Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications.

Dimension: px
Commencer à balayer dès la page:

Download "Leçon 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binome. Applications."

Transcription

1 Leço 3 : Coefficiets biomiaux, déombremet des combiaisos, formule du biome. Alicatios. Prérequis : Nombres de listes, arragemets. Pricies de la somme et de la multilicatio. Cadre : O cosidèrera das la suite u esemble fii E de cardial N. O désigera ar! l etier obteu e multiliat etre eux tous les etiers aturels de à, et ar covetio, 0!. Déombremet des combiaisos Défiitio. Soit N. O aelle combiaiso à élémets de E toute artie o-ordoée de E à élémets. Le ombre total de ces combiaisos à élémets de E est oté. Remarque. i. est toujours u etier aturel. ii.. E effet, désige le ombre de arties à 0 élémets de E, c est à dire qu ue seule, l esemble vide. E articulier, o osera ar covetio. 0 Théorème. Ecriture exlicite de Soit N. Alors! si!! 0 sio Preuve. 3 Le cas > est facile. E effet, o e eut choisir aucue artie à élémets das E, si o a >. Suosos alors. Soit P la roriété P!,!!. O va motrer P ar récurrece sur. 0 Si 0, et N imose 0 et 0!, et aisi P0 est vraie. 0 0!0 0!. Attetio, raelos que la otio d arragemet est lus au rogramme du secodaire deuis la retrée Les uristes oterot C our désiger. Attetio toutefois, c est la derière otatio qui est e vigueur das les rogrammes, et c est celle-ci que ous utiliseros das cette leço. 3. Ue autre reuve sera doée e aexe.

2 Sectio Soit alors. O suose P vraie, et o va cosidérer A tel que A +, et distiguos deux cas : + Si 0, o a +! 0 0!+ 0! Si 0, cosidéros x A. Toute artie à élémets de A sera soit ue artie à élémets de A e coteat as x, soit la réuio de {x} et d ue artie à élémets de A e coteat as x. Si o désige resectivemet ar B, C et D l esemble des arties à élémets de A, celles à élémets de A du remier tye et celles à élémets de A du deuxième tye, o a, ar le ricie de la somme B C + D + + et comme P est suosée vraie, o a +!!! +!! +! + +!!+!+!!+! +!!+! D où P est vraie, our tout etier aturel. Exemle. La grille de Loto Ue ure cotiet 9 boules umérotées de à 9. O tire successivemet sas remise 7 boules de l ure. Combie de résultats eut-o obteir? Solutio. O cherche le ombre de combiaisos de 7 élémets armi 9, soit ! 7!! Proriétés., N, avec, o a i. Relatio de Pascal : + + ii. Symétrie : iii. O a égalemet Preuve. i. Voir reuve théorème.. ii. Permuter les deux termes au déomiateur. iii. Evidet.

3 Formule du biome 3 Formule du biome Théorème 3. Soiet a,b C. Pour tout N, a+b a b 0 Les ombres sot aelés coefficiets biomiaux. Preuve. Par récurrece sur. Si 0, a+b 0 et 0 0 O suose l égalité vraie our fixé. O a a+b + a+ba+b 0 0 a b 0 a 0 0 b 0 0. et ar l hyothèse de récurrece, o a a+ba+b a+b 0 a b 0 a + b + 0 a b + + a b a + +b a b + a + +b + + [ ] + a b + + a b + + a b + 0 Doc la roriété est vraie au rag +, doc vraie our tout etier aturel. Coséqueces.. O a 0 Cette derière somme rerésete e réalité le cardial de PE, soit PE.. O a 3. O a. O a efi Preuve., air 0 0. O déveloe + avec le biome de Newto.. O déveloe avec le biome de Newto. 0, imair

4 Sectio 3 3. Par. et., o a le système, e otat P, air et I, imair { P +I { P P I0 P I P I. Cette somme rerésete la somme des cardiaux de toutes les arties de E. Pour X PE, X et c X sot disjoits, et aisi D où Or Aisi X c X X + c X X PE X PE X PE 0 X + c X X X PE X X PE c X X PE 0 Autre reuve : O dérive le olyôme x +, e o évalue e x le olyome dérivé et la dérivée du déveloemet de x+ ar le biome de Newto. 3 Alicatios 3. Calcul de, de, de 3 Proositio. Soit N,. Pour tout,, + + Preuve. Soit E + {,,+}. Le ombre de arties à + élémets de E + est au ombre de +. Déombros maiteat ce ombre d ue autre faço. Ue artie de E + + à + élémets eut admettre comme maximum +,,+. Soit α {+,,+}. Pour faire ue liste de + élémets ayat α comme maximum, il suffit de choisir α uis élémets iférieurs strictemet à α, et il y α a exactemet choix ossibles. Aisi, le ombre de arties à + élémets das E + est au ombre de. Aisi, o a bie + +

5 Alicatios 5 Proositio 5. O a successivemet Preuve. O alique la roositio. aux trois cas :.. Aisi + +!!! +. O a Or Or, si, 0, doc [ ] Or, ar le oit., o a + 3 +, d où De même, Or 3 [ ]. Or, si, o a [ 3 + ] 0 et si, o a [8 +]0, d où o a 3 [ ] + Or ar les oits. et., o a + et ++ ; d où [ ]

6 Sectio 3 3. Formule de Vadermode Proositio. Soiet,m N. Pour tout etier 0,+m, o a m +m 0 Preuve. Posos E +m {,, + m}. Le ombre de combiaisos à élémets de E +m est au +m ombre de. Mais E +m {,, } { +,, +m}. Soit 0, fixé. Pour costruire ue liste de élémets de E +m, o eut choisir élémets de {,, }, et choisir élémets de m { +,, + m}. C est à dire qu à fixé, o déombre exactemet combiaisos à élémets. Doc le ombre total de combiaisos à élémets de E +m est au ombre de m Et aisi o a bie 0 0 m +m Corollaire 7. O a 0 Preuve. O alique le résultat de la roositio. au cas m. 3.3 Pricie des tiroirs Eocé : O cherche à rager r objets idiscerables au toucher das tiroirs umérotés de à. Chaque tiroir eut recevoir de 0 à de ces objets.. Ue reuve «algébrique» sera doée e aexe.

7 Alicatios 7 Iterrétos le roblème de la faço suivate : Pour faire emlacemets différets, o est rameer à lacer cloisos armi le ombre total de cloisos et d objets, soit +r. O a doc au fial +r +r r faços de lacer ces r objets das les tiroirs. U dessi our illustrer le roblème : O a défii ici 8 tiroirs avec 7 barres de séaratios, et o va chercher la ombres de ossibilités d y lacer objets. O viet de doer ue solutio au roblème. 3 Par ce qui a été fait, o e déombre 90 3 solutios. 8 Figure. Le ricie de tiroirs Rechercher le ombre de solutios etières ositives de l équatio α + +α r, d icoues α,, α, où r N est doé, reviet à résoudre le même roblème que celui des tiroirs. Il y a doc exactemet +r solutios. r 3. U exercice our coclure... O cosidère u triagle o alati ABC. O artage le segmet [AB] e arties, les oits de séaratios état otés C 0 A, C,, C B. O artage de la même maière [BC] e m arties, les oits de séaratio état otés A 0 C,A,,A m B. Le but de l exercice est de déombrer le ombre de triagles coteus das ABC. Faisos u dessi das le cas et m5 :

8 8 Sectio 3 AC 0 C C C 3 A 5 BC A A 3 A A CA 0 Figure. Figure de l exercice Remarquos que les triagles de cette figure admettet : Soit [AC] comme coté. Soit A comme sommet mais as C. Soit C comme sommet mais as A. Pour les triagles de coté [AC], comme A et C sot des sommets fixés, il suffit de choisir u troisième sommet défii comme l itersectio d u segmet [AA i ], i,m, et d u segmet [CC j ], j,. O a aisi {[AA i ],i,m} {[CC j ],j,} {[AA i ],i,m} {[CC j ],j,} m m Pour les triagles de sommet A qui ot as C comme sommet, il suffit de choisir comme deux autres sommets deux oits disticts aligés sur u segmet [CC j ], les deux état as C. Cela reviet à choisir u segmet [CC j ], j,, et deux segmets [AA i ] et [AA i ], i,i,m, i i. Il viet qu o e a m segmets armi m segmet armi mm Pour les triagles de sommet C ayat as A comme sommet, u raisoemet similaire à celui fait récédemmet ous doe directemet qu o e a m m

9 Comlémets et bibliograhie 9 Comme ces trois esembles formet ue artitio de l esemble des triagles de la figure, o a que le ombre T,m de triagles coteus das la figure vaut T,m m+m + mm [ m + + m ] [ ] +m m Alicatio umérique : Pour et m5, T, Aexes. Retour sur ue reuve alterative du théorème.. Retour sur ue reuve alterative du théorème 3..3 Retour sur ue reuve «algébrique» de la roositio.. U résultat itéressat sur les olyômes à lusieurs idétermiées 5 Comlémets et bibliograhie A voir aussi : Suite de Fiboacci et combiaisos. Le roblème de la greouille. Nombre de surjectios de E das F, où E e et F f. Bibliograhie : «L éreuve d exosé au CAPES de mathématiques, volume I» de D.-J. MERCIER Je ties à remercier D. REYNIER our m avoir trasmis sa leço, de laquelle je me suis largemet isiré.

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications.

LEÇON N 3 : Coefficients binomiaux, dénombrement des combinaisons, formule du binôme. Applications. LEÇON N : Coefficiets biomiaux, déombremet des combiaisos, formule du biôme Alicatios Pré-requis : Cardial d u esemble fii, arragemets ; Raisoemet ar récurrece 1 Défiitios et roriétés Défiitio 1 : Soit

Plus en détail

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition :

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition : Probabilités : coditioemet et idéedace Termiale S Déombremet. Pricie O raelle que le cardial d u esemble fii E, oté Card(E), rerésete so ombre d élémets. Si E 0,0 alors Card(E). Notre but est de détermier

Plus en détail

Analyse combinatoire

Analyse combinatoire Mathématiques : Outils our la Biologie Deug SV1 UCBL D. Mouchiroud (10/10/2002) Chaitre 1 Aalyse combiatoire Sommaire 1. Itroductio 2 2. Arragemets..2 2.1. Itroductio..2 2.2. Arragemets avec réétitios

Plus en détail

Dénombrement - Analyse combinatoire

Dénombrement - Analyse combinatoire S4 Maths 2011-2012 Probabilités 1 Déombremet - Aalyse combiatoire Uiversité de Picardie Jules Vere 2011-2012 UFR des Scieces Licece metio Mathématiques - Semestre 4 Probabilités 1 Déombremet - Aalyse combiatoire

Plus en détail

Corrigé du Devoir Libre n 2

Corrigé du Devoir Libre n 2 Corrigé du Devoir Libre Exercice 1 : Aagrammes 1. Combie les mots suivats ossèdet-ils d aagramme : a. BRETON U aagramme du mot BRETON est u réarragemet des lettres qui comoset ce mot. Par exemle NORBET

Plus en détail

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement " Hajeb Laayoun "

Série d'exercices *** 3 ème M Lycée Secondaire Ali Zouaoui Dénombrement  Hajeb Laayoun Série d'exercices *** 3 ème M Lycée Secodaire Ali Zouaoui Déombremet " Hajeb Laayou " I / -ulet : Défiitio : Soit E u esemble o vide et * ;O aelle -ulet d élémet de E toute écriture de la forme : a a a

Plus en détail

Licence 1 Mathématiques

Licence 1 Mathématiques Licece Mathématiques 204 205 Algèbre et Arithmétique Feuille o 3 : combiatoire. Exercices à savoir faire.. Réuio, itersectio, artitio. Exercice Au mois de javier, Aatole a ris ses reas de midi au Restau

Plus en détail

Cours Dénombrement Analyse combinatoire 1 / 11 A Chevalley

Cours Dénombrement Analyse combinatoire 1 / 11 A Chevalley 2016 Déombremet, aalyse combiatoire leth Chevalley 1. Rael sur les esembles : 1.1. Défiitio Soiet E, des esembles x sigifie «x est u élémet de» ou «x aartiet à». O désige ar l esemble vide qui a aucu élémet.

Plus en détail

LEÇON N 2 : Dénombrement.

LEÇON N 2 : Dénombrement. LEÇON N : Déombremet Pré-requis : Vocabulaire esembliste ; Raisoemet ar récurrece ; Défiitio : U esemble E est dit fii et de cardial, soit s il est vide et alors 0, soit si N et s il existe ue bijectio

Plus en détail

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1

Statistiques de Base. Chapitre 1. Analyse combinatoire. Ce cours est basé sur les notes de cours de D. Mouchiroud Lyon 1 Statistiques de Base haitre. Aalyse combiatoire e cours est basé sur les otes de cours de D. Mouchiroud Lyo Itroductio L aalyse combiatoire est ue brache des mathématiques qui étudie commet comter les

Plus en détail

I - ENSEMBLES FINIS ET CARDINAL

I - ENSEMBLES FINIS ET CARDINAL Séciales PSI LYCÉE BUFFON COURS Probabilités 1 Déombremet I - ENSEMBLES FINIS ET CARDINAL 1 DÉFINITION DÉFINITION 1 U esemble E o vide est dit fii s il existe u etier aturel o ul et ue bijectio de 1, sur

Plus en détail

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence Chapitre 1 Déombremet Objectifs du chapitre 1. A travers l axiomatisatio de Peao de N, rappeller les pricipes de récurrece forte et faible. 2. Défiir la otio de cardial et les opératios sur les cardiaux.

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

COMBINATOIRE & DÉNOMBREMENT

COMBINATOIRE & DÉNOMBREMENT COMBINATOIRE & DÉNOMBREMENT Pour mieux aréheder ce chaitre, il est recommadé de lire celui sur la théorie de esembles. Das tout ce qui suit, ous oteros! le roduit 3..., ce roduit s'aelle "factorielle ".

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

2. Espace de probabilité fini équilibré

2. Espace de probabilité fini équilibré 36 2. Esace de robabilité fii équilibré Esace de robabilités fii équilibré (résumé)...37 Esace de robabilités fii équilibré (défiitio)...38 Le modèle de Maxwell-Boltzma...39 Les ragemets de objets discerables

Plus en détail

Exercices de dénombrement

Exercices de dénombrement DOMAINE : Combiatoire AUTEUR : Atoie TAVENEAUX NIVEAU : Itermédiaire STAGE : Grésillo 0 CONTENU : Exercices Exercices de déombremet Exercice Combie y a-t-il de sous-esembles d u esemble de cardial? Exercice

Plus en détail

Moulay El Mehdi Falloul. Théorie des probabilités et de la statistique

Moulay El Mehdi Falloul. Théorie des probabilités et de la statistique Moulay El Mehdi Falloul Théorie des robabilités et de la statistique Itroductio La Probabilité et les statistiques sot deux discilies des mathématiques associées et idéedats à la fois. L aalyse statistique

Plus en détail

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé

- diagramme de Caroll. Exemple 1 : On lance 2 dés. 2 e dé 1 er dé TS Le déombremet est l art de compter (Il y e a souvet aux cocours) (cardial d u esemble fii : ombre de ses élémets Exemple : si E est u esemble fii à élémets, o dit que le cardial de E est égal à et o

Plus en détail

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p.

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p. MATHÉMATIQUES I Objectifs O se roose, das ce qui suit, de détermier l esemble des solutios d ue équatio différetielle liéaire à coefficiets costats lorsqu elle est homogèe, uis lorsque celle-ci admet u

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Chapitre 14 : Ensembles-Dénombrement

Chapitre 14 : Ensembles-Dénombrement PCSI Préaratio des Khôlles 0-04 Chaitre 4 : Esembles-Déombremet Exercice tye SoitE u esemble, eta,b deux arties dee, o désire motrer que sia BA B alorsab. Le rouver avec les foctios idicatrices. Le rouver

Plus en détail

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3?

Dénombrement et probabilités ( révisions de 6 ème) Combien de nombres à 5 chiffres peut-on écrire à l aide des trois chiffres 1,2,3? I. Déombremet :. Exemles : Exemle : Déombremet et robabilités ( révisios de 6 ème) ombie de ombres à 5 chiffres eut-o écrire à l aide des trois chiffres,,? Ecrire u ombre à 5 chiffres à l aide des trois

Plus en détail

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS

Onzième Aventure DÉNOMBREMENTS A - PERMUTATIONS Ozième Aveture DÉNOMBREMENTS A - PERMUTATIONS Le Père Noël a offert à ma etite cousie Josette u jeu de cubes où sot iscrits les lettres de l alhabet. Très édagogue, je lui doe d abord les trois cubes A,

Plus en détail

Chapitre 1. Dénombrement

Chapitre 1. Dénombrement Chapitre Déombremet Itroductio Lorsque l o compte les objets d ue collectio, o attribue à la collectio so cardial, c est à dire le ombre d objets qu elle cotiet. Par exemple u Picasso, u Rembrat et u Degas

Plus en détail

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011

Dénombrement. ECE3 Lycée Carnot. 30 novembre 2011 Déombremet ECE Lycée Carot 0 ovembre 2011 Itroductio La combiatoire, sciece du déombremet, sert comme so om l idique à comter Il e s agit bie etedu as de reveir au stade du CP et d aredre à comter sur

Plus en détail

est la probabilité cherchée est donc :

est la probabilité cherchée est donc : Lycée Secodaire Ali Zouaoui Probabilités 4 Sc-T Loi iomiale: Ue ure cotiet des boules blaches et des boules oires.la - robabilité de tirer ue boule blache au hasard est égale à ; q Aée Scolaire 007/008

Plus en détail

DÉNOMBREMENT - COMBINATOIRE - LOIS DE PROBABILITÉS DISCRÈTES

DÉNOMBREMENT - COMBINATOIRE - LOIS DE PROBABILITÉS DISCRÈTES DÉNOMBREMENT - COMBINATOIRE - LOIS DE PROBABILITÉS DISCRÈTES Das tout ce qui suit, ous oteros! le roduit 3..., ce roduit s'aelle "factorielle ". O coviet que! =. Exercices sur les factorielles : Démotrer

Plus en détail

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé

Suite des polynômes de Tchebychev. (Exercice N 127 page 87) Corrigé Suite des polyômes de Tchebychev (Exercice 7 page 87) a E utilisat la relatio de récurrece avec =, o obtiet : Puis, pour = : Efi, pour = 4 : O a bie : f x x f x f x x x x = = = f x = x f x f x = x x x=

Plus en détail

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants

DERNIÈRE IMPRESSION LE 27 février 2017 à 16:47. Dénombrement. En utilisant la notation factorielle, donner une autre écriture des nombres suivants DERNIÈRE IMPRESSION LE 7 février 07 à 6:47 Déombremet Calcul sur les factorielles EXERCICE Simlifier les écritures sas utiliser la calculette. )! 0! ) 7! 5! 3) 6! 5! 5! 4) 6 4! 5! 5) 7! 5! 0! 6) 7) 8)

Plus en détail

Coefficients binomiaux

Coefficients binomiaux [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Coefficiets biomiaux Exercice 1 [ 02081 ] [correctio] Motrer que our tout N et tout Z 1 1 Exercice 5 [ 02085 ] [correctio] [Formule de Chu-Vadermode]

Plus en détail

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants

Exercices. Dénombrement 1 5! 42 6! 3! 3! 9! 5! 4! 9! 6! 3! 2) En utilisant la notation factorielle, donner une autre écriture des nombres suivants Exercices Déombremet Exercice Calcul sur les factorielles ) Simlifier les écritures sas utiliser la calculette. a)! 0! b) 7! 5! c) 6! 5! 5! d) 6 4! 5! e) 7! 5! 0! f) 5! 4 7! g) 6! 3! 3! h) 9! 5! 4! i)

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles?

Le loto : on tire, au hasard, 6 boules parmi 49. Combien de tirages possibles? B1 ESH Exercices de déombremet Corrigé Exercice 1 A la catie du lycée, o a le choix etre 3 etrées, 2 plats et 4 desserts. Combie de meus (composés d'ue etrée, d'u plat et d'u dessert) sot possibles? Soit

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Enoncés. Soit n un entier naturel non nul et E un ensemble à n éléments. En utilisant des raisonnements combinatoires:

Enoncés. Soit n un entier naturel non nul et E un ensemble à n éléments. En utilisant des raisonnements combinatoires: Le raisoemet combiatoire Eocés Exercice. Das cet exercice, o evisage des codages biaires (successios de et de ). Pour tout N *, o ote U le ombre de codages biaires à chiffres se termiat par et e comportat

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

Chapitre 1. Arithmétique. Partie 5 : PGCD

Chapitre 1. Arithmétique. Partie 5 : PGCD Chapitre 1 Arithmétique Partie 5 : PGCD Propriété/Défiitio : (PGCD) O se doe deux etiers relatifs a et b o uls. L esemble des diviseurs positifs commus à a et b admet u plus grad élémet que l o PGCD a

Plus en détail

a) Après avoir fait deux pas, quelle est la probabilité qu elle soit : En A? En B? En C? En D?

a) Après avoir fait deux pas, quelle est la probabilité qu elle soit : En A? En B? En C? En D? ANTILLES-GUYANE Série S Setembre 2000 Exercice. Ue fourmi se délace sur les arêtes de la yramide ABCDS. Deuis u sommet quelcoque, elle se dirige au hasard (o suose qu il y a équirobabilité) vers u sommet

Plus en détail

est une famille de parties de [1,+ [, indexée par N. n n N A i i I / x A i A i : A i i I, x A i = {1}. n

est une famille de parties de [1,+ [, indexée par N. n n N A i i I / x A i A i : A i i I, x A i = {1}. n 22 CHAPITRE 1. LOGIQUE - THÉORIE DES ENSEMBLES Exemple : ([ 1,1+ 1 ]) est ue famille de parties de [1,+ [, idexée par N. N Ò Ø ÓÒ ½º¾ Si (A i ) est ue famille de parties de E, o défiit l uio des A i pour

Plus en détail

Construire des polygones connaissant les milieux des côtés.

Construire des polygones connaissant les milieux des côtés. Costruire des olygoes coaissat les milieux des côtés Costruire u triagle ABC dot les milieux des côtés soiet trois oits doés I J K deux à deux disticts Aalyse : La symétrie cetrale de cetre le milieu d

Plus en détail

DÉVELOPPEMENTS LIMITÉS 5

DÉVELOPPEMENTS LIMITÉS 5 DÉVELOPPEMENTS LIMITÉS 5 A. Défiitios Soit f ue foctio umérique de la variable réelle défiie sur u itervalle I coteat et u etier aturel. O dit que f admet u déveloemet limité à l'ordre au voisiage de s'il

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

Somme de puissances de nombres entiers successifs et nombres de Bernoulli

Somme de puissances de nombres entiers successifs et nombres de Bernoulli 1 Somme de uissaces de ombres etiers successifs et ombres de Beroulli O ose : 1 S ( ) 1... ( 1) k = + + + + =. Il s agit de la somme des etiers successifs de à 1, tous à la même uissace. Par exemle : S

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible.

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible. Uiversité de Geève Sectio de Mathématiques Algèbre I Corrigé 2 Série 7, ex 3 Toutes les affirmatios sot vraies sauf la derière E effet, pour que deux espaces soiet e somme directe, il faut que leur itersectio

Plus en détail

BD - COEFFICIENTS BINOMIAUX

BD - COEFFICIENTS BINOMIAUX BD - COEFFICIENTS BINOMIAUX O ose ( C!!(! si 0 0 or les atres coles ( de Z 2 Doc (2 (3 0 ( 0 ( ( 0 (4 (5 ( ( 2 2 2 ( ( ( ( 0 ( 0 0 Formles élémetaires (6 (7 (8 (9 (0 ( ( ( 0 ( ( 0 BD 2 Les trois formles

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33

Sommaire. Chapitre 1. Notions de base Chapitre 2. Nombres complexes Polynômes... 33 Sommaire Chapitre. Notios de base.................... 7 A. Démostratio par récurrece..................... 8 B. Esembles............................. 9 C. Applicatios............................ 2 D. Calcul

Plus en détail

Partie I - Préliminaires

Partie I - Préliminaires SESSION 25 Cocours commu Cetrale MATHÉMATIQUES. FILIERE PC Partie I - Prélimiaires I.A - I.A. Soit N. Pour N, Puisque la série de terme gééral +... + + 2. coverge, il e est de même de la série de terme

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes 08. O dispose de boîtes umérotées de à. La boîte k cotiet k boules umérotées de à k. O choisit au hasard ue boîte, puis ue boule das cette boîte. Soit X le uméro de la boîte et Y le uméro de la boule..

Plus en détail

XIV. Analyse combinatoire Binôme de Newton

XIV. Analyse combinatoire Binôme de Newton . Itroductio. XIV. Aalyse combiatoire Biôme de Newto But : déombrer des esembles fiis das des cas élémetaires. Quelques situatios de déombremet :. De combie de maières eut-o remlir u bulleti de tiercé

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

Culture disciplinaire

Culture disciplinaire CONCOURS DE RECRUTEMENT AU PROFESSORAT DE L'ENSEIGNEMENT DU SECOND DEGRE AGRICOLE CAPESA SESSION 2011 Cocours : Sectio : EXTERNE MATHEMATIQUES PREMIERE EPREUVE ECRITE D'ADMISSIBILITE Culture discipliaire

Plus en détail

) ) ) n. Lois discretes. Quelques formules classiques, très utiles : ( + = ; 6 ²( + S en fonction de 1

) ) ) n. Lois discretes. Quelques formules classiques, très utiles : ( + = ; 6 ²( + S en fonction de 1 L.Glli age sr Lois discrètes Lois discretes Qelqes formles classiqes, très tiles : ; Remarqe : Il existe des formles de récrrece doat e foctio de, Ce sot les formles de Newto, Exercice calcl de? Doc E

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 25 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la lus grade imortace à la clarté, à la récisio et à la cocisio de

Plus en détail

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières

Chapitre A1 - Nombres - récurrences - Sommes. Table des matières Chapitre A1 - Nombres - récurreces - Sommes Table des matières 1 Esembles de ombres 2 1.1 Déitios................................................... 2 1.2 Itervalles d'etiers..............................................

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème Maths

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web :  3 ème Maths Séries d exercices Deomremet 3 ème Maths Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels ue. Pour tout etier, o ote ar M ( ) l esemle M(

Plus en détail

Probabilité conditionnelle 4 ème Sciences Avril 2010

Probabilité conditionnelle 4 ème Sciences Avril 2010 Probabilité coditioelle 4 ème Scieces vril 200 LTOUI Raels { e e e } Ω=, 2,, est l uivers des ossibles (esemble des évetualités) associé à ue éreuve, exériece, u jeu, Exemles : Lacer d ue ièce de moaie

Plus en détail

Par Marcel Mountsiesse

Par Marcel Mountsiesse Article 36 Démostratio directe du derier théorème de Fermat Par Marcel Moutsiesse Résumé : Das ce travail, ous ous roosos de rouver ar ue méthode élémetaire l imossibilité de l équatio de Fermat das *

Plus en détail

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015

IUT de Saint-Etienne - département Techniques de Commercialisation M. Ferraris Promotion /05/2015 IUT de Sait-Etiee - déartemet Techiques de Commercialisatio M. Ferraris Promotio 2014-2016 28/05/2015 Semestre 2 - MATHEMATIQUES DEVOIR 2 durée : 2 heures coefficiet 2/3 La calculatrice grahique est autorisée.

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications.

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications. DOCUMENT 14 Racies -ièmes d u ombre complexe. Racies de l uité. Applicatios. Das u documet précédet, o a itroduit le corps des ombres complexes afi que tout ombre réel ait ue racie carrée. O va voir ici

Plus en détail

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Déombremets Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice IT * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi.

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi. Exo7 Fractios ratioelles Correctios de Léa Blac-Ceti. Fractios ratioelles Exercice Existe-t-il ue fractio ratioelle F telle que ( F() ) = ( + ) 3? Idicatio Correctio Vidéo [006964] Exercice Soit F = P

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Correction concours général maths 2015

Correction concours général maths 2015 Correctio cocours gééral maths 2015 Problème I Petits poids 1) a) 3 = 3, 3 + 5 = 8, 3 + 5 6 = 2, 3 + 5 6 8 = 6, 3 + 5 6 8 + 2 = 4 doc poids(3,5, 6, 8,2) = 8 b) poids(1,2,3,,2015, 2015, 2014,.., 1) = 1

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

Groupes monogènes, groupes cycliques. Exemples

Groupes monogènes, groupes cycliques. Exemples 2 Groupes moogèes, groupes cycliques. Exemples Les otios de base sur les groupes sot supposées coues. E particulier, les esembles et groupes quotiets sot supposés cous. Pour des rappels, o pourra cosulter

Plus en détail

Dimension finie. 1. Famille libre Combinaison linéaire (rappel) 1.2. Définition

Dimension finie. 1. Famille libre Combinaison linéaire (rappel) 1.2. Définition Dimesio fiie Vidéo partie. Famille libre Vidéo partie 2. Famille géératrice Vidéo partie 3. Base Vidéo partie 4. Dimesio d'u espace vectoriel Vidéo partie 5. Dimesio des sous-espaces vectoriels Fiche d'exercices

Plus en détail

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web : 3 ème sciences

Séries d exercices Denombrement { } Maths au lycee *** Ali AKIR Site Web :  3 ème sciences Séries d exercices Deomremet 3 ème scieces Maths au lycee *** Ali AKIR Site We : htt://maths-akir.midilogs.com/ EXERCICE N Soit E l esemle des etiers tels que. Pour tout etier, o ote ar M ( ) l esemle

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Corrigé du baccalauréat S Liban 3 juin 2010

Corrigé du baccalauréat S Liban 3 juin 2010 Corrigé du baccalauréat S Liba 3 jui 1 Exercice 1. Partie A : Restitutio orgaisée de coaissaces 1) x R, o a d après le pré-requis e preat y x : e x e x e x+x e 1. Ceci état vrai pour tout x, e divisat

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

Chapitre 2 : Raisonnement par récurrence, manipulation de sommes.

Chapitre 2 : Raisonnement par récurrence, manipulation de sommes. ECS1B Carot Chapitre 013/014 Chapitre : Raisoemet par récurrece, maipulatio de sommes Objectifs : Écrire propremet u raisoemet par récurrece (simple, double Maipuler les symboles Σ et sas erreur ceci viedra

Plus en détail

A) Forme algèbrique d un nombre complexe.

A) Forme algèbrique d un nombre complexe. A) Forme algèbrique d u ombre complexe. Théorème Il existe u esemble, oté,de ombres appelés ombres complexes, tel que : cotiet ; est mui d ue additio et d ue multiplicatio pour lesquelles les règles de

Plus en détail

CH V : Variables aléatoires - généralités

CH V : Variables aléatoires - généralités CH V : Variables aléatoires - gééralités I. Notio de variable aléatoire réelle Soit (Ω, A ) u espace probabilisable. O dit que X est ue variable aléatoire réelle défiie sur (Ω, A ) si : (i) X est ue applicatio

Plus en détail

Fiche N 8 : Matrices.

Fiche N 8 : Matrices. Lycée Paul Gaugui CPGE-EC1 Aée 014/015 Fiche N 8 : atrices Gééralités sur les matrices atrices : Défiitios O appelle matrice à liges et p coloes tout tableau rectagulaire de ombres réels à liges et p coloes

Plus en détail

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Les ratioels, les réels Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Exercices - Les nombres réels : corrigé. Valeur absolue - Partie entière

Exercices - Les nombres réels : corrigé. Valeur absolue - Partie entière Exercices - Les ombres réels : corrigé Exercice 1 - Ordre et R - L1/Math Sup - 1. Supposos que a 0 et posos ε = a /2 > 0. Alors o a a < ε = a /2, soit e simplifiat par a qui est positif, 1 < 1/2. Ceci

Plus en détail

Exercices sur multiples et diviseurs

Exercices sur multiples et diviseurs TS spé Exercices sur multiples et diviseurs 7 15 6. 15 Vérifier que pr tt etier relatif o a : 6 Détermier les etiers relatifs tels que soit u etier. 1 1 ) Le ombre 11 est-il u multiple de 117? ) Sas calcul,

Plus en détail