b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition."

Transcription

1 Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel > 0, associe le réel oté ( ) dot l epoetielle est. Propriétés : ) a) Pour tout réel > 0 et tout réel, y = l équivaut à = e y. b) l = 0 2) Pour tout réel > 0, l e =. 3) a) Pour tout réel > 0, l ( e ) b) l ( e ) = =. 4) a) Pour tous réels et de 0;+, b) Pour tous réels et de 0;+, l a = l b équivaut à a = b l a < l b équivaut à a < b Démostratio : ) a) coséquece immédiate de la défiitio. 0 b) Par défiitio, l est le ombre dot l'epoetielle est. Or e =. Doc l = 0 2) Traductio de la défiitio. 3) a) Par défiitio, l ( e ) est le réel dot l'epoetielle est e. Doc l ( e ) b) Coséquece du a) avec =. l ( a) l( b) 4) a) l a = l b équivaut à e = e équivaut à a = b Eemple l ( a) l( b) b) l a < l b équivaut à e <e équivaut à a < b Résoudre l équatio l ( 2 ) = 3 a) Coditios d eistece : 2 > 0 équivaut à >. Doc o résout l'équatio das ; = 3 3 e + b) Das ; +, l'équatio l ( 2 ) = 3 est équivalete à 2 = e = e + Comme e > 0, o a bie ; + et O a doc 3 e + S = 2 2 2

2 Termiale S Chapitre 7 «Foctios logarithmes» Page 2 sur 2 2) Propriétés algébriques : Relatio foctioelle : Pour tous réels et de 0;+, l ( ab) = l ( a) + l ( b) O dit que le logarithme épérie trasforme les produits e sommes. Démostratio : ( ab) l e = ab l( a) l( b) l( a) l( b) + e = e e = ab ( ab) ( a) + ( b) l l l ( ab) ( a) ( b) Doc e = e. Doc l = l + l Applicatio: Règle à calculs Coséqueces : b = l 2 a b ) Pour tous réels et de 0;+, l = l ( b) et l = l ( a) l ( b) 2) Pour tout réel de 0;+, l ( a ) ( a) 3) Pour tout réel de 0;+ et pour tout etier relatif, l ( a ) = l ( a) Démostratio : ) Pour tout a > 0, a =. Doc l a = l. Doc l(a) + l = 0. Doc l = l(a) a a a a a Pour tout a > 0 et b > 0, l = l a = l(a) + l = l(a) l(b) b b b 2) Pour tout a > 0, a = a. 2 Doc l l l l l l ) a) O ote 2 ( a) = ( a ) = ( a a ) = ( a ) + ( a ) = ( a ) P la propriété «l ( a ) l ( a) Iitialisatio : l ( a ) l ( a) l ( a) =» défiie pour N * et 0;+ = =. Doc P est vraie. Hérédité : O suppose qu il eiste u etier aturel tel que ( P ) est vraie et o

3 Termiale S Chapitre 7 «Foctios logarithmes» Page 3 sur 2 démotre alors que + P est vraie, c est à dire l ( a ) ( ) l ( a) + = +. D après l hypothèse de récurrece l ( a ) = l ( a) Doc l ( a ) + l ( a) = l ( a) + l ( a) D après le relatio foctioelle, l ( a ) + l ( a) = l ( a a) = l ( a + ) + Doc l ( a ) ( ) l ( a) = +. Doc P est vraie. Coclusio : D après le pricipe de récurrece, o a démotré que, pour tout etier aturel * N, l ( a ) = l ( a) b) Si = 0, pour tout réel a > 0, l a = l() = 0 et 0 l( a) = 0. Doc l a = 0 l( a) c) Si < 0, l a = l = l a a ( a ) = ( ( a) ) = ( a) Comme < 0, > 0. D'après le a, l a = l a Doc l l l II) Etude de la foctio logarithme épérie ) Limites Propriétés : ) lim l = + 2) lim l Démostratio : ) Soit u réel réel. D après les propriétés de la foctio logarithme épérie, si est u réel tel que > e A, alors l pour assez grad. Doc lim l 2) Pour > 0, o pose X = > A. Doc l itervalle ] ; [ + = + =. Alors l = l = l ( X ) A + cotiet toutes les valeurs de l ( ) X lim = + 0 > 0 Par compositio lim l = 0 lim l ( X ) lim l ( X ) > 0 X + = = X +.

4 Termiale S Chapitre 7 «Foctios logarithmes» Page 4 sur 2 2) Dérivabilité Propriétés : ( admises ) ) La foctio l est cotiue sur ] 0;+ [. 2) La foctio l est dérivable sur ] 0;+ [ et, pour tout réel ] 0; + [, o a : l' Démostratio partielle du 2 : O admet que la foctio l est dérivable sur ] 0;+ [. O ote f la foctio défiie sur ] 0;+ [ par f = g h avec Doc h = l et g = e h' = l' et g ' = e l l f ( ) = e.. f ' = h ' g ' h = l' e = l' Or, pour tout réel ] 0; [ Doc l' =. Doc l' +, f =. Doc =. f ' =. = Propriété : Soit ue foctio dérivable et strictemet positive sur u itervalle. La foctio l u, otée l u, est dérivable sur et, o a : ( l u ) ' u ' = u : l 3 + sur, + 3 Eemple : Détermier la foctio dérivée de la foctio f ( ) 3) Variatios Propriété : La foctio l est strictemet croissate sur ] 0;+ [. So tableau de variatio est : 0 f + +

5 Termiale S Chapitre 7 «Foctios logarithmes» Page 5 sur 2 4) Courbe représetative Propriété : Das u repère orthoormé, la courbe représetative de la foctio l admet l ae des abscisses pour asymptote verticale. Propriété : Das u repère orthoormé, les courbes représetatives des foctios epoetielle et logartihme épérie sot symétriques par rapport à la droite d équatio y = Eercice ) Démotrer que la tagete à la courbe représetative de la foctio l au poit d abscisse est y =. 2) Démotrer que la tagete à la courbe représetative de la foctio l au poit d abscisse est y =. e 5) Autres limites A) Approimatio affie au voisiage de ) ( + h) l lim = 2) h 0 h l lim = Démostratio : ) La foctio l est dérivable e et l' = =. l ( + h) l l ( + h) Or l' = lim. Doc lim =. h h h 0 h 2) Das l égalité précédete, o pose = + h.

6 Termiale S Chapitre 7 «Foctios logarithmes» Page 6 sur 2 Remarque : La foctio est la meilleure approimatio affie de la foctio au voisiage de. l Applicatio : Approimatio de «e» ( + ) l O sait que lim = 0 E posat =, o obtiet lim l + = lim l + =. + + E appliquat la foctio epoetielle ( qui est cotiue ) : lim + = e. + B) Comparaiso avec la foctio Idetité : l ) lim = 0 2) lim l = Démostratio : ) O pose t l =. Alors l t = e t et = e t. lim t = lim l = t l ( compositio ), lim 0. e t = Doc lim = 0 t lim lim 0 + e t = + = + t + t t + e t 2) O pose lim X X 0 0 > 0 > 0 =. Alors l l l ( X ) l ( X ) = = = X X X X = lim = + l ( X ) = = 0 0 ( X ) X > 0 > 0 l lim = 0 + X X Par compositio lim 0. Doc lim l 0.

7 Termiale S Chapitre 7 «Foctios logarithmes» Page 7 sur 2 Polycopiés :. III) Logarithme décimal Défiitio : La foctio logarithme décimal est la foctio otée log, défiie sur ] 0;+ [ par : log Remarques : log = 0 et log ( 0) = l =. l 0 Propriétés : ) La foctio logarithme décimal est strictemet croissate sur ] 0;+ [ 2) lim log et lim log 0 > 0 = = + + 3) Pour tous les réels et de ] 0;+ [ et pour tout etier relatif, o a : a log ( a) a) log ( ab) = log ( a) log ( b) b) log = log = b log ( b) Remarque : Pour tout etier relatif, o a : log ( 0 ) =. c) ( a ) log ( a) Eercice : Détermier le ombre de chiffres d u ombre ) Peut o calculer avec la calculatrice le ombre α = 2? 2) Sio, peut-o estimer le ombre de chiffres qu il faut pour l écrire? ) A l aide de la calculatrice, peut o calculer α = 2? No, cela dépasse sa capacité mémoire. 2) a) Eprimer log ( α ) e foctio de log 2. log ( α ) = log( ) = log( 2) b) A l aide de la calculatrice, ecrader log ( α ) par deu etiers cosécutifs. c) E déduire u ecadremet de α par deu puissaces cosécutives de 0. d) E déduire le ombre de chiffres de.

8 Termiale S Chapitre 7 «Foctios logarithmes» Page 8 sur 2 IV) Foctios puissace IV. Foctios epoetielles de base, > 0 : a) Défiitio : O cosidère u réel a strictemmet positif, o appelle foctio puissace, la foctio défiie sur R par l e a f = = a. Remarques : ) Si a = e, o retrouve la foctio epoetielle. 2) Si a =, est la foctio costate égale à. Coséquece : Pour tout réel, a > 0 et l a = l a Propriétés : Les règles de calcul coues sur les puissaces d eposats etiers relatifs s étedet au cas d eposats réels : Pour tous réels strictemet positifs a et et tous réels et : y y + y y a a = a a = a ab = a b a y a a = a = a y = a a b b Dém : + y ( + y) l a l( a ) y l a y l a l a + yl a + y a a = e e = e = e = e = a Eemples : A = 64 = 2 = 2 = 2 = 4,5,5 2,5 2 (,5) 3 B = ( 0, 25) = = ( 2 ) = 2 = 2 = C = 2 8 = 2 2 = 2 2 = 2 2 = 2 = 2 = 2

9 Termiale S Chapitre 7 «Foctios logarithmes» Page 9 sur 2 b) Etude de la foctio : : 2 f f ( ) = 2 = e l 2 Doc est défiie sur R. lim =. Or l 2 > 0. Doc lim l 2 = Par compositio, lim 0 f = lim e = 0 Doc la droite d'équatio y = 0 est asymptote horizotale à la courbe au voisiage de. lim = +. Doc lim l 2 = Par compositio, lim f = + lim e = Par compositio, est dérivable sur R. l 2 f ' = l 2 e = l 2 a R, a > 0 et l 2 > 0. Doc f ' > 0. Doc f est strictemet croissate sur R. 0 + Variatios de 0 +

10 Termiale S Chapitre 7 «Foctios logarithmes» Page 0 sur 2 c) Etude de la foctio : : 0,3 f f ( ) = 0,3 = e l 0,3 Doc est défiie sur R. lim =. Or l 0, 3 < 0. Doc lim l 0,3 = + Par compositio, lim f = + lim e = + + lim = +. Or l 0, 3 < 0. Doc lim l 0,3 = + + Par compositio, lim f = 0 lim e = 0 + Doc la droite d'équatio y = 0 est asymptote horizotale à la courbe au voisiage de +. Par compositio, est dérivable sur R. l( 0,3 ' l 0,3 e ) f = = l 0,3 a R, a > 0 et l 0,3 < 0 Doc f ' < 0. Doc f est strictemet décroissate sur R. 0 + Variatios de + 0

11 Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 IV. 2 Foctio racie -ième : a) Foctio puissace etière : Défiitio : O cosidère u etier aturel o ul. O appelle foctios «puissace etière» les foctios défiies sur [ 0;+ [ par f =. Propriété : Les foctios «puissace etière» sot cotiues, dérivables, strictemet croissates sur [ 0;+ [ et lim = 0 et lim = Dém : f = f ' = [ [ Or 0; + et N*. Doc f ' 0 Coséquece : Pour tout réel a 0, l équatio f a 0;+. = admet ue uique solutio das [ [ Dém : corollaire du TVI b) Racie -ième : Défiitio : O cosidère u réel a positif. L uique réel positif tel que = a est appelé racie -ième de a et oté a. Eemples : = 0 = 8 = 2 car 2 = = 5 car 5 = 625 Propriété : Pour tout réel a > 0, a = a Dém : a = a et l'équatio = a admet ue uique solutio positive. Doc a = a Covetio : 0 = 0

12 Termiale S Chapitre 7 «Foctios logarithmes» Page 2 sur 2 c) Etude de la foctio racie -ième : f : Défiitio : O cosidère u etier aturel o ul. O appelle foctios «racie -ième» les foctios défiies sur ] 0;+ [ par f =. Propriété : Les foctios «racie -ième» sot cotiues, dérivables, strictemet croissates sur ] 0;+ [ et lim = +. + Dém : l f = = = e Doc est défiie sur ] 0;+ [. lim l = +. Or > 0. Doc lim l = Par compositio, lim f = + + lim e = + + Par compositio, est dérivable sur ] 0;+ [. Doc est cotiue sur ] 0;+ [. f ' = e l ] [ R, e > 0, > 0 et > 0 Doc f ' < 0. Doc f est strictemet croissate sur 0; Sige de f ' + + Variatios de 0

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES ) PUISSANCES D'EXPOSANTS REELS A ) La otatio a Si est u etier aturel, la otatio a a u ses pour tout réel a Das le cas où est u

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

Chapitre 4 : Fonction logarithme népérien

Chapitre 4 : Fonction logarithme népérien I. Logarithme épérie d u réel strictemet positif La foctio epoetielle est cotiue et strictemet croissate sur, à valeurs das 0;. Pour tout réel a de 0; l'équatio e a admet ue uique solutio das.. Défiitio

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

TS Exercices sur les fonctions puissances et racines n-ièmes

TS Exercices sur les fonctions puissances et racines n-ièmes TS Eercices sur les octios puissaces et racies -ièmes Calculer sas utiliser la calculatrice e détaillat les étapes de calcul 4 4 A ; B 6 ; C 8 ) Développer et ) E déduire la valeur eacte de A 0 4 0 4 4

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

IV. La fonction logarithme népérien

IV. La fonction logarithme népérien 04_fct _LDOC /5 IV La foctio logarithme épérie / Défiitio et premières propriétés a) Défiitio La foctio logarithme épérie, otée l est l uique foctio défiie sur ]0; [ dot la dérivée est et qui s aule e

Plus en détail

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1 Exercices 7 SUITES NUMÉRIQUES Récurrece O appelle factorielle et o écrit! le produit des etiers cosécutifs de à : Par covetio : 0! =.! = 3 ) Pour ue foctio f, o ote f ) sa dérivée - ième. Soit f défiie

Plus en détail

Synthèse de cours PanaMaths (TES) Les fonctions exponentielles

Synthèse de cours PanaMaths (TES) Les fonctions exponentielles Sthèse de cours PaaMaths (TES) Les foctios epoetielles Cette sthèse est coforme au ouveau programme de mathématiques de la classe de Termiale ES applicable à la retrée 2012 : les foctios epoetielles sot

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Exercices 8. Analyse asymptotique

Exercices 8. Analyse asymptotique Eercices 8 Aalyse asymptotique Relatios de comparaiso pour les foctios et les suites, développemets limités et applicatios 8 Aalyse asymptotique 1 1 Relatios de comparaiso 2 2 Développemets limités 3 3

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Ch.3 RAPPELS DÉRIVATION CONTINUITÉ D'UNE FONCTION ( + ) ( ) I. Rappels sur la dérivation ( + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Terminale S

Ch.3 RAPPELS DÉRIVATION CONTINUITÉ D'UNE FONCTION ( + ) ( ) I. Rappels sur la dérivation ( + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Terminale S Termiale S / LFA Mme MAINGUY Termiale S C3 RAPPELS DÉRIVATION CONTINUITÉ D'UNE FONCTION f est ue foctio défiie sur u itervalle I I Rappels sur la dérivatio défiitio a et a+ ( ) désiget deu ombres réels

Plus en détail

2. Correction : Limites, continuité, dérivabilité

2. Correction : Limites, continuité, dérivabilité Correctio : Limites, cotiuité, dérivabilité Exercices de base U algorithme a est la valeur de la variable x pour laquelle o cherche ( x ), p est la précisio utilisée das le calcul : plus o avace das la

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

v 0 = 0 = 3v n 2 pour tout n N

v 0 = 0 = 3v n 2 pour tout n N Termiale S Aée scolaire 07-08 Chapitre Suites umériques Bejami Gausso fermathsfr Rappels et gééralités sur les suites O rappelle que N désige l esemble des etiers aturels : N = {0; ; ; 6} Défiitio Ue suite

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

Corrigé du baccalauréat S Nouvelle-Calédonie 16 novembre 2012

Corrigé du baccalauréat S Nouvelle-Calédonie 16 novembre 2012 Durée : heures Corrigé du baccalauréat S Nouvelle-Calédoie 6 ovembre 0 EXERCICE Commu à tous les cadidats 6 poits. a. f est ue somme de foctios dérivables sur [0 ; + [ et sur cet itervalle : f )= = = +

Plus en détail

E e e 5. TS DM 5 A rendre le 5/01/2015. Exercice 1 : A l'aide d'un logiciel de calcul formel on a résolu l'équation : ( ) : x x

E e e 5. TS DM 5 A rendre le 5/01/2015. Exercice 1 : A l'aide d'un logiciel de calcul formel on a résolu l'équation : ( ) : x x TS DM 5 A redre le 5/0/05 Pour iformatio : Le DM 5 sera redu, u bila sera fait e classe et le corrigé sera mis sur le site au plus tard le vedredi 9/0 Eercice : A l'aide d'u logiciel de calcul formel o

Plus en détail

Exercices sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques Eercices sur les foctios trigoométriques réciproques O cosidère la foctio f défiie par f Arcta ) Détermier l esemble de défiitio D de f ) Simplifier l epressio de f pour D Idicatio : Poser y Arccos Soit

Plus en détail

Devoir de synthèse n 1

Devoir de synthèse n 1 Mathématiques Lycée IBN KHALDOUN - RADES Devoir de sythèse 4 e Maths Mardi 06--0 Durée : heures Prof : ABIDI Farid Exercice :(pts) Répodre par Vrai à Faux et avec justificatio à chacue des trois propositios

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Foctio logarithme épérie A) Logarithme épérie d u réel strictemet positif Réel l() avec > 0 Défiitio : Pour tout réel 0, le réel l est l uique solutio de l équatio : y Pour tout réel 0 : l y e Aisi la

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite.

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite. Première S / mathématiques Préparatio Termiale S Mme MAINGUY Défiir ue suite umérique Sythèse Ê SUITES NUMÉRIQUES u s'exprime e foctio de Cette suite est défiie par u = f ( ) Ê par ue formule explicite

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

FONCTIONS DE CLASSE C 1

FONCTIONS DE CLASSE C 1 FONCTIONS DE CLASSE C FONCTIONS DE CLASSE C La otio de classe C pour ue foctio est présete e aalyse (étude de foctios umériques à ue variable réelle, itégratios par parties) et e probabilités (foctio de

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 3 ovembre 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite

Plus en détail

D E V O I R S U R V E I L L E

D E V O I R S U R V E I L L E D E V O I R S U R V E I L L E MATIERE : MATHEMATIQUES CLASSE de : SALLE : PROFESSEUR : DATE : HEURE Début : HEURE fi : MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON Rappel : Tous les prêts, échages

Plus en détail

Comportement asymptotique

Comportement asymptotique Comportemet asymptotique NB: Les phrases écrites etre guillemets e italique sot écessaires à la compréhesio de la otio de ite, mais sot peu utilisées das la pratique où l o fait plutôt appel au propriétés

Plus en détail

Calculs de limites, développements limités, développements asymptotiques

Calculs de limites, développements limités, développements asymptotiques Eo7 Calculs de limites, développemets limités, développemets asymptotiques Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

Cours sur les suites numériques

Cours sur les suites numériques Suites umériques Cours sur les suites umériques M HARCHY TS 2 -Lycée Agora-205/206 Raisoemet par récurrece Théorème : Axiome de récurrece Soit P ue propriété portat sur les etiers aturels Si elle vérifie

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

Concours CCP, épreuve 1, filière PSI, 2007 PARTIE I : Les suites α et β

Concours CCP, épreuve 1, filière PSI, 2007 PARTIE I : Les suites α et β Cocours CCP, épreuve, filière PS, 27 PARTE : Les suites α et β.. Étude de la suite α... α = ; α = ; α 2 = ; α 3 = 2 ; α 4 = 9...2. Par récurrece immédiate, α est u etier relatif pour tout. Les ombres α

Plus en détail

Calcul d'intégrales 2

Calcul d'intégrales 2 de même largeur égale à 5 de même largeur égale à 5 Mr ABIDI Farid Termiales Calcul d'itégrales Activité : méthode des rectagles I Résultats prélimiaires Démotrer par récurrece que, pour tout etier aturel,

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

Fonctions exponentielles.

Fonctions exponentielles. Foctios epoetielles. Chatal Meii 22 février 2008 Das cette eposé ous supposeros bie sûr coues les otios de limites, cotiuité, dérivabilité et les propriétés usuellemet asociées (par eemple compositio de

Plus en détail

Corrigé du Bac blanc du lycée Prévert. Session de janvier Durée 4 h.

Corrigé du Bac blanc du lycée Prévert. Session de janvier Durée 4 h. Corrigé du Bac blac du lycée Prévert. Sessio de javier 015. Durée h. EXERCICE 1 Étude d'ue famille de foctios 6 poits A tout etier aturel o ul o associe la foctio f défiie sur R par f (x)= ex e x +7. O

Plus en détail

1 Douala Mathematical Society : Lycée Bilingue Nylon Brazzaville - Séquence 2 Terminale C

1 Douala Mathematical Society :  Lycée Bilingue Nylon Brazzaville - Séquence 2 Terminale C Douala Mathematical Society : wwwdoualamathset MINESEC EVALUATION HARMONISEE ANNEE SCOLAIRE 06-07 Délégatio régioale du littoral Epreuve : Mathématiques Séquece Délégatio départemetale du Wouri Classe

Plus en détail

Affecter. Fin tant que Afficher U Afficher V

Affecter. Fin tant que Afficher U Afficher V EXERCICE 1 5 poits Commu à tous les cadidats Soit f la foctio dérivable, défiie sur l itervalle ] 0 ; + [ par : f () = e + 1. 1. Étude d ue foctio auiliaire a. Soit la foctio g dérivable, défiie sur [

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

ème aée Maths Problème de révisio Décembre 009 A. LAATAOUI I- Soit la octio déiie sur par : ( ) ta - a) Motrer que est cotiue sur et dérivable sur. b) Calculer '( ) pour élémet de et motrer que est pas

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim NOM : Termiale S- ABC S3 ludi ovembre 06 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie. Le sujet est composé de 5 eercices idépedats.

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

Développements limités

Développements limités [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Eocés Développemets limités Calcul de développemets limités Eercice [ 0447 ] [correctio] Détermier les développemets limités suivats : a) DL 3 (π/4)

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

Mardi 10 janvier h-13h

Mardi 10 janvier h-13h Mardi javier 27 8h-3h Il sera teu compte de faco importate de la qualité de la rédactio et de l argumetatio. E particulier, répodre juste à ue questio est valorisé, répodre faux est péalisé et e pas répodre

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Plan d étude d une fonction

Plan d étude d une fonction Début de TS Pla d étude d ue octio ➀ Esemble de déiitio «eiste si et seulemet si» «eiste» A B eiste si et seulemet si B A eiste si et seulemet si A ➁ Parité - Périodicité Foctio paire D cetré e D C admet

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes Jeudi 20 javier 2011 DEVOIR COMMUN Termiales S Mathématiques Cadidats o spécialistes Le sujet comporte 4 exercices. Ue feuille aexe est à redre complétée avec les copies. L'usage du téléphoe portable 'est

Plus en détail

Lycée Marie Reynoard Accompagnement personnalisé TS. Raisonnement par récurrence - Généralités sur les suites.

Lycée Marie Reynoard Accompagnement personnalisé TS. Raisonnement par récurrence - Généralités sur les suites. Lycée Marie Reyoard Accompagemet persoalisé TS Exercice. Raisoemet par récurrece - Gééralités sur les suites.. Démotrer par récurrece que pour tout etier aturel, 4 + 5 est u multiple de 3. iitialisatio

Plus en détail

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires Problème 1 : costructio de triagles Das u pla affie euclidie orieté, o cosidère deux poits disticts B et C et u poit M apparteat pas à la droite BC). Pour chacue des assertios suivates, détermier s il

Plus en détail

(u ) bornée convergente lim un

(u ) bornée convergente lim un Août 06 ( heure et 45 miutes) a) Soit A, sous-esemble o vide et mioré de IR Défiir: - poit d accumulatio de A - miorat, ifimum et miimum de A (5 pt) b) Compléter les cases du tableau suivat par ue valeur

Plus en détail

Exercice 1: Donner les limites suivantes.détaillez les justifications sur et faites apparaître éventuellement les règles opératoires.

Exercice 1: Donner les limites suivantes.détaillez les justifications sur et faites apparaître éventuellement les règles opératoires. L.S.El Riadh Cotiuité et ites Mr Zribi Eercice 1: Doer les ites suivates.détaillez les justificatios sur et faites apparaître évetuellemet les règles opératoires. 1 3 5-33 + 7 2-5 + 1 + + 2 = 2-4 + 3-3

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

BACCALAUREAT GENERAL. Bac Blanc n 2 Lycée Gambetta-Carnot Arras

BACCALAUREAT GENERAL. Bac Blanc n 2 Lycée Gambetta-Carnot Arras BACCALAUREAT GENERAL Bac Blac Lycée Gambetta-Carot Arras ANNEE 06-07 MATHEMATIQUES Série : S DUREE DE L EPREUVE : 4 heures - COEFFICIENT : 7 Ce sujet comporte 6 pages umérotées de à 6 L utilisatio de la

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Suites de réels. Contents. 1 Retenez au moins ça 3

Suites de réels. Contents. 1 Retenez au moins ça 3 Suites de réels Cotets 1 Reteez au mois ça 3 Bore supérieure 3.1 Déitios.......................................... 3.1.1 Relatio d'ordre sur u esemble E....................... 3.1. Ordre total.....................................

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako DÉRIVÉES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Techique Bamako I- Foctio dérivable e u poit : Nombre dérivé d ue foctio e u poit : a Défiitio : O dit qu ue foctio f est dérivable

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

C.B. Analyse : solutions

C.B. Analyse : solutions l( ) ) La foctio f C.B. Aalyse : solutios Partie I : Etude de la foctio L a) Par théorème géérau, f est de classe C sur ], [ {}. E, o motre simultaémet les deu propriétés e obteat u D.L. de f e. O sait

Plus en détail