 ; ; 4 ; Comléter la hrase sivate : «Chaqe terme est obte e mltiliat le récédet ar.

Plus en détail

I. Suites géométriques

I. Suites géométriques Chapitre : Les sites géométriqes TES - Recoaître et exploiter e site géométriqe das e sitatio doée - Coaître la formle doat +q++q avec q - Détermier la limite d e site géométriqe de raiso strictemet positive

Plus en détail

Exercices sur le raisonnement par récurrence

Exercices sur le raisonnement par récurrence TS Exercices sr le raisoemet par récrrece Das tos les exercices, o veillera à respecter scrplesemet le protocole des récrreces 6 O cosidère la site déiie sr par so premier terme et la relatio de récrrece

Plus en détail

Nous définissons une suite numérique de la manière suivante : «A chaque étape n, on associe, u

Nous définissons une suite numérique de la manière suivante : «A chaque étape n, on associe, u Vdoie Termiale S Chapitre Sites mériqes et comportemet asymptotiqe Nos défiissos e site mériqe de la maière siate : «A chaqe étape, o associe, le ombre de carrés écessaires à la fabricatio de l escalier»

Plus en détail

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =.

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =. Sjet I, élémets de correctio EXERCICE I ( poits) La site est défiie par 0 = et por tot etier atrel, + = 0 = ; =, 7 ; =, 7 ; =, 6666 ; =, 0 ; la site e semble pas être mootoe, elle paraît coverger vers

Plus en détail

Exercices sur les suites (révisions de 1 ère et compléments)

Exercices sur les suites (révisions de 1 ère et compléments) T O cosidère la site Exercices sr les sites (révisios de ère et complémets) défiie sr par cos Étdier le ses de variatio de la site par étde de foctio Idicatio : O commecera par défiir e foctio f défiie

Plus en détail

Elle est associative, commutative et son élément neutre est la suite nulle notée 0

Elle est associative, commutative et son élément neutre est la suite nulle notée 0 Chapitre 9 : Sites mériqes-résmé de cors 1. Gééralités 1.1 Défiitio et exemples Déf: O appelle site tote applicatio de das. Si la site est otée, l'image de est oté pltôt qe (). O otera idifféremmet la

Plus en détail

POUR PRENDRE UN BON DEPART EN TERMINALE S

POUR PRENDRE UN BON DEPART EN TERMINALE S Lycée Charles de Galle POUR PRENDRE UN BON DEPART EN TERMINALE S Foritres por le jor de la retrée : dex cahiers grad format (si possible 4x3) à petits carreax Ue calclatrice avec modle graphiqe Ue pochette

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Fonctions - Dérivation

Fonctions - Dérivation Termiale S Dériatio Chapitre 4 Foctios - Dériatio I- Dériabilité f est e foctio défiie sr D f (iteralle o réio d iteralles C f est sa corbe représatie Foctio dériable e a Nombre dérié Défiitio (Rappels

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

Les Tours de Hanoï. Année

Les Tours de Hanoï. Année Cet article est rédigé par des élèves. Il pet comporter des oblis et imperfectios, atat qe possible sigalés par os relecters das les otes d éditio. Les Tors de Haoï Aée 5-6 Aters : DBOIS Hgo et ROCQET

Plus en détail

Calcul de rayon de convergence concret

Calcul de rayon de convergence concret [http://mp.cpgedpydelome.fr] édité le 24 septembre 206 Eocés Calcl de rayo de covergece cocret Exercice [ 0097 ] [Correctio] Détermier le rayo de covergece des séries etières : (a) 0 2 + 3 z (b) 0 e 2

Plus en détail

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9.

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9. Liba 13 v 0 = 1 O cosidère la suite umérique ( v ) défiie pour tout etier aturel par 9 v +1 = 6 v Partie A 1 O souhaite écrire u algorithme affichat, pour u etier aturel doé, tous les termes de la suite,

Plus en détail

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si :

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si : Sites mootoes Sites adjacetes Approximatios d réel Développemet décimal Pré reqis Axiome de la bore spériere Limite d e site Partie etière d réel Divisio eclidiee Sites mootoes Défiitios : O dit d e site

Plus en détail

E e e 5. TS DM 5 A rendre le 5/01/2015. Exercice 1 : A l'aide d'un logiciel de calcul formel on a résolu l'équation : ( ) : x x

E e e 5. TS DM 5 A rendre le 5/01/2015. Exercice 1 : A l'aide d'un logiciel de calcul formel on a résolu l'équation : ( ) : x x TS DM 5 A redre le 5/0/05 Pour iformatio : Le DM 5 sera redu, u bila sera fait e classe et le corrigé sera mis sur le site au plus tard le vedredi 9/0 Eercice : A l'aide d'u logiciel de calcul formel o

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

v 0 = 0 = 3v n 2 pour tout n N

v 0 = 0 = 3v n 2 pour tout n N Termiale S Aée scolaire 07-08 Chapitre Suites umériques Bejami Gausso fermathsfr Rappels et gééralités sur les suites O rappelle que N désige l esemble des etiers aturels : N = {0; ; ; 6} Défiitio Ue suite

Plus en détail

20, u 100. = 20.Calculez u0

20, u 100. = 20.Calculez u0 Cors et exercices de mathématiqes SUITES ARITHMETIQUES ET GEOMETRIQUES EXERCICES CORRIGES Exercice Les ombres sivats sot-ils e progressio arithmétiqe? 6 ; 6 ; 86 Exercice Parmi ces sites, lesqelles sot

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

Chapitre I : Limite de suites

Chapitre I : Limite de suites Chaitre I : Limites de sites I. Raels sr les sites. Mootoie d e site Théorème Si or tot, + alors la site est croissate Si or tot, + alors la site est décroissate Théorème O sose a réalable qe or tot, >

Plus en détail

1.1. Suites géométriques

1.1. Suites géométriques . Sites géométries.. Sites géométries Défiitio : Dire e site est géométrie de raiso sigifie e tot etier atrel,. Exemles Troer des sites La site de terme gééral, où aartiet à, est e site géométrie ise or

Plus en détail

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie. Exercice 1 : sur 8 points

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie. Exercice 1 : sur 8 points Termiles S DS N de Mthémtiques Ludi /0/04 L présettio, le soi et l rigueur des résultts etrerot pour ue prt importte ds l évlutio de l copie Exercice : sur 8 poits Cet exercice est costitué de questios

Plus en détail

Exercices sur les limites de suites 1.

Exercices sur les limites de suites 1. Exercices sur les ites de suites. Détermier les ites des suites ci-dessous lorsque ted vers +. Exercice.. u cos. v. w si + 900 Exercice 5. 0, 7. u 0, + 0, 4. v 70 + 000. w 44 4 + 5 Exercice.. u +. v. w

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Terminale S Les ROC d analyse à connaître.

Terminale S Les ROC d analyse à connaître. Termiale S Les ROC d aalyse à coaître Vos troverez ici les démostratios qe vos avez officiellemet des faire e cors (das le programme) Il est importat de préciser qe cela e sigifie e ac cas q il e faille

Plus en détail

QCM Une seule des réponses proposées est correcte. Recopiez là sur votre copie. Attention! Toute réponse erronée sera pénalisée

QCM Une seule des réponses proposées est correcte. Recopiez là sur votre copie. Attention! Toute réponse erronée sera pénalisée S DS 7/04/ Exercice : sr 4 points QCM Une sele des réponses proposées est correcte Recopiez là sr votre copie Attention! Tote réponse erronée sera pénalisée ( )a por terme général n Alors Q La site Q La

Plus en détail

SUITES ET SÉRIES * 3.1 Définition des suites * Convergence d une suite * Suite arithmétique * Suite géométrique * 7

SUITES ET SÉRIES * 3.1 Définition des suites * Convergence d une suite * Suite arithmétique * Suite géométrique * 7 SUITES ET SÉRIES ème aée (ivea avacé). Défiitio des sites. Covergece d e site 4. Site arithmétiqe 6.4 Site géométriqe 7.5 Séries et sommes partielles.6 La démostratio par récrrece 9.7 Critères de covergece

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Frace métropolitaie 202 Eseigemet spécifique EXERCICE 3 (6 poits (commu à tous les cadidats Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie

Plus en détail

LES SUITES. 1 Suites. 1.1 Suites numériques Approche.

LES SUITES. 1 Suites. 1.1 Suites numériques Approche. UMN04 : Sites COURS Ji 000 LES SUITES. Sites.. Sites mériqes... Approche. O observe das e etreprise, qe les bééfices e millios de fracs réalisés a bot de x aées de foctioemet pevet être modéliser par la

Plus en détail

SUITES ARITHMETIQUES ET GEOMETRIQUES EXERCICES CORRIGES

SUITES ARITHMETIQUES ET GEOMETRIQUES EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES ARITHMETIQUES ET GEOMETRIQUES EXERCICES CORRIGES Exercice Les ombres sivats sot-ils e progressio arithmétiqe? ; ; 8 Exercice Parmi ces sites, lesqelles sot arithmétiqes?

Plus en détail

u = 3 4 et q = 2 3. Calculer u

u = 3 4 et q = 2 3. Calculer u wwwmathseligecom SUITES GEOMETRIQUES EXERCICES A EXERCICE A O cosidère la site défiie por tot etier atrel par a Calcler ; et b Exprimer e foctio de c Démotrer e dot o précisera le premier terme est e site

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL SESSION aril 20 MATHÉMATIQUES Série S Drée de l épree : heres Coefficiet : 7 o 9 Les calclatrices électroiqes de poche sot atorisées, coformémet à la réglemetatio e iger. Le sjet est

Plus en détail

SUITES DE NOMBRES RÉELS

SUITES DE NOMBRES RÉELS SUITES DE NOMBRES RÉELS SOMMAIRE. Covergece. Divergece. Gééralités.. Défiitio.. Propriété : icité de la limite 3.3. Défiitio : sites de Cachy. 3.4. Propriété : ( ) coverge ( ) de Cachy ( ) borée. Exemple

Plus en détail

5. Prouver que la courbe représentative de la fonction h définie sur ]0 ;1[ ]1 ;+ [ par. admet une asymptote verticale.

5. Prouver que la courbe représentative de la fonction h définie sur ]0 ;1[ ]1 ;+ [ par. admet une asymptote verticale. Trmial S- ABC DS5 ldi 6 javir 7 La préstatio, la rédactio t la rigr ds résltats trrot por part sigificativ das l évalatio d la copi. L sjt st composé d 4 rcics idépdats. La calclatric st atorisé. La dré

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

) ) ) n. Lois discretes. Quelques formules classiques, très utiles : ( + = ; 6 ²( + S en fonction de 1

) ) ) n. Lois discretes. Quelques formules classiques, très utiles : ( + = ; 6 ²( + S en fonction de 1 L.Glli age sr Lois discrètes Lois discretes Qelqes formles classiqes, très tiles : ; Remarqe : Il existe des formles de récrrece doat e foctio de, Ce sot les formles de Newto, Exercice calcl de? Doc E

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail